
www.allitebooks.com

http://www.allitebooks.org


Express.js Blueprints

Learn to use Express.js pragmatically by creating  
five fun and robust real-world APIs, with a bonus 
chapter on Koa.js

Ben Augarten, Marc Kuo, Eric Lin, Aidha Shaikh,  
Fabiano Pereira Soriani, Geoffrey Tisserand,  
Chiqing Zhang, Kan Zhang

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Express.js Blueprints

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the authors nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1080515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-302-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors
Ben Augarten

Marc Kuo

Eric Lin

Aidha Shaikh

Fabiano Pereira Soriani

Geoffrey Tisserand

Chiqing Zhang

Kan Zhang

Reviewers
Aristides Villarreal Bravo

Aritrik Das

John Fawcett

Ajmal Sali

Dan Williams

Commissioning Editor
Ashwin Nair

Acquisition Editor
James Jones

Content Development Editors
Priyanka Shah

Ritika Singh

Technical Editor
Deepti Tuscano

Copy Editors
Vikrant Phadke

Adithi Shetty

Project Coordinator
Izzat Contractor

Proofreaders
Simran Bhogal

Martin Diver

Safis Editing

Indexer
Priya Sane

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Ben Augarten is a senior software engineer at Twitter, in the beautiful  
city of Boulder, Colorado, USA. He is an electrical engineering and computer  
science graduate from the University of California, Berkeley. He is the author of 
node-RESTful, a library used to generate RESTful endpoints for domain resources. 
Ben writes programs that are widely used, functional, and scalable. He primarily 
works on distributed systems, data processing, and web technologies.

My thanks to Packt Publishing for their help and support while 
writing this book. Also, thanks to the Axiom Zen team for their help 
in crafting the content. Finally, thanks to my friends and family for 
their support, and my co-workers for refraining from making too 
many Node.js jokes.

Marc Kuo has a neat freak personality, which is reflected in his clean and proficient 
code. As a full stack developer at Axiom Zen, he architects shipshape infrastructure 
and efficient model databases. He loves to hack in Common Lisp, CoffeeScript, 
Angular, and Node.js.

The neat freak in Marc comes from two important principles: efficiency and 
optimization. He is the founder of Routific, a routing solution that reduces waste  
in the transportation sector. In the open source field, he is the author of Alike and 
Look-Alike(recommendation engines for Node.js), T3 (Ultimate Tic-Tac-Toe), and 
Zenbase-angular (gulp-angular-coffee-stylus-jade boilerplate).

Infinite gratitude goes out to my wife, Suzanne Ma, the cofounder of 
Routific as well as my life. Thanks for always joining me on my crazy 
adventures. I'd also like to express (no pun intended) exponential 
gratitude towards Axiom Zen for giving us this unique opportunity 
and for always fostering creativity.

www.allitebooks.com

http://www.allitebooks.org


Eric Lin is a software engineer at Axiom Zen in Vancouver, British Columbia, 
Canada. He completed his master's degree in statistics and has been developing 
software professionally for 2 years. He is always looking forward to picking up new 
languages and technologies while having a personal interest in data analytics and 
predictive modeling.

My thanks to Packt Publishing for their support throughout the 
writing process and their flexibility on deadlines; to Axiom Zen, for 
the numerous opportunities they gave me to expand my knowledge 
in new technologies; finally, to my wife, Min-Chee Lo, for always 
being patient and understanding, especially on the days where I 
ended up working late.

Aidha Shaikh has a doctoral degree in chemistry from the University of British 
Columbia, where she researched enzymes that cleave blood antigens to make universal 
O-type blood, and published several first-authored papers. After completing an 
NSERC Post Doctoral Industrial R&D Fellowship, she embraced her love for coding. 
She recently stepped out of her lab coat and donned a coder hoodie with pride.

Aidha's research-rich past stays with her as she constantly looks for new ways to 
solve problems, and she loves learning new things everyday. She started off with 
frontend web development. She really loves to hack into Node.js and Express.js.

My deepest thanks go to Axiom Zen for the amazing opportunities, 
learning experiences, and creative avenues I've been given. I would 
also like to thank the Packt Publishing team for all their support and 
work on this book with us.

www.allitebooks.com

http://www.allitebooks.org


Fabiano Pereira Soriani does what he loves as a software developer at Axiom 
Zen in Santiago, Chile. He holds a bachelor's degree in computer science from the 
Universidade Estadual de Londrina, Brazil, and a certification in project management 
from Canada. He has developed software professionally for over 5 years, always 
focusing on new and productive web technologies, with an intense focus on the 
impact they have on users and other stakeholders alike. He aims for excellence in 
product and agile product lifecycles.

Fabiano has published open source Node.js packages and a number of how-to blog 
posts, ranging from backend concepts and Ruby on Rails all the way through to the 
cutting-edge frontend.

Thanks to the talented and patient staff at Packt Publishing 
for helping us instill the best book we could. It has been quite 
a long journey. Also, thanks to Axiom Zen, for the vision and 
encouragement, and allowing time for this project—this is a part  
of what makes this company so unique.

Finally, thanks to my companion, Asuka Kiriyama, who was kind 
and tolerant of the long work hours required to write the content  
of this book.

Geoffrey Tisserand is a full stack software engineer, who focuses on  
building reliable and scalable applications and services for Axiom Zen's products.  
He completed his master's degree in computer science at the Université de 
technologie in Belfort-Montbéliard, France. He is a nitpicky and detail-oriented 
JavaScript and Ruby ninja, who really enjoys discovering new technologies, APIs, 
and frameworks to play with.

A start-up enthusiast, Geoffrey is thrilled to be in an environment where he is 
constantly learning and improving his skills. He also loves to build side-projects  
and create experiments, and is always thinking about his next idea for a start-up.

www.allitebooks.com

http://www.allitebooks.org


Chiqing Zhang is an exceptional software architect, whose clean and simple 
code has leveraged scalable and maintainable systems for some of the world's top 
technology companies, such as Microsoft, Baidu, and AppAnnie. As a full stack 
developer at Axiom Zen, he is passionate about building highly reliable systems and 
delivering products with the best user experience. Chiqing was granted a patent 
for multilayer structured data operations and he has published a book on Microsoft 
Silverlight technologies.

Many thanks to the Packt Publishing team and the technical 
reviewers, whose insightful comments and kind suggestions were 
essential for improving the content. Thanks to Axiom Zen for 
this opportunity. Finally, thanks to my wife, Hanna Yang, for her 
constant support and patience.

Kan Zhang is an experienced software engineer with both a bachelor's degree 
in civil engineering and a bachelor's degree in computer science. He has gained 
substantial project management experience from leading personal team projects as 
well as previous civil engineering internships.

Kan has also worked on many Android apps, mobile games, and backend systems 
for various applications and services. He is currently working as a software engineer 
at Axiom Zen, discovering his love for new technologies, innovative products, and 
exciting start-ups.

My thanks for the amazing support from all the people at both 
Axiom Zen and Packt Publishing. And thanks to Irene Fung for her 
continued patience and support in everything I do.

www.allitebooks.com

http://www.allitebooks.org


About the Reviewers

Aristides Villarreal Bravo is a Java developer, a member of the NetBeans Dream 
Team, and a Java User Groups leader. He lives in Panama. He has organized and 
participated in various conferences and seminars related to Java, JavaEE, NetBeans, 
the NetBeans platform, free software, and mobile devices, both nationally and 
internationally. He is the author of tutorials and blogs about Java, NetBeans,  
and web development.

Aristides has participated in several interviews on sites about topics such as 
NetBeans, NetBeans DZone, and JavaHispano. He is a developer of plugins for 
NetBeans and the technical reviewer of a book about PrimeFaces. He is the CEO of 
Javscaz Software Developers.

Aritrik Das is a web developer with expertise in various cutting-edge technologies 
used in the Web arena. He has strong analytical skills and a broad knowledge of 
open source technologies. He has gained skills in many web frameworks, both 
frontend and backend. Aritrik is an excellent problem solver, able to quickly grasp 
complex systems, and identify opportunities for improvement and the resolution of 
critical issues. He also has quite a good hold on various deployment techniques and 
infrastructure designs. As such, he can develop a scalable web application from the 
groundwork to deployment in live environments.

www.allitebooks.com

http://www.allitebooks.org


John Fawcett is a JavaScript application developer with over 10 years of 
professional development experience. In his home at Austin, Texas, USA, he 
organizes a small tech meetup and is an active member of the web development 
community. He contributes to, and is the author of, many open source projects,  
and is the CTO of the local start-up, www.goodybag.com. In his free time, he writes 
for his blog, performs visual experiments with processing, composes music, and 
drinks craft beer with his lovely girlfriend and partner, Courtney.

Ajmal M Sali is a technophille from Haripad, Kerala—a tourist destination.  
He started programming at the age of 12. He likes to help others in solving  
technical problems, and these problems range from setting up clustered messaging 
servers to fixing Tetra Pak machines. He has worked with few startups such as 
Sourcebits Inc. and Rightaway Inc. and has worked as a remote consultant. He has 
strong expertization with many frameworks and languages and focuses more on 
Angular.js, RubyOnRails, PHP and Android. He believes in continuous integration 
and deployment. He blogs at https://ajm.al.

Dan Williams has been programming since he was in high school. Having worked 
from the microcontroller level up to large-scale enterprise applications, he has now 
found a new home as a senior developer at Keaton Row. Developing with Node.js in 
the backend and React on the browser, he enjoys being fully immersed in JavaScript. 
Dan can often be found around Ontario giving talks and facilitating workshops on 
emerging technologies.

www.allitebooks.com

www.goodybag.com
https://ajm.al
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit  
www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,  
sign up for a range of free newsletters and receive exclusive discounts and offers  
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and readPackt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com


[ i ]

Table of Contents
Preface v
Chapter 1: Building a Basic Express Site 1

Setting up Express for a static site 1
Saying Hello, World in Express 2
Jade templating 3

Local user authentication 4
User object modeling 5
Introducing Express middleware 7
Setting up passport 8
Registering users 10
Authenticating users 11

OAuth with passport 12
Adding OAuth to user model 12
Getting API tokens 13
Third-party registration and login 14

Profile pages 15
URL params 15
Profile templates 16

Testing 16
Introducing Mocha 17
Testing API endpoints 18

Automate builds and deploys 19
Introducing the Gruntfile 20
Continuous integration with Travis 21
Deploying Node.js applications 22

Summary 24



Table of Contents

[ ii ]

Chapter 2: A Robust Movie API 25
Folder structure and organization 25
Responding to CRUD operations 27

Retrieving an actor with GET 28
Creating a new actor with POST 29
Updating an actor with PUT 30
Removing an actor with DELETE 30

Object modeling with Mongoose 32
Generating unique IDs 34
Validating your database 36
Extracting functions to reusable middleware 36
Testing 40
Summary 44

Chapter 3: Multiplayer Game API – Connect 4 45
Modeling game state with Mongoose 46
Creating a new game 49

Input validation 54
Getting the game state 56
Joining a game 58
Playing the game 61
Testing for a tie 71

Summary 73
Chapter 4: MMO Word Game 75

Gameplay 75
Real-time application overview 76
Keeping track of active users 77

Schema design 77
User schema 77
User join 78

Promises 79
The then and catch method 83
Chain multiple Promises 83
Prevent duplicates 84
User leaves the game 86
Show all active users 87
The words – Subdocuments 88
Validate input 89
Dealing with race conditions 91
Test case to test race conditions 93



Table of Contents

[ iii ]

Socket.IO 94
Socket handshaking, user join 94
Adding and pushing updates to clients 95
Launch Socket.IO applications 97
Test Socket.IO applications with the Socket.IO client 98
Debug Socket.IO with Chrome Developer Tools 103

Summary 106
Chapter 5: Coffee with Strangers 107

Code structure 108
Defining routes 109
Persisting data 110

Exception handling 113
Naive pairing 113

Notes about tests 118
Considering user history 118
Optimizing for distance 124
E-mail follow up 126
Periodical tasks with node-cron 135
Summary 137

Chapter 6: Hacker News API on Koa.js 139
Generator syntax 140

Middleware philosophy 143
Context versus req,res 145

The link model 145
The link routes 146
Tying it together 147

Validation and error handling 148
Update route 150
Let's perform some tests 152

Parallel requests 154
Rendering HTML pages 155
Serving static assets 160

Summary 161
Appendix: Connect 4 – Game Logic 163
Index 171





[ v ]

Preface
APIs are at the core of every serious web application. Node.js is an especially  
exciting tool that is easy to use, allows you to build APIs, and develop your backend 
code in JavaScript. It powers the server side of web apps, including PayPal, Netflix, 
and Zenhub.

Express.js is the most popular framework that can be used to build on top of  
Node.js—it provides an essential level of abstraction to develop robust web 
applications. With the emergence of this minimal and flexible Node.js web 
application framework, creating Node.js applications has become much simpler, 
faster, and also requires minimal effort.

This book takes a pragmatic approach to leveraging what Express.js has to offer, 
introduces key libraries, and fully equips you with the skills and tools necessary to 
build scalable APIs from start to finish while offering subtle details and nuggets of 
wisdom that come from years of experience.

What this book covers
Chapter 1, Building a Basic Express Site, will provide a basic application (scaffolding), 
which we will use for the upcoming examples. You will get an insight into what 
Express applications look like.

Chapter 2, A Robust Movie API, will walk you through building a movie API that 
allows you to add actor and movie information to a database and connect actors  
to movies and vice versa.

Chapter 3, Multiplayer Game API – Connect 4, will revolve around building a 
multiplayer game API. We will also build the app using test-driven development 
with maximum code coverage.



Preface

[ vi ]

Chapter 4, MMO Word Game, will teach you how to build a real-time application  
with Express and SocketIO, perform authentication for socket handshaking,  
and deal with race conditions using MongoDB's atomic update.

Chapter 5, Coffee with Strangers, will enable you to write an API that allows users to  
go for a coffee! It will comprise a simple, yet extendable user-matching system.

Chapter 6, Hacker News API on Koa.js, will take you through building a CRUD 
backend to post links and upvote on Koa.js. We will also look at centralized error 
handling and avoid callback hell with thunks.

Appendix, Connect 4 – Game Logic, shows the accompanying game logic that we 
omitted in Chapter 3, Multiplayer Game API – Connect 4.

What you need for this book
You'll need the following to get started with the examples in this book:

• Nvm: https://github.com/creationix/nvm
• MongoDB: https://www.mongodb.org/downloads
• RoboMongo: http://robomongo.org/
• Mocha: Use the npm i -g mocha command to download it

Mac OS is preferred but not a necessity.

Who this book is for
This book is for beginners to Node.js and also for those who are technically 
advanced. By the end of this book, every developer will have the expertise to  
build web applications with Express.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"If it is, then we render the users/profile.jade template with req.user as  
the data."

https://github.com/creationix/nvm
https://www.mongodb.org/downloads
http://robomongo.org/


Preface

[ vii ]

A block of code is set as follows:

var express = require('express');
var app = express();

app.get('/', function(req, res, next) {
 res.send('Hello, World!');
});

app.listen(3000);
console.log('Express started on port 3000');

Any command-line input or output is written as follows:

$ npm install --save express

New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"You can also right click on the page, and select Inspect Element."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors


Preface

[ viii ]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ ix ]

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

www.allitebooks.com

http://www.allitebooks.org




[ 1 ]

Building a Basic Express Site
Express is a web development framework for Node.js. Node.js is an open  
source, cross-platform runtime environment for server-side and networking 
applications. It uses Google Chrome's JavaScript engine, V8, to execute code.  
Node.js is single-threaded and event-driven. It uses non-blocking I/O to squeeze 
every ounce of processing power out of the CPU. Express builds on top of Node.js, 
providing all of the tools necessary to develop robust web applications with node.

In addition, by utilizing Express, one gains access to a host of open source software 
to help solve common pain points in development. The framework is unopinionated, 
meaning it does not guide you one way or the other in terms of implementation or 
interface. Because it is unopinionated, the developer has more control and can use 
the framework to accomplish nearly any task; however, the power Express offers is 
easily abused. In this book, you will learn how to use the framework in the right way 
by exploring the following different styles of an application:

• Setting up Express for a static site
• Local user authentication
• OAuth with passport
• Profile pages
• Testing

Setting up Express for a static site
To get our feet wet, we'll first go over how to respond to basic HTTP requests.  
In this example, we will handle several GET requests, responding first with plaintext 
and then with static HTML. However, before we get started, you must install two 
essential tools: node and npm, which is the node package manager.



Building a Basic Express Site

[ 2 ]

Navigate to https://nodejs.org/download/ to install 
node and npm.

Saying Hello, World in Express
For those unfamiliar with Express, we will start with a basic example—Hello World! 
We'll start with an empty directory. As with any Node.js project, we will run the 
following code to generate our package.json file, which keeps track of metadata 
about the project, such as dependencies, scripts, licenses, and even where the code  
is hosted:

$ npm init

The package.json file keeps track of all of our dependencies so that we don't  
have versioning issues, don't have to include dependencies with our code, and can 
deploy fearlessly. You will be prompted with a few questions. Choose the defaults 
for all except the entry point, which you should set to server.js.

There are many generators out there that can help you generate new Express 
applications, but we'll create the skeleton this time around. Let's install Express.  
To install a module, we use npm to install the package. We use the --save flag to tell 
npm to add the dependency to our package.json file; that way, we don't need to 
commit our dependencies to the source control. We can just install them based on the 
contents of the package.json file (npm makes this easy):

$ npm install --save express 

We'll be using Express v4.4.0 throughout this book.

Warning: Express v4.x is not backwards compatible with the 
versions before it.

You can create a new file server.js as follows:

var express = require('express');
var app = express();

app.get('/', function(req, res, next) {
 res.send('Hello, World!');

https://nodejs.org/download/


Chapter 1

[ 3 ]

});

app.listen(3000);
console.log('Express started on port 3000');

This file is the entry point for our application. It is here that we generate an 
application, register routes, and finally listen for incoming requests on port 3000.  
The require('express') method returns a generator of applications.

We can continually create as many applications as we want; in this case, we only 
created one, which we assigned to the variable app. Next, we register a GET route 
that listens for GET requests on the server root, and when requested, sends the string 
'Hello, World' to the client. Express has methods for all of the HTTP verbs, so 
we could have also done app.post, app.put, app.delete, or even app.all, which 
responds to all HTTP verbs. Finally, we start the app listening on port 3000, then log 
to standard out.

It's finally time to start our server and make sure everything works as expected.

$ node server.js

We can validate that everything is working by navigating to  
http://localhost:3000 in our browser or curl -v localhost:3000  
in your terminal.

Jade templating
We are now going to extract the HTML we send to the client into a separate 
template. After all, it would be quite difficult to render full HTML pages simply by 
using res.send. To accomplish this, we will use a templating language frequently in 
conjunction with Express -- jade. There are many templating languages that you 
can use with Express. We chose Jade because it greatly simplifies writing HTML and 
was created by the same developer of the Express framework.

$ npm install --save jade

After installing Jade, we're going to have to add the following code to server.js:

app.set('view engine', 'jade');
app.set('views', __dirname + '/views');

app.get('/', function(req, res, next) {
res.render('index');
});



Building a Basic Express Site

[ 4 ]

The preceding code sets the default view engine for Express—sort of like telling 
Express that in the future it should assume that, unless otherwise specified, templates 
are in the Jade templating language. Calling app.set sets a key value pair for 
Express internals. You can think of this sort of application like wide configuration. 
We could call app.get (view engine) to retrieve our set value at any time.

We also specify the folder that Express should look into to find view files.  
That means we should create a views directory in our application and add a file, 
index.jade to it. Alternatively, if you want to include many different template 
types, you could execute the following:

app.engine('jade', require('jade').__express);
app.engine('html', require('ejs').__express);
app.get('/html', function(req, res, next) {
res.render('index.html');
});

app.get(/'jade, function(req, res, next) {
res.render('index.jade');
});

Here, we set custom template rendering based on the extension of the template we 
want to render. We use the Jade renderer for .jade extensions and the ejs renderer 
for .html extensions and expose both of our index files by different routes. This is 
useful if you choose one templating option and later want to switch to a new one in 
an incremental way. You can refer to the source for the most basic of templates.

Local user authentication
The majority of applications require user accounts. Some applications only allow 
authentication through third parties, but not all users are interested in authenticating 
through third parties for privacy reasons, so it is important to include a local option. 
Here, we will go over best practices when implementing local user authentication 
in an Express app. We'll be using MongoDB to store our users and Mongoose as 
an ODM (Object Document Mapper). Then, we'll leverage passport to simplify the 
session handling and provide a unified view of authentication.

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support


Chapter 1

[ 5 ]

User object modeling
We will leverage passportjs to handle user authentication. Passport centralizes all 
of the authentication logic and provides convenient ways to authenticate locally in 
addition to third parties, such as Twitter, Google, Github, and so on. First, install 
passport and the local authentication strategy as follows:

$ npm install --save passport-local

In our first pass, we will implement a local authentication strategy, which means 
that users will be able to register locally for an account. We start by defining a user 
model using Mongoose. Mongoose provides a way to define schemas for objects that 
we want to store in MongoDB and then provide a convenient way to map between 
stored records in the database and an in-memory representation.

Mongoose also provides convenient syntax to make many MongoDB queries  
and perform CRUD operations on models. Our user model will only have an  
e-mail, password, and timestamp for now. Before getting started, we need to  
install Mongoose:

$ npm install --save mongoose bcrypt validator

Now we define the schema for our user in models/user.js as follows:

Var mongoose = require('mongoose');

var userSchema = new mongoose.Schema({
 email: {
   type: String,
   required: true,
   unique: true
 },
 password: {
   type: String,
   required: true
 },
 created_at: {
   type: Date,
   default: Date.now
 }
});



Building a Basic Express Site

[ 6 ]

userSchema.pre('save', function(next) {
 if (!this.isModified('password')) {
   return next();
 }
 this.password = User.encryptPassword(this.password);
 next();
});

Here, we create a schema that describes our users. Mongoose has convenient ways to 
describe the required and unique fields as well as the type of data that each property 
should hold. Mongoose does all the validations required under the hood. We don't 
require many user fields for our first boilerplate application—e-mail, password, and 
timestamp to get us started.

We also use Mongoose middleware to rehash a user's password if and when  
they decide to change it. Mongoose exposes several hooks to run user-defined 
callbacks. In our example, we define a callback to be invoked before Mongoose  
saves a model. That way, every time a user is saved, we'll check to see whether  
their password was changed.

Without this middleware, it would be possible to store a user's password in plaintext, 
which is not only a security vulnerability but would break authentication. Mongoose 
supports two kinds of middleware – serial and parallel. Parallel middleware can run 
asynchronous functions and gets an additional callback to invoke; you'll learn more 
about Mongoose middleware later in this book.

Now, we want to add validations to make sure that our data is correct. We'll use the 
validator library to accomplish this, as follows:

Var validator = require('validator');

User.schema.path('email').validate(function(email) {
 return validator.isEmail(email);
});

User.schema.path('password').validate(function(password) {
 return validator.isLength(password, 6);
});

var User = mongoose.model('User', userSchema);
module.exports = User;



Chapter 1

[ 7 ]

We added validations for e-mail and password length using a library called 
validator, which provides a lot of convenient validators for different types of fields. 
Validator has validations based on length, URL, int, upper case; essentially, anything 
you would want to validate (and don't forget to validate all user input!).

We also added a host of helper functions regarding registration, authentication, as 
well as encrypting passwords that you can find in models/user.js. We added these 
to the user model to help encapsulate the variety of interactions we want using the 
abstraction of a user.

For more information on Mongoose, see http://mongoosejs.com/. 
You can find more on passportjs at http://passportjs.org/.

This lays out the beginning of a design pattern called MVC—model, view, controller. 
The basic idea is that you encapsulate separate concerns in different objects: the 
model code knows about the database, storage, and querying; the controller code 
knows about routing and requests/responses; and the view code knows what to 
render for users.

Introducing Express middleware
Passport is authentication middleware that can be used with Express applications. 
Before diving into passport, we should go over Express middleware. Express is 
a connect framework, which means it uses the connect middleware. Connecting 
internally has a stack of functions that handle requests.

When a request comes in, the first function in the stack is given the request and 
response objects along with the next() function. The next() function when called, 
delegates to the next function in the middleware stack. Additionally, you can specify 
a path for your middleware, so it is only called for certain paths.

Express lets you add middleware to an application using the app.use() function. 
In fact, the HTTP handlers we already wrote are a special kind of middleware. 
Internally, Express has one level of middleware for the router, which delegates  
to the appropriate handler.

Middleware is extraordinarily useful for logging, serving static files, error handling, 
and more. In fact, passport utilizes middleware for authentication. Before anything 
else happens, passport looks for a cookie in the request, finds metadata, and then 
loads the user from the database, adds it to req, user, and then continues down the 
middleware stack.

http://mongoosejs.com/
http://passportjs.org/


Building a Basic Express Site

[ 8 ]

Setting up passport
Before we can make full use of passport, we need to tell it how to do a few important 
things. First, we need to instruct passport how to serialize a user to a session. Then, 
we need to deserialize the user from the session information. Finally, we need to tell 
passport how to tell if a given e-mail/password combination represents a valid user 
as given in the following:

// passport.js
var passport = require('passport');
var LocalStrategy = require('passport-local').Strategy;
var User = require('mongoose').model('User');

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
User.findById(id, done);
});

Here, we tell passport that when we serialize a user, we only need that user's id. 
Then, when we want to deserialize a user from session data, we just look up the user 
by their ID! This is used in passport's middleware, after the request is finished, we 
take req.user and serialize their ID to our persistent session. When we first get a 
request, we take the ID stored in our session, retrieve the record from the database, 
and populate the request object with a user property. All of this functionality is 
provided transparently by passport, as long as we provide definitions for these two 
functions as given in the following:

function authFail(done) {
 done(null, false, { message: 'incorrect email/password  
combination' });
}

passport.use(new LocalStrategy(function(email, password, done) {
  User.findOne({
    email: email
  }, function(err, user) {
    if (err) return done(err);
    if (!user) {
      return authFail(done);
    }
    if (!user.validPassword(password)) {
      return authFail(done);



Chapter 1

[ 9 ]

    }
    return done(null, user);
  });
}));

We tell passport how to authenticate a user locally. We create a new 
LocalStrategy() function, which, when given an e-mail and password, will try 
to lookup a user by e-mail. We can do this because we required the e-mail field to 
be unique, so there should only be one user. If there is no user, we return an error. 
If there is a user, but they provided an invalid password, we still return an error. If 
there is a user and they provided the correct password, then we tell passport that the 
authentication request was a success by calling the done callback with the valid user.

In order to utilize passport, we need to add the middleware we talked about. We 
actually need to add a few different kinds of middleware. The great part about 
Express middleware is that it encourages developers to write small, focused modules 
so that you can bring in functionality that you want and exclude functionality that 
you don't need.

// server.js
var mongoose = require('mongoose');
var User = require('./models/user');
var passport = require('./passport');

mongoose.connect('mongodb://localhost/chapter01', function(err) {
 if (err) throw err;
});
…
app.use(require('cookie-parser')('my secret string'));
app.use(require('express-session')({ secret: "my other secret  
string" }));
app.use(require('body-parser')());
app.use(passport.initialize());
app.use(passport.session());

In order to use passport, we have to enable a few things for our server. First we 
need to enable cookies and session support. To enable session support, we add 
a cookie parser. This middleware parses a cookie object into req.cookies. The 
session middleware lets us modify req.session and have that data persist across 
requests. By default, it uses cookies, but it has a variety of session stores that you can 
configure. Then, we have to add body-parsing middleware, which parses the body of 
HTTP requests into a JavaScript object req.body.

In our use case, we need this middleware to extract the e-mail and password fields 
from POST requests. Finally, we add the passport middleware and session support.

www.allitebooks.com

http://www.allitebooks.org


Building a Basic Express Site

[ 10 ]

Registering users
Now, we add routes for registration, both a view with a basic form and backend 
logic to create a user. First, we will create a user controller. Up until now, we have 
thrown our routes in our server.js file, but this is generally bad practice. What we 
want to do is have separate controllers for each kind of route that we want. We have 
seen the model portion of MVC. Now it's time to take a look at controllers. Our user 
controller will have all the routes that manipulate the user model. Let's create a new 
file in a new directory, controllers/user.js:

// controllers/user.js
var User = require('mongoose').model('User');

module.exports.showRegistrationForm = function(req, res, next) {
  res.render('register');
};

module.exports.createUser = function(req, res, next) {
  User.register(req.body.email, req.body.password, function(err,  
user) {
    if (err) return next(err);
    req.login(user, function(err) {
      if (err) return next(err);
      res.redirect('/');
    });
  });  
};

Note that the User model takes care of the validations and registration 
logic; we just provide callback. Doing this helps consolidate the 
error handling and generally makes the registration logic easier to 
understand. If the registration was successful, we call req.login, a 
function added by passport, which creates a new session for that user 
and that user will be available as req.user on subsequent requests.

Finally, we register the routes. At this point, we also extract the routes we previously 
added to server.js to their own file. Let's create a new file called routes.js  
as follows:

// routes.js
app.get('/users/register', userRoutes.showRegistrationForm);
app.post('/users/register', userRoutes.createUser);



Chapter 1

[ 11 ]

Now we have a file dedicated to associating controller handlers with actual paths 
that users can access. This is generally good practice because now we have a place 
to come visit and see all of our defined routes. It also helps unclutter our server.js 
file, which should be exclusively devoted to server configuration.

For details, as well as the registration templates used,  
see the preceding code.

Authenticating users
We have already done most of the work required to authenticate users (or rather, 
passport has). Really, all we need to do is set up routes for authentication and a form to 
allow users to enter their credentials. First, we'll add handlers to our user controller:

// controllers/user.js
module.exports.showLoginForm = function(req, res, next) {
  res.render('login');
};

module.exports.createSession = passport.authenticate('local', {
  successRedirect: '/',
  failureRedirect: '/login'
});

Let's deconstruct what's happening in our login post. We create a handler that is the 
result of calling passport.authenticate('local', …). This tells passport that 
the handler uses the local authentication strategy. So, when someone hits that route, 
passport will delegate to our LocalStrategy. If they provided a valid e-mail/password 
combination, our LocalStrategy will give passport the now authenticated user, and 
passport will redirect the user to the server root. If the e-mail/password combination 
was unsuccessful, passport will redirect the user to /login so they can try again.

Then, we will bind these callbacks to routes in routes.js:

app.get('/users/login', userRoutes.showLoginForm);
app.post('/users/login', userRoutes.createSession);

At this point, we should be able to register an account and login with those same 
credentials. (see tag 0.2 for where we are right now).



Building a Basic Express Site

[ 12 ]

OAuth with passport
Now we will add support for logging into our application using Twitter, Google, and 
GitHub. This functionality is useful if users don't want to register a separate account 
for your application. For these users, allowing OAuth through these providers will 
increase conversions and generally make for an easier registration process for users.

Adding OAuth to user model
Before adding OAuth, we need to keep track of several additional properties on our 
user model. We keep track of these properties to make sure we can look up user 
accounts provided there is information to ensure we don't allow duplicate accounts 
and allow users to link multiple third-party accounts by using the following code:

var userSchema = new mongoose.Schema({
  email: {
    type: String,
    required: true,
    unique: true
  },
  password: {
    type: String,
  },
  created_at: {
    type: Date,
    default: Date.now
  },
  twitter: String,
  google: String,
  github: String,
  profile: {
    name: { type: String, default: '' },
    gender: { type: String, default: '' },
    location: { type: String, default: '' },
    website: { type: String, default: '' },
    picture: { type: String, default: '' }
  },
});



Chapter 1

[ 13 ]

First, we add a property for each provider, in which we will store a unique identifier 
that the provider gives us when they authorize with that provider. Next, we will 
store an array of tokens, so we can conveniently access a list of providers that are 
linked to this account; this is useful if you ever want to let a user register through one 
and then link to others for viral marketing or extra user information. Finally, we keep 
track of some demographic information about the user that the providers give to us 
so we can provide a better experience for our users.

Getting API tokens
Now, we need to go to the appropriate third parties and register our application to 
receive application keys and secret tokens. We will add these to our configuration. 
We will use separate tokens for development and production purposes (for 
obvious reasons!). For security reasons, we will only have our production tokens as 
environment variables on our final deploy server, not committed to version control.

I'll wait while you navigate to the third-party websites and add their tokens to your 
configuration as follows:

  // config.js
  twitter: {
    consumerKey: process.env.TWITTER_KEY ||  
'VRE4lt1y0W3yWTpChzJHcAaVf',
    consumerSecret: process.env.TWITTER_SECRET  ||   
'TOA4rNzv9Cn8IwrOi6MOmyV894hyaJks6393V6cyLdtmFfkWqe',
    callbackURL: '/auth/twitter/callback'
  },
  google: {
    clientID: process.env.GOOGLE_ID || '627474771522- 
uskkhdsevat3rn15kgrqt62bdft15cpu.apps.googleusercontent.com',
    clientSecret: process.env.GOOGLE_SECRET ||  
'FwVkn76DKx_0BBaIAmRb6mjB',
    callbackURL: '/auth/google/callback'
  },
  github: {
    clientID: process.env.GITHUB_ID || '81b233b3394179bfe2bc',
    clientSecret: process.env.GITHUB_SECRET ||  
'de0322c0aa32eafaa84440ca6877ac5be9db9ca6',
    callbackURL: '/auth/github/callback'
  }



Building a Basic Express Site

[ 14 ]

Of course, you should never commit your development keys 
publicly either. Be sure to either not commit this file or to use private 
source control. The best idea is to only have secrets live on machines 
ephemerally (usually as environment variables). You especially 
should not use the keys that I provided here!

Third-party registration and login
Now we need to install and implement the various third-party registration  
strategies. To install third-party registration strategies run the following command:

npm install --save passport-twitter passport-google-oAuth passport-github

Most of these are extraordinarily similar, so I will only show the TwitterStrategy,  
as follows:

passport.use(new TwitterStrategy(config.twitter, function(req,  
accessToken, tokenSecret, profile, done) {
  User.findOne({ twitter: profile.id }, function(err,  
existingUser) {
      if (existingUser) return done(null, existingUser);
      var user = new User();
      // Twitter will not provide an email address.  Period.
      // But a person's twitter username is guaranteed to be  
unique
      // so we can "fake" a twitter email address as follows:
      // username@twitter.mydomain.com
user.email = profile.username + "@twitter." + config.domain +  
".com";
      user.twitter = profile.id;
      user.tokens.push({ kind: 'twitter', accessToken:  
accessToken, tokenSecret: tokenSecret });
      user.profile.name = profile.displayName;
      user.profile.location = profile._json.location;
      user.profile.picture = profile._json.profile_image_url;
      user.save(function(err) {
        done(err, user);
      });
    });
}));



Chapter 1

[ 15 ]

Here, I included one example of how we would do this. First, we pass a new 
TwitterStrategy to passport. The TwitterStrategy takes our Twitter keys and callback 
information and a callback is used to make sure we can register the user with that 
information. If the user is already registered, then it's a no-op; otherwise we save 
their information and pass along the error and/or successfully saved user to the 
callback. For the others, refer to the source.

Profile pages
It is finally time to add profile pages for each of our users. To do so, we're going to 
discuss more about Express routing and how to pass request-specific data to Jade 
templates. Often times when writing a server, you want to capture some portion of 
the URL to use in the controller; this could be a user id, username, or anything! We'll 
use Express's ability to capture URL parts to get the id of the user whose profile page 
was requested.

URL params
Express, like any good web framework, supports extracting data from URL parts.  
For example, you can do the following:

app.get('/users/:id', function(req, res, next) {
  console.log(req.params.id);
}

In the preceding example, we will print whatever comes after /users/ in the request 
URL. This allows an easy way to specify per user routes, or routes that only make 
sense in the context of a specific user, that is, a profile page only makes sense when 
you specify a specific user. We will use this kind of routing to implement our profile 
page. For now, we want to make sure that only the logged-in user can see their own 
profile page (we can change this functionality later):

app.get('/users/:id', function(req, res, next) {
  if (!req.user || (req.user.id != req.params.id)) {
    return next('Not found');
  }
  res.render('users/profile', { user: req.user.toJSON() });
});

Here, we check first that the user is signed in and that the requested user's id is the 
same as the logged-in user's id. If it isn't, then we return an error. If it is, then we 
render the users/profile.jade template with req.user as the data.



Building a Basic Express Site

[ 16 ]

Profile templates
We already looked at models and controllers at length, but our templates have been 
underwhelming. Finally, we'll show how to write some basic Jade templates. This 
section will serve as a brief introduction to the Jade templating language, but does 
not try to be comprehensive. The code for Profile templates is as follows:

html
  body
    h1
      =user.email
    h2
      =user.created_at
    - for (var prop in user.profile)
      if user.profile[prop]
        h4
          =prop + "=" + user.profile[prop]

Notably, because in the controller we passed in the user to the view, we can access 
the variable user and it refers to the logged-in user! We can execute arbitrary 
JavaScript to render into the template by prefixing it with = --. In these blocks, we 
can do anything we would normally do, including string concatenation, method 
invocation, and so on.

Similarly, we can include JavaScript code that is not intended to be written as HTML 
by prefixing it with - like we did with the for loop. This basic template prints out 
the user's e-mail, the created_at timestamp, as well as all of the properties in their 
profile, if any.

For a more in-depth look at Jade, please see http://jade-lang.
com/reference/.

Testing
Testing is essential for any application. I will not dwell on the whys, but instead 
assume that you are angry with me for skipping this topic in the previous sections. 
Testing Express applications tend to be relatively straightforward and painless. The 
general format is that we make fake requests and then make certain assertions about 
the responses.

http://jade-lang.com/reference/
http://jade-lang.com/reference/


Chapter 1

[ 17 ]

We could also implement finer-grained unit tests for more complex logic, but up 
until now almost everything we did is straightforward enough to be tested on a per 
route basis. Additionally, testing at the API level provides a more realistic view of 
how real customers will be interacting with your website and makes tests less brittle 
in the face of refactoring code.

Introducing Mocha
Mocha is a simple, flexible, test framework runner. First, I would suggest installing 
Mocha globally so you can easily run tests from the command line as follows:

$ npm install --save-dev –g mocha

The --save-dev option saves mocha as a development dependency, meaning we 
don't have to install Mocha on our production servers. Mocha is just a test runner. 
We also need an assertion library. There are a variety of solutions, but should.js 
syntax, written by the same person as Express and Mocha, gives a clean syntax to 
make assertions:

$ npm install --save-dev should

The should.js syntax provides BDD assertions, such as 'hello'.should.
equal('hello') and [1,2].should.have.length(2). We can start with a Hello 
World test example by creating a test directory with a single file, hello-world.js, 
as shown in the following code:

var should = require('should');

describe('The World', function() {
  it('should say hello', function() {
    'Hello, World'.should.equal('Hello, World');
  });
  it('should say hello asynchronously!', function(done) {
    setTimeout(function() {
      'Hello, World'.should.equal('Hello, World');
      done();
    }, 300);
  });
});



Building a Basic Express Site

[ 18 ]

We have two different tests both in the same namespace, The World. The first  
test is an example of a synchronous test. Mocha executes the function we give to  
it, sees that no exception gets thrown and the test passes. If, instead, we accept a  
done argument in our callback, as we do in the second example, Mocha will 
intelligently wait until we invoke the callback before checking the validity of our  
test. For the most part, we will use the second version, in which we must explicitly 
invoke the done argument to finish our test because it makes more sense to test 
Express applications.

Now, if we go back to the command line, we should be able to run Mocha  
(or node_modules/.bin/mocha if you didn't install it globally) and see that both  
of the tests we wrote pass!

Testing API endpoints
Now that we have a basic understanding of how to run tests using Mocha and 
make assertions with should syntax, we can apply it to test local user registration. 
First, we need to introduce another npm module that will help us test our server 
programmatically and make assertions about what kind of responses we expect.  
The library is called supertest:

$ npm install --save-dev supertest

The library makes testing Express applications a breeze and provides chainable 
assertions. Let's take a look at an example usage to test our create user route, as 
shown in the following code:

var should = require('should'),
    request = require('supertest'),
    app = require('../server').app,
    User = require('mongoose').model('User');

describe('Users', function() {
  before(function(done) {
    User.remove({}, done);
  });
  describe('registration', function() {
    it('should register valid user', function(done) {
      request(app)
        .post('/users/register')
        .send({



Chapter 1

[ 19 ]

          email: "test@example.com",
          password: "hello world"
        })
        .expect(302)
        .end(function(err, res) {
          res.text.should.containEql("Redirecting to /");
          done(err);
        });
    });
  });
});

First, notice that we used two namespaces: Users and registration. Now, before 
we run any tests, we remove all users from the database. This is useful to ensure we 
know where we're starting the tests This will delete all of your saved users though, 
so it's useful to use a different database in the test environment. Node detects the 
environment by looking at the NODE_ENV environment variable. Typically it is test, 
development, staging, or production. We can do so by changing the database URL 
in our configuration file to use a different local database when in a test environment 
and then run Mocha tests with NODE_ENV=test mocha.

Now, on to the interesting bits! Supertest exposes a chainable API to make requests 
and assertions about responses. To make a request, we use request(app). From 
there, we specify the HTTP method and path. Then, we can specify a JSON body to 
send to the server; in this case, an example user registration form. On registration, 
we expect a redirect, which is a 302 response. If that assertion fails, then the err 
argument in our callback will be populated, and the test will fail when we use 
done(err). Additionally, we validate that we were redirected to the route we  
expect, the server root /.

Automate builds and deploys
All of this development is relatively worthless without a smooth process to build 
and deploy your application. Fortunately, the node community has written a variety 
of task runners. Among these are Grunt and Gulp, two of the most popular task 
runners. Both work seamlessly with Express and provide a set of utilities for us to 
use, including concatenating and uglifying JavaScript, compiling sass/less, and 
reloading the server on local file changes. We'll focus on Grunt, for simplicity.

www.allitebooks.com

http://www.allitebooks.org


Building a Basic Express Site

[ 20 ]

Introducing the Gruntfile
Grunt itself is a simple task runner, but its extensibility and plugin architecture lets 
you install third-party scripts to run in predefined tasks. To give us an idea of how 
we might use Grunt, we're going to write our css in sass and then use Grunt to 
compile sass to css. Through this example, we'll explore the different ideas that 
Grunt introduces. First, you need to install cli globally to install the plugin that 
compiles sass to css:

$ npm install -g grunt-cli 

$ npm install --save grunt grunt-contrib-sass

Now we need to create Gruntfile.js, which contains instructions for all of the  
tasks and build targets that we need. To do this perform the following:

// Gruntfile.js
module.exports = function(grunt) {
  grunt.loadNpmTasks('grunt-contrib-sass');
  grunt.initConfig({
    sass: {
      dist: {
        files: [{
          expand: true,
          cwd: "public/styles",
          src: ["**.scss"],
          dest: "dist/styles",
          ext: ".css"
        }]
      }
    }
  });
  
}

Let's go over the major parts. Right at the top, we require the plugin we will use, 
grunt-contrib-sass. This tells grunt that we are going to configure a task 
called sass. In our definition of the task sass, we specify a target, dist, which is 
commonly used for tasks that produce production files (minified, concatenated,  
and so on).

In that task, we build our file list dynamically, telling Grunt to look in /public/
styles/ recursively for all .scss files, then compile them all to the same paths in  
/dist/styles. It is useful to have two parallel static directories, one for development 
and one for production, so we don't have to look at minified code in development. We 
can invoke this target by executing grunt sass or grunt sass:dist.



Chapter 1

[ 21 ]

It is worth noting that we don't explicitly concatenate the files 
in this task, but if we use @imports in our main sass file, the 
compiler will concatenate everything for us.

We can also configure Grunt to run our test suite. To do this, let's add another  
plugin -- npm install --save-dev grunt-mocha-test. Now we have to add  
the following code to our Gruntfile.js file:

grunt.loadNpmTasks('grunt-mocha-test');
grunt.registerTask('test', 'mochaTest');
...

  mochaTest: {
    test: {
      src: ["test/**.js"]
    }
  }

Here, the task is called mochaTest and we register a new task called test that  
simply delegates to the mochaTest task. This way, it is easier to remember how  
to run tests. Similarly, we could have specified a list of tasks to run if we passed  
an array of strings as the second argument to registerTask. This is a sampling of 
what can be accomplished with Grunt. For an example of a more robust Gruntfile, 
check out the source.

Continuous integration with Travis
Travis CI provides free continuous integration for open source projects as well 
as paid options for closed source applications. It uses a git hook to automatically 
test your application after every push. This is useful to ensure no regression was 
introduced. Also, there could be dependency problems only revealed in CI that local 
development masks; Travis is the first line of defense for these bugs. It takes your 
source, runs npm install to install the dependencies specified in package.json, and 
then runs the npm test to run your test suite.

Travis accepts a configuration file called travis.yml. These typically look like this:

language: node_js
node_js:
  - "0.11"
- "0.10"
- "0.8"
services:
  - mongodb



Building a Basic Express Site

[ 22 ]

We can specify the versions of node that we want to test against as well as the services 
that we rely on (specifically MongoDB). Now we have to update our test command 
in package.json to run grunt test. Finally, we have to set up a webhook for the 
repository in question. We can do this on Travis by enabling the repository. Now we 
just have to push our changes and Travis will make sure all the tests pass! Travis is 
extremely flexible and you can use it to accomplish most tasks related to continuous 
integration, including automatically deploying successful builds.

Deploying Node.js applications
One of the easiest ways to deploy Node.js applications is to utilize Heroku,  
a platform as a service provider. Heroku has its own toolbelt to create and deploy 
Heroku apps from your machine. Before getting started with Heroku, you will need 
to install its toolbelt.

Please go to https://toolbelt.heroku.com/ to download 
the Heroku toolbelt.

Once installed, you can log in to Heroku or register via the web UI and then run 
Heroku login. Heroku uses a special file, called the Procfile, which specifies exactly 
how to run your application.

1. Our Procfile looks like this:
web: node server.js

Extraordinarily simple: in order to run the web server, just run node server.js.

2. In order to verify that our Procfile is correct, we can run the following locally:
$ foreman start

3. Foreman looks at the Procfile and uses that to try to start our server. Once 
that runs successfully, we need to create a new application and then deploy 
our application to Heroku. Be sure to commit the Procfile to version control:
$ heroku create

$ git push heroku master

https://toolbelt.heroku.com/


Chapter 1

[ 23 ]

Heroku will create a new application and URL in Heroku, as well as a git 
remote repository named heroku. Pushing that remote actually triggers a 
deploy of your code.
If you do all of this, unfortunately your application will not work. We don't 
have a Mongo instance for our application to talk to!

4. First we have to request MongoDB from Heroku:
$ heroku addons:add mongolab // don't worry, it's free

This spins up a shared MongoDB instance and gives our application an 
environment variable named MONOGOLAB_URI, which we should use as our 
MongoDB connect URI. We need to change our configuration file to reflect 
these changes.
In our configuration file, in production, for our database URL, we should 
look at the environment variable MONGOLAB_URI. Also, be sure that Express 
is listening on process.env.PORT || 3000, or else you will receive strange 
errors and/or timeouts.

5. With all of that set up, we can commit our changes and push the changes 
once again to Heroku. Hopefully, this time it works! To view the application 
logs for debugging purposes, just use the Heroku toolbelt:
$ heroku logs

6. One last thing about deploying Express applications: sometimes  
applications crash, software isn't perfect. We should anticipate crashes  
and have our application respond accordingly (by restarting itself). There are 
many server monitoring tools, including pm2 and forever. We use forever 
because of its simplicity.
$ npm install --save forever

7. Then, we update our Procfile to reflect our use of forever:

// Procfile

web: node_modules/.bin/forever server.js

Now, forever will automatically restart our application, if it crashes for any strange 
reason. You can also set up Travis to automatically push successful builds to your 
server, but that goes beyond the deployment we will do in this book.



Building a Basic Express Site

[ 24 ]

Summary
In this chapter, we got our feet wet in the world of node and using the Express 
framework. We went over everything from Hello World and MVC to testing and 
deployments. You should feel comfortable using basic Express APIs, but also feel 
empowered to own a Node.js application across the entire stack.

In the following chapters, we will build on the core ideas introduced in this chapter 
in order to create rich user experiences and compelling applications.



[ 25 ]

A Robust Movie API
We will build a movie API that allows you to add actor and movie information  
to a database and connect actors with movies, and vice versa. This will make use  
of the information introduced in Chapter 1, Building a Basic Express Site, and give  
you a hands-on feel for what Express.js offers. We will cover the following topics  
in this chapter:

• Folder structure and organization
• Responding to CRUD operations
• Object modeling with Mongoose
• Generating unique IDs
• Testing

Folder structure and organization
Folder structure is a very controversial topic. Though there are many clean  
ways to structure your project, we will use the following code for the remainder  
of our chapters:

chapter2
├── app.js
├── package.json ├── node_modules
│└── npm package folders ├── src
│├── lib
│├── models
│├── routes
└── test



A Robust Movie API

[ 26 ]

Let's take a look this at in detail:

• app.js: It is conventional to have the main app.js file in the root directory. 
The app.js is the entry point of our application and will be used to launch 
the server.

• package.json: As with any Node.js app, we have package.json in the root 
folder specifying our application name and version as well as all of our npm 
dependencies.

• node_modules: The node_modules folder and its content are generated via 
npm installation and should usually be ignored in your version control of 
choice because it depends on the platform the app runs on. Having said that, 
according to the npm FAQ, it is probably better to commit the node_modules 
folder as well.

Check node_modules into git for things you deploy, such as websites 
and apps. Do not check node_modules into git for libraries and  
modules intended to be reused.
Refer to the following article to read more about the rationale behind this:
http://www.futurealoof.com/posts/nodemodules-in-git.
html

• src: The src folder contains all the logic of the application.
• lib: Within the src folder, we have the lib folder, which contains the core 

of the application. This includes the middleware, routes, and creating the 
database connection.

• models: The models folder contains our mongoose models, which defines the 
structure and logic of the models we want to manipulate and save.

• routes: The routes folder contains the code for all the endpoints the API is 
able to serve.

• test: The test folder will contain our functional tests using Mocha as well 
as two other node modules, should and supertest, to make it easier to aim 
for 100 percent coverage.



Chapter 2

[ 27 ]

Responding to CRUD operations
The term CRUD refers to the four basic operations one can perform on data: create, 
read, update, and delete. Express gives us an easy way to handle those operations by 
supporting the basic methods GET, POST, PUT, and DELETE:

• GET: This method is used to retrieve the existing data from the database.  
This can be used to read single or multiple rows (for SQL) or documents  
(for MongoDB) from the database.

• POST: This method is used to write new data into the database, and it is 
common to include a JSON payload that fits the data model.

• PUT: This method is used to update existing data in the database,  
and a JSON payload that fits the data model is often included for this  
method as well.

• DELETE: This method is used to remove an existing row or document from 
the database.

Express 4 has dramatically changed from version 3. A lot of the core modules 
have been removed in order to make it even more lightweight and less dependent. 
Therefore, we have to explicitly require modules when needed.

One helpful module is body-parser. It allows us to get a nicely formatted body 
when a POST or PUT HTTP request is received. We have to add this middleware 
before our business logic in order to use its result later. We write the following in 
src/lib/parser.js:

var bodyParser = require('body-parser');
module;exports = function(app) {
  app.use(bodyParser.json());
  app.use(bodyParser.urlencoded({ extended: false }));
   };

The preceding code is then used in src/lib/app.js as follows:

var express = require('express'); var app = express();
require('./parser')(app);
module.exports = app;



A Robust Movie API

[ 28 ]

The following example allows you to respond to a GET request on http://host/
path. Once a request hits our API, Express will run it through the necessary 
middleware as well as the following function:

app.get('/path/:id', function(req, res, next) {
res.status(200).json({ hello: 'world'});
});

The first parameter is the path we want to handle a GET function. The path can 
contain parameters prefixed with :. Those path parameters will then be parsed  
in the request object.

The second parameter is the callback that will be executed when the server receives 
the request. This function gets populated with three parameters: req, res, and next.

The req parameter represents the HTTP request object that has been customized  
by Express and the middlewares we added in our applications. Using the 
path http://host/path/:id, suppose a GET request is sent to http://host/
path/1?a=1&b=2. The req object would be the following:

{
params: { id: 1 }, query: { a: 1, b: 2 }
}

The params object is a representation of the path parameters. The query is the query 
string, which are the values stated after ? in the URL. In a POST request, there will 
often be a body in our request object as well, which includes the data we wish to 
place in our database.

The res parameter represents the response object for that request. Some methods, 
such as status() or json(), are provided in order to tell Express how to respond  
to the client.

Finally, the next() function will execute the next middleware defined in  
our application.

Retrieving an actor with GET
Retrieving a movie or actor from the database consists of submitting a GET request to 
the route: /movies/:id or /actors/:id. We will need a unique ID that refers to a 
unique movie or actor:

app.get('/actors/:id', function(req, res, next) {
//Find the actor object with this :id
//Respond to the client
});



Chapter 2

[ 29 ]

Here, the URL parameter :id will be placed in our request object. Since we call the 
first variable in our callback function req as before, we can access the URL parameter 
by calling req.params.id.

Since an actor may be in many movies and a movie may have many actors, we need 
a nested endpoint to reflect this as well:

app.get('/actors/:id/movies', function(req, res, next) {
//Find all movies the actor with this :id is in
//Respond to the client
});

If a bad GET request is submitted or no actor with the specified ID is found, then  
the appropriate status code bad request 400 or not found 404 will be returned.  
If the actor is found, then success request 200 will be sent back along with the  
actor information. On a success, the response JSON will look like this:

{
"_id": "551322589911fefa1f656cc5", "id": 1,
"name": "AxiomZen", "birth_year": 2012, "__v": 0, "movies": []
}

Creating a new actor with POST
In our API, creating a new movie in the database involves submitting a POST  
request to /movies or /actors for a new actor:

app.post('/actors', function(req, res, next) {
//Save new actor
//Respond to the client
});

In this example, the user accessing our API sends a POST request with data that 
would be placed into request.body. Here, we call the first variable in our callback 
function req. Thus, to access the body of the request, we call req.body.

The request body is sent as a JSON string; if an error occurs, a 400 (bad request) 
status would be sent back. Otherwise, a 201 (created) status is sent to the response 
object. On a success request, the response will look like the following:

{
"__v": 0, "id": 1,
"name": "AxiomZen", "birth_year": 2012,
"_id": "551322589911fefa1f656cc5", "movies": []
}

www.allitebooks.com

http://www.allitebooks.org


A Robust Movie API

[ 30 ]

Updating an actor with PUT
To update a movie or actor entry, we first create a new route and submit a PUT 
request to /movies/:id or /actors /:id, where the id parameter is unique to an 
existing movie/actor. There are two steps to an update. We first find the movie 
or actor by using the unique id and then we update that entry with the body of the 
request object, as shown in the following code:

app.put('/actors/:id', function(req, res) {
//Find and update the actor with this :id
//Respond to the client
});

In the request, we would need request.body to be a JSON object that reflects the 
actor fields to be updated. The request.params.id would still be a unique identifier 
that refers to an existing actor in the database as before. On a successful update, the 
response JSON looks like this:

{
"_id": "551322589911fefa1f656cc5",
"id": 1,
"name": "Axiomzen", "birth_year": 99, "__v": 0, "movies": []
}

Here, the response will reflect the changes we made to the data.

Removing an actor with DELETE
Deleting a movie is as simple as submitting a DELETE request to the same routes  
that were used earlier (specifying the ID). The actor with the appropriate id is  
found and then deleted:

app.delete('/actors/:id', function(req, res) {
//Remove the actor with this :id
//Respond to the client
});

If the actor with the unique id is found, it is then deleted and a response code  
of 204 is returned. If the actor cannot be found, a response code of 400 is returned. 
There is no response body for a DELETE() method; it will simply return the status 
code of 204 on a successful deletion.



Chapter 2

[ 31 ]

Our final endpoints for this simple app will be as follows:

//Actor endpoints 
app.get('/actors', actors.getAll);
app.post('/actors', actors.createOne); 
app.get('/actors/:id', actors.getOne); 
app.put('/actors/:id', actors.updateOne); 
app.delete('/actors/:id', actors.deleteOne) 
app.post('/actors/:id/movies', actors.addMovie); 
app.delete('/actors/:id/movies/:mid', actors.deleteMovie);
//Movie endpoints
app.get('/movies', movies.getAll); 
app.post('/movies', movies.createOne);
app.get('/movies/:id', movies.getOne); 
app.put('/movies/:id', movies.updateOne); 
app.delete('/movies/:id', movies.deleteOne); 
app.post('/movies/:id/actors', movies.addActor); 
app.delete('/movies/:id/actors/:aid', movies.deleteActor);

In Express 4, there is an alternative way to describe your routes. Routes that share a 
common URL, but use a different HTTP verb, can be grouped together as follows:

app.route('/actors')
.get(actors.getAll)
.post(actors.createOne);
app.route('/actors/:id')
.get(actors.getOne)
.put(actors.updateOne)
.delete(actors.deleteOne);
app.post('/actors/:id/movies', actors.addMovie); 
app.delete('/actors/:id/movies/:mid', actors.deleteMovie);
app.route('/movies')
.get(movies.getAll)
.post(movies.createOne);
app.route('/movies/:id')
.get(movies.getOne)
.put(movies.updateOne)
.delete(movies.deleteOne);
app.post('/movies/:id/actors', movies.addActor); 
app.delete('/movies/:id/actors/:aid', movies.deleteActor);

Whether you prefer it this way or not is up to you. At least now you have a choice!



A Robust Movie API

[ 32 ]

We have not discussed the logic of the function being run for each endpoint.  
We will get to that shortly.

Express allows us to easily CRUD our database objects, but how do we model  
our objects?

Object modeling with Mongoose
Mongoose is an object data modeling library (ODM) that allows you to define 
schemas for your data collections. You can find out more about Mongoose on the 
project website: http://mongoosejs.com/.

To connect to a MongoDB instance using the mongoose variable, we first need to 
install npm and save Mongoose. The save flag automatically adds the module to 
your package.json with the latest version, thus, it is always recommended to  
install your modules with the save flag. For modules that you only need locally  
(for example, Mocha), you can use the savedev flag.

For this project, we create a new file db.js under /src/lib/db.js, which requires 
Mongoose. The local connection to the mongodb database is made in mongoose.
connect as follows:

var mongoose = require('mongoose');
module.exports = function(app)
{ 
  mongoose.connect('mongodb://localhost/movies', {
  mongoose: { safe: true
}
}, function(err) { if (err) 
{
  return console.log('Mongoose - connection error:', err);
}
});
return mongoose; 
};

In our movies database, we need separate schemas for actors and movies. As an 
example, we will go through object modeling in our actor database /src/models/
actor.js by creating an actor schema as follows:

// /src/models/actor.js
var mongoose = require('mongoose');
var generateId = require('./plugins/generateId');

http://mongoosejs.com/


Chapter 2

[ 33 ]

var actorSchema = new mongoose.Schema({ 
  id: {
    type: Number, 
    required: true, 
    index: {
      unique: true
    }
  },
  name: {
    type: String, 
    required: true
  }, 
  birth_year: {
    type: Number, 
    required: true

  }, 
  movies: [{
    type : mongoose.Schema.ObjectId,
    ref : 'Movie'
  }]
});
actorSchema.plugin(generateId());
module.exports = mongoose.model('Actor', actorSchema);

Each actor has a unique id, a name, and a birth year. The entries also contain 
validators such as the type and boolean value that are required. The model is 
exported upon definition (module.exports), so that we can reuse it directly  
in the app.

Alternatively, you could fetch each model through Mongoose using mongoose.
model('Actor', actorSchema), but this would feel less explicitly coupled 
compared to our approach of directly requiring it.

Similarly, we need a movie schema as well. We define the movie schema as follows:

// /src/models/movies.js
var movieSchema = new mongoose.Schema({ 
  id: {
    type: Number, 
    required: true, 
    index: {
      unique: true
    }
  }, 



A Robust Movie API

[ 34 ]

  title: {
    type: String, 
    required: true
   }, 
   year: {
     type: Number, 
     required: true
   }, 
   actors: [{
     type : mongoose.Schema.ObjectId, 
     ref : 'Actor'
   }]
});

movieSchema.plugin(generateId());
module.exports = mongoose.model('Movie', movieSchema);

Generating unique IDs
In both our movie and actor schemas, we used a plugin called generateId().

While MongoDB automatically generates ObjectID for each document using  
the _id field, we want to generate our own IDs that are more human readable  
and hence friendlier. We also would like to give the user the opportunity to select 
their own id of choice.

However, being able to choose an id can cause conflicts. If you were to choose an  
id that already exists, your POST request would be rejected. We should autogenerate 
an ID if the user does not pass one explicitly.

Without this plugin, if either an actor or a movie is created without an explicit ID 
passed along by the user, the server would complain since the ID is required.

We can create middleware for Mongoose that assigns an id before we persist the 
object as follows:

// /src/models/plugins/generateId.js 
module.exports = function() {

return function generateId(schema){ 
  schema.pre('validate',function(next, done) {
    var instance = this; 
    var model = instance.model(instance.constructor.modelName); 



Chapter 2

[ 35 ]

    if( instance.id == null ) {
     model.findOne().sort("-id").exec(function(err,maxInstance) {
       if (err){
         return done(err);
       } else {
         var maxId = maxInstance.id || 0; 
         instance.id = maxId+1;
         done();
       }
    })
   } else { 
     done();
    }
  })
 }
};

There are a few important notes about this code.

See what we did to get the var model? This makes the plugin generic so that it  
can be applied to multiple Mongoose schemas.

Notice that there are two callbacks available: next and done. The next variable 
passes the code to the next pre-validation middleware. That's something you would 
usually put at the bottom of the function right after you make your asynchronous 
call. This is generally a good thing since one of the advantages of asynchronous calls 
is that you can have many things running at the same time.

However, in this case, we cannot call the next variable because it would conflict with 
our model definition of id required. Thus, we just stick to using the done variable 
when the logic is complete.

Another concern arises due to the fact that MongoDB doesn't support transactions, 
which means you may have to account for this function failing in some edge cases. 
For example, if two calls to POST /actor happen at the same time, they will both 
have their IDs auto incremented to the same value.

Now that we have the code for our generateId() plugin, we require it in our actor 
and movie schema as follows:

var generateId = require('./plugins/generateId');
actorSchema.plugin(generateId());



A Robust Movie API

[ 36 ]

Validating your database
Each key in the Mongoose schema defines a property that is associated with a 
SchemaType. For example, in our actors.js schema, the actor's name key is 
associated with a string SchemaType. String, number, date, buffer, boolean, mixed, 
objectId, and array are all valid schema types.

In addition to schema types, numbers have min and max validators and strings 
have enum and match validators. Validation occurs when a document is being 
saved (.save()) and will return an error object, containing type, path, and value 
properties, if the validation has failed.

Extracting functions to reusable 
middleware
We can use our anonymous or named functions as middleware. To do so,  
we would export our functions by calling module.exports in routes/actors.js 
and routes/movies.js:

Let's take a look at our routes/actors.js file. At the top of this file, we require the 
Mongoose schemas we defined before:

var Actor = require('../models/actor');

This allows our variable actor to access our MongoDB using mongo functions  
such as find(), create(), and update(). It will follow the schema defined in the 
file /models/actor.

Since actors are in movies, we will also need to require the Movie schema to show 
this relationship by the following.

var Movie = require('../models/movie');

Now that we have our schema, we can begin defining the logic for the functions we 
described in endpoints. For example, the endpoint GET /actors/:id will retrieve the 
actor with the corresponding ID from our database. Let's call this function getOne(). 
It is defined as follows:

getOne: function(req, res, next) { Actor.findOne({ id:  
req.params.id })
.populate('movies')
.exec(function(err, actor) {



Chapter 2

[ 37 ]

if (err) return res.status(400).json(err); if (!actor) return  
res.status(404).json(); res.status(200).json(actor);
});
},

Here, we use the mongo findOne() method to retrieve the actor with id: req.
params.id. There are no joins in MongoDB so we use the .populate() method to 
retrieve the movies the actor is in.

The .populate() method will retrieve documents from a separate collection based 
on its ObjectId.

This function will return a status 400 if something went wrong with our Mongoose 
driver, a status 404 if the actor with :id is not found, and finally, it will return a 
status 200 along with the JSON of the actor object if an actor is found.

We define all the functions required for the actor endpoints in this file. The result is 
as follows:

// /src/routes/actors.js
var Actor = require('../models/actor'); 
var Movie = require('../models/movie');

module.exports = {

  getAll: function(req, res, next) { 
    Actor.find(function(err, actors) {
      if (err) return res.status(400).json(err);

      res.status(200).json(actors); 
    });
  },

  createOne: function(req, res, next) { 
  Actor.create(req.body, function(err, actor) {
    if (err) return res.status(400).json(err);

    res.status(201).json(actor); 
  });
  },



A Robust Movie API

[ 38 ]

  getOne: function(req, res, next) { 
    Actor.findOne({ id: req.params.id })
    .populate('movies')
.exec(function(err, actor) {
      if (err) return res.status(400).json(err); 
      if (!actor) return res.status(404).json();

      res.status(200).json(actor);
    });
  },

  updateOne: function(req, res, next) { 
    Actor.findOneAndUpdate({ id: req.params.id }, req.
body,function(err, actor) {
      if (err) return res.status(400).json(err); 
      if (!actor) return res.status(404).json();

      res.status(200).json(actor); 
    });
  },

  deleteOne: function(req, res, next) { 
    Actor.findOneAndRemove({ id: req.params.id }, function(err) {
      if (err) return res.status(400).json(err);

      res.status(204).json(); 
    });
  },

  addMovie: function(req, res, next) {
    Actor.findOne({ id: req.params.id }, function(err, actor) { 
      if (err) return res.status(400).json(err);
      if (!actor) return res.status(404).json();

      Movie.findOne({ id: req.body.id }, function(err, movie) {
        if (err) return res.status(400).json(err);
        if (!movie) return res.status(404).json();



Chapter 2

[ 39 ]

        actor.movies.push(movie); 
        actor.save(function(err) {
          if (err) return res.status(500).json(err);

          res.status(201).json(actor); 
        });
       })
     });
  },

  deleteMovie: function(req, res, next) {
    Actor.findOne({ id: req.params.id }, function(err, actor) { 
      if (err) return res.status(400).json(err);
      if (!actor) return res.status(404).json();

      actor.movies = []; 
      actor.save(function(err) {
        if (err) return res.status(400).json(err);

        res.status(204).json(actor);
      })
    });
   }

  };

For all of our movie endpoints, we need the same functions but applied to the  
movie collection.

After exporting these two files, we require them in app.js (/src/lib/app.js) by 
simply adding:

require('../routes/movies'); require('../routes/actors');

By exporting our functions as reusable middleware, we keep our code clean and  
can refer to functions in our CRUD calls in the /routes folder.

www.allitebooks.com

http://www.allitebooks.org


A Robust Movie API

[ 40 ]

Testing
Mocha is used as the test framework along with should.js and supertest.  
The principles behind why we use testing in our apps along with some basics on 
Mocha are covered in Chapter 1, Building a Basic Express Site. Testing supertest lets 
you test your HTTP assertions and testing API endpoints.

The tests are placed in the root folder /test. Tests are completely separate from  
any of the source code and are written to be readable in plain English, that is, you 
should be able to follow along with what is being tested just by reading through 
them. Well-written tests with good coverage can serve as a readme for its API,  
since it clearly describes the behavior of the entire app.

The initial setup to test our movies API is the same for both /test/actors.js  
and /test/movies.js and will look familiar if you have read Chapter 1, Building a 
Basic Express Site:

var should = require('should'); var assert = require('assert');
var request = require('supertest');
var app = require('../src/lib/app');

In src/test/actors.js, we test the basic CRUD operations: creating a new actor 
object, retrieving, editing, and deleting the actor object. An example test for the 
creation of a new actor is shown as follows:

  describe('Actors', function() { 

  describe('POST actor', function(){
    it('should create an actor', function(done){ 
      var actor = {
        'id': '1',
        'name': 'AxiomZen', 'birth_year': '2012',
       };

       request(app)
       .post('/actors')
       .send(actor)
       .expect(201, done)
    });



Chapter 2

[ 41 ]

We can see that the tests are readable in plain English. We create a new POST request 
for a new actor to the database with the id of 1, name of AxiomZen, and birth_year 
of 2012. Then, we send the request with the .send() function. Similar tests are 
present for GET and DELETE requests as given in the following code:

  describe('GET actor', function() {
    it('should retrieve actor from db', function(done){ 
      request(app)
      .get('/actors/1')
      .expect(200, done);
    });
  describe('DELETE actor', function() {
    it('should remove a actor', function(done) { 
      request(app)
      .delete('/actors/1')
     .expect(204, done);
    });
  });

To test our PUT request, we will edit the name and birth_year of our first actor  
as follows:

  describe('PUT actor', function() {
    it('should edit an actor', function(done) { 
      var actor = {
        'name': 'ZenAxiom', 
        'birth_year': '2011'
      };

      request(app)
      .put('/actors/1')
      .send(actor)
      .expect(200, done);
    });

    it('should have been edited', function(done) { 
      request(app)
      .get('/actors/1')
      .expect(200)



A Robust Movie API

[ 42 ]

      .end(function(err, res) { 
        res.body.name.should.eql('ZenAxiom');
        res.body.birth_year.should.eql(2011);
        done();
      });
     });
  });

The first part of the test modifies the actor name and birth_year keys, sends a PUT 
request for /actors/1 (1 is the actors id), and then saves the new information to the 
database. The second part of the test checks whether the database entry for the actor 
with id 1 has been changed. The name and birth_year values are checked against 
their expected values using .should.eql().

In addition to performing CRUD actions on the actor object, we can also perform 
these actions to the movies we add to each actor (associated by the actor's ID).  
The following snippet shows a test to add a new movie to our first actor  
(with the id of 1):

  describe('POST /actors/:id/movies', function() { 
    it('should successfully add a movie to the actor',function(done) { 
      var movie = {
        'id': '1',
        'title': 'Hello World', 
        'year': '2013'
      }
      request(app)
      .post('/actors/1/movies')
      .send(movie)
      .expect(201, done)
      });
    });

    it('actor should have array of movies now', function(done){ 
      request(app)
      .get('/actors/1')
      .expect(200)
      .end(function(err, res) { 
      res.body.movies.should.eql(['1']); 
      done();
     });
    });
  });



Chapter 2

[ 43 ]

The first part of the test creates a new movie object with id, title, and year keys, 
and sends a POST request to add the movies as an array to the actor with id of 1.  
The second part of the test sends a GET request to retrieve the actor with id of 1, 
which should now include an array with the new movie input.

We can similarly delete the movie entries as illustrated in the actors.js test file:

  describe('DELETE /actors/:id/movies/:movie_id', function() { 
    it('should successfully remove a movie from actor', function(done)
{
      request(app)
      .delete('/actors/1/movies/1')
      .expect(200, done);
    });

    it('actor should no longer have that movie id', function(done){
      request(app)
      .get('/actors/1')
      .expect(201)
      .end(function(err, res) { 
        res.body.movies.should.eql([]); 
        done();
      });
    });
  });

Again, this code snippet should look familiar to you. The first part tests that sending 
a DELETE request specifying the actor ID and movie ID will delete that movie entry. 
In the second part, we make sure that the entry no longer exists by submitting a GET 
request to view the actor's details where no movies should be listed.

In addition to ensuring that the basic CRUD operations work, we also test our 
schema validations. The following code tests to make sure two actors with the  
same ID do not exist (IDs are specified as unique):

  it('should not allow you to create duplicate actors', function(done) 
{
    var actor = { 
      'id': '1',
      'name': 'AxiomZen', 
      'birth_year': '2012',
    };



A Robust Movie API

[ 44 ]

    request(app)
    .post('/actors')
    .send(actor)
    .expect(400, done);
  });

We should expect code 400 (bad request) if we try to create an actor who already 
exists in the database.

A similar set of tests is present for tests/movies.js. The function and outcome  
of each test should be evident now.

Summary
In this chapter, we created a basic API that connects to MongoDB and supports 
CRUD methods. You should now be able to set up an API complete with tests,  
for any data, not just movies and actors!

The astute reader will have noticed that we have not addressed some issues in the 
current chapter such as dealing with race conditions in MongoDB. These will be 
clarified in detail in the following chapters.

We hope you found that this chapter has laid a good foundation for the Express and 
API setup.



[ 45 ]

Multiplayer Game API – 
Connect 4

Connect 4 is a turn-based two-player game, where each player would drop a chip 
down a column, with the objective to get four chip of the same color in a row. It can 
be vertical, horizontal, or diagonal.

In this chapter, we will build Connect4-as-a-Service. An API that allows you to build 
a game of Connect 4 on any client, be it a website, mobile app, or just play it from the 
command line; why not?

In Chapter 1, Building a Basic Express Site, and Chapter 2, MMO Word Game, we 
covered the most generic use cases for an Express backed API, which is to serve and 
persist data to and from a database. In this chapter, we'll cover something more fun. 
We'll build a multiplayer game API!

Some topics that will be covered include authentication, game state modeling, and 
validation middleware. Also, we will build an app using test-driven development 
with maximum code coverage.



Multiplayer Game API – Connect 4

[ 46 ]

For your reference, this is the folder structure of our app, which we will build 
throughout the chapter:

How do you create a game? How do you join a game? How do you make a move? 
And how do you persist the game state in a DB?

It is always a good idea to start with the data structure. So let's get to it!

Modeling game state with Mongoose
We will represent the board as a 2-dimensional array, with the values being  
'x', 'o', or ' ', representing the three possible states for each location on  
the grid. Here's an example, where player 2 wins the game:



Chapter 3

[ 47 ]

This game state would be represented in an array as follows:

 [ [' ',' ',' ',' ',' ',' ',' ',' '],
  [' ',' ',' ',' ',' ',' ',' ',' '],
  [' ','o',' ',' ',' ',' ',' ',' '],
  [' ','x','o','o','o',' ',' ',' '],
  [' ','x','x','o','x',' ',' ',' '],
  ['o','x','x','x','o',' ',' ',' '] ]

This would suffice if the game were to be played locally with the state being stored 
in memory. In our case, we want to play on the internet, so we will need a way to 
identify which game we are playing, as well as which player you are, and whose 
turn it is. A game document would look as follows:

{
  boardId: '<id>',
  p1Key: '<p1key>',
  p1Name: 'express',
  p2Key: '<p2key>',
  p2Name: 'koa',
  columns: 7,
  rows: 6,
  status: 'Game in progress',
  winner: undefined,
  turn: 1,
  board: [...]
}

Here are the parameters:

Parameter Description
boardId This is a unique ID that you'll need if you want to take a look at 

the current game state.
p1Key This is a secret token to identify player 1; we want to avoid the 

possibility of cheating of course
p1Name This is player 1's name
p2Key This is a secret token to identify player 2
p2Name This is a player 2's name
turn This is the total number of turns played on this board
rows This is the number of rows of the game board
columns This is the number of columns of the game board
board This is the game state stored in a 2D array
status This is either Game in progress or Game Over.
winner This is the name of the winner once the game is over



Multiplayer Game API – Connect 4

[ 48 ]

Let's use the same app folder structure as was introduced in Chapter 2, Building 
a Basic Express Site, and let's define the preceding as a Mongoose model in src/
models/game.js:

var mongoose = require('mongoose');

var gameSchema = new mongoose.Schema({
    type: String,
    required: true
  },
  p2Key: {
    type: String,
    required: true
  },
  p1Name: {
    type: String,
    required: true
  },
  p2Name: {
    type: String
  },
  turn: {
    type: Number,
    required: true
  },
  boardId: {
    type: String,
    required: true,
    index: {
      unique: true
    }
  },
  board: {
    type: Array,
    required: true
  },
  rows: {
    type: Number,
    required: true
  },
  columns: {
    type: Number,
    required: true
  },



Chapter 3

[ 49 ]

  status: {
    type: String
  },
  winner: {
    type: String
  }
});

module.exports = mongoose.model('Game', gameSchema);

Creating a new game
Now that we have defined the data structure of our game, let's start with 
implementing the logic to create and persist a new game document in the  
database, all the while following Test-Driven Development practices.

In order to create a new game, we need to accept a POST to /create with your  
name in the POST body:

{ name: 'player1' }

There are a few things we should think about:

• We need to return the board information to the user, and whether or not 
game creation was successful

• We need to ensure the player can access the game they just created, so we 
must send them the boardId

• In order for the player to identify themselves, we also need to ensure that we 
send them the p1Key, which will be needed for all future moves that Player 
One wishes to play to this board

Since we're building the game, we have the power to bend the rules of the game.  
So let's allow player 1 to optionally configure the size of the playing board! We 
should have a minimum size of 6x7, though.

So let's start with the tests for creating a game and fetch the game information:

var expect = require('chai').expect,
    request = require('supertest');

var app = require('../src/lib/app');
describe('Create new game | ', function() {
  var boardId;

www.allitebooks.com

http://www.allitebooks.org


Multiplayer Game API – Connect 4

[ 50 ]

  it('should return a game object with key for player 1',  
function(done) {
    request(app).post('/create')
      .send({name: 'express'})
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.boardId).to.be.a('string');
        expect(b.p1Key).to.be.a('string');
        expect(b.p1Name).to.be.a('string').and.equal('express');
        expect(b.turn).to.be.a('number').and.equal(1);
        expect(b.rows).to.be.a('number');
        expect(b.columns).to.be.a('number');

        // Make sure the board is a 2D array
        expect(b.board).to.be.an('array');
        for(var i = 0; i < b.board.length; i++){
          expect(b.board[i]).to.be.an('array');
        }

        // Store the boardId for reference
        boardId = b.boardId;
        done();
      });
  });
})

Throughout this chapter, we will use the expect assertion library. 
The only difference with should is the syntax, and the way it handles 
undefined more gracefully. The should library patches the object 
prototype, which means that if the object is undefined, it will throw a 
TypeError: Cannot read property should of undefined.

The test will use supertest to simulate POSTing data to the /create endpoint, and 
we describe everything that we expect from the response.

1. Now let's create a POST route in src/routes/games.js to create a game in 
the database, and make the first test pass:
var Utils = require('../lib/utils');
var connect4 = require('../lib/connect4');



Chapter 3

[ 51 ]

var Game = require('../models/game');

app.post('/create', function(req, res) {
    if(!req.body.name) {
      res.status(400).json({
        "Error": "Must provide name field!"
      });
    }

    var newGame = {
      p1Key: Utils.randomValueHex(25),
      p2Key: Utils.randomValueHex(25),
      boardId: Utils.randomValueHex(6),
      p1Name: req.body.name,
      board: connect4.initializeBoard(req.body.rows,  
req.body.columns),
      rows: req.body.rows || app.get('config').MIN_ROWS,
      columns: req.body.columns || app.get('config').MIN_COLUMNS,
      turn: 1,
      status: 'Game in progress'
    };

    Game.create(newGame, function(err, game) {
      if (err) {
        return res.status(400).json(err);
      }
      game.p2Key = undefined;
      res.status(201).json(game);
    });
  });

Note that an API should always take care of all possible inputs, 
and make sure it return 400 error if it does not pass the input 
validation; more on this as follows.

2. The Utils.randomValueHex() method will return a random string, which 
we use to generate a token as well as boardId. Instead of defining it in the 
preceding file, let's package it up nicely in src/lib/utils.js:
var crypto = require('crypto');

module.exports = {
  randomValueHex: function(len) {



Multiplayer Game API – Connect 4

[ 52 ]

    return crypto.randomBytes(Math.ceil(len/2))
        .toString('hex')
        .slice(0,len);
  }
}

All the game logic of Connect4 is in src/lib/connect4.js, which you can 
find in the Appendix. We'll use that library to initialize the board.

3. Also notice that rows and columns are optional arguments. We don't want 
to be hardcoding the default values in the code, so we have the following 
config.js file in the root folder:
module.exports = {
  MIN_ROWS: 6,
  MIN_COLUMNS: 7
};

4. As we initiate the app in src/lib/app.js, we can attach this config object 
onto the app object, so we have app-wide access to the config:
var express = require('express'),
    app = express(),
    config = require('../../config'),
    db = require('./db');

app.set('config', config);
db.connectMongoDB();
require('./parser')(app);
require('../routes/games')(app);

module.exports = app;

By now, your first pass should pass—congratulations! We can now be  
rest assured that the POST endpoint is working, and will keep working  
as expected. It's a great feeling because if we ever break something in the 
future, the test will fail. Now you don't have to worry about it anymore  
and focus on your next task.

5. You do have to be diligent about getting as much code coverage as possible. 
For instance, we allow the client to customize the size of the board, but we 
have not written tests to test this feature yet, so let's get right to it:
 it('should allow you to customize the size of the board',  
function(done) {
    request(app).post('/create')
      .send({



Chapter 3

[ 53 ]

        name: 'express',
        columns: 8,
        rows: 16
      })
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.columns).to.equal(8);
        expect(b.rows).to.equal(16);
        expect(b.board).to.have.length(16);
        expect(b.board[0]).to.have.length(8);
        done();
      });
  });

6. We should also enforce a minimum size of the board; otherwise, the game 
can't be played. Remember how we defined MIN_ROWS and MIN_COLUMNS in 
the config.js file? We can reuse that in our tests as well, without having to 
resort to hardcoding the tests. Now if we want to be changing the minimum 
size of the game, we can do it one place! As given in the following:

  it('should not accept sizes < ' + MIN_COLUMNS + ' for  
columns', function(done) {
    request(app).post('/create')
      .send({
        name: 'express',
        columns: 5,
        rows: 16
      })
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Number of columns  
has to be >= ' + MIN_COLUMNS);
        done();
      });
  });

  it('should not accept sizes < ' + MIN_ROWS + ' rows', 
function(done) {
    request(app).post('/create')
      .send({
        name: 'express',
        columns: 8,
        rows: -6



Multiplayer Game API – Connect 4

[ 54 ]

      })
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Number of rows has  
to be >= ' + MIN_ROWS);
        done();
      });
  });

As described in the preceding test cases, we should make sure that if the player  
is customizing the size of the board, that the size is not less than the minimum  
size. There are many more validation checks that we'll be doing, so let's start to  
get a bit more organized.

Input validation
We should always check that the inputs we receive from a POST request are  
indeed what we expect, and return a 400 input error otherwise. This requires 
thinking about as many edge-case scenarios as possible. When an API is used by 
thousands of users, it is guaranteed that some users will abuse or misuse it, be it 
either intentional or unintentional. However, it is your responsibility to make the 
API as user-friendly as possible.

The only input validation that we covered in the preceding /create route is to  
make sure that there is a name in the POST body. Now we can just add two more  
if blocks to cover the board-size cases to make the tests pass.

In true TDD philosophy, you should write the least amount of code to make the tests 
pass first. They call it red-green-refactor. First, write tests that fail (red), make them 
pass as quickly as possible (green), and refactor after.

We urge you to try the preceding first. The following is the result after refactoring.

1. A lot of the input validation checks would be useful across multiple 
routes, so let's package it nicely as a collection of middleware in src/lib/
validators.js:
// A collection of validation middleware

module.exports = function(app) {
  var MIN_COLUMNS = app.get('config').MIN_COLUMNS,
      MIN_ROWS = app.get('config').MIN_ROWS;



Chapter 3

[ 55 ]

  // Helper to return 400 error with a custom message
  var _return400Error = function(res, message) {
    return res.status(400).json({
      error: message
    });
  };

  return {
    name: function(req, res, next) {
      if(!req.body.name) {
        return _return400Error(res, 'Must provide name  
field!');
      }
      next();
    },
    columns: function(req, res, next) {
      if(req.body.columns && req.body.columns <  
MIN_COLUMNS) {
        return _return400Error(res, 'Number of columns has  
to be >= ' + MIN_COLUMNS);
      }
      next();
    },
    rows: function(req, res, next) {
      if(req.body.rows && req.body.rows < MIN_ROWS) {
        return _return400Error(res, 'Number of rows has to  
be >= ' + MIN_ROWS);
      }
      next();
    }
  }
}

The preceding packages three validation checkers in a reusable fashion.  
It returns an object with three middleware. Note how we DRYed up the  
code using a private _return400Error helper, to make it even cleaner.

2. Now we can refactor the /create route as follows:

module.exports = function(app) {
  // Initialize Validation middleware with app to use  
config.js
  var Validate = require('../lib/validators')(app);



Multiplayer Game API – Connect 4

[ 56 ]

  app.post('/create', [Validate.name, Validate.columns,  
Validate.rows], function(req, res) {

    var newGame = {
      p1Key: Utils.randomValueHex(25),
      p2Key: Utils.randomValueHex(25),
      boardId: Utils.randomValueHex(6),
      p1Name: req.body.name,
      board: connect4.initializeBoard(req.body.rows,  
req.body.columns),
      rows: req.body.rows || app.get('config').MIN_ROWS,
      columns: req.body.columns || app.get('config').MIN_COLUMNS,
      turn: 1,
      status: 'Game in progress'
    };
    Game.create(newGame, function(err, game) {
      if (err) return res.status(400).json(err);

      game.p2Key = undefined;
      return res.status(201).json(game);
    });
  });
}

This will create a nice separation of concerns, where each of the routes that we will 
define will accept an array of (reusable!) validation middleware that it has to go 
through, before it reaches the controller logic of the route.

Make sure your tests still pass before you proceed with the 
next endpoint.

Getting the game state
Both players need a way to check on the state of a game that they are interested in. 
To do this, we can send a GET request to /board/{boardId}. This will return the 
current state of the game, allowing players to see the state of the board, as well as 
whose turn is next.



Chapter 3

[ 57 ]

We will create another endpoint to fetch a board, so let's first write the test for that:

  it('should be able to fetch the board', function(done) {
    request(app).get("/board/" + boardId)
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.boardId).to.be.a('string').and.equal(boardId);
        expect(b.turn).to.be.a('number').and.equal(1);
        expect(b.rows).to.be.a('number');
        expect(b.columns).to.be.a('number');
        expect(b.board).to.be.an('array');
        done();
      });
  });

Note that we want to make sure that we don't accidentally leak the player tokens. 
The response should be basically identical to the one received by the player that  
most recently made a move as given in the following:

 app.get('/board/:id', function(req, res) {
    Game.findOne({boardId: req.params.id}, function(err, game) {
      if (err) return res.status(400).json(err);

      res.status(200).json(_sanitizeReturn(game));
    });
  });

Here, _sanitizeReturn(game) is a simple helper that just copies the game object, 
except for the player tokens.

// Given a game object, return the game object without tokens
function _sanitizeReturn(game) {
  return {
    boardId: game.boardId,
    board: game.board,
    rows: game.rows,
    columns: game.columns,
    turn: game.turn,
    status: game.status,
    winner: game.winner,
    p1Name: game.p1Name,
    p2Name: game.p2Name
  };
}



Multiplayer Game API – Connect 4

[ 58 ]

Joining a game
This game would be no fun if played alone, so we need to allow a second player to 
join the game.

1. In order to join a game, we need to accept POST to /join with the name of 
player2 in the POST body:
{ name: 'player2' }

For this to work, we need to implement a rudimentary match-making 
system. An easy one is to simply have a queue of games in a joinable 
state, and popping one off when the /join API is hit. We chose to use 
Redis as our Queue implementation to keep track of the joinable games.

Once a game is joined, we will send boardId and p2Key back to the player, 
so that they can play on this board with player 1. This will intrinsically avoid 
a game to be joined multiple times.

2. All we need to do is add this line to push boardId onto the queue, once the 
game is created and stored in the DB:
      client.lpush('games', game.boardId);

3. We glanced over database connections when we showed app.js. The way to 
set up a MongoDB connection was covered in Chapter 2, A Robust Movie API. 
The following is how we'll connect to a redis database in src/lib/db.js:
var redis = require('redis');
var url = require('url');

exports.connectRedis = function() {
  var urlRedisToGo = process.env.REDISTOGO_URL;
  var client = {};

  if (urlRedisToGo) {
    console.log('using redistogo');
    rtg = url.parse(urlRedisToGo);
    client = redis.createClient(rtg.port, rtg.hostname);
    client.auth(rtg.auth.split(':')[1]);
  } else {
    console.log('using local redis');
    // This would use the default redis config: { port  
6347, host: 'localhost' }



Chapter 3

[ 59 ]

    client = redis.createClient();
  }

  return client;
};

Note that in production, we'll be connecting to Redis To Go  
(you can start with a 2MB instance for free). For local development, 
all you need to do is redis.createClient().

4. Now we can write the tests to join a game, TDD style:
var expect = require('chai').expect,
    request = require('supertest'),
    redis = require('redis'),
    client = redis.createClient();

var app = require('../src/lib/app');

describe('Create and join new game | ', function() {
  before(function(done){
    client.flushall(function(err, res){
      if (err) return done(err);
      done();
    });
  });

5. Note that we flush the redis queue each time we run this test suite, just to 
make sure that the stack is empty. In general, it is a good idea to write atomic 
tests that can run on their own, without reliance on outside state.
  it('should not be able to join a game without a name',  
function(done) {
    request(app).post('/join')
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal("Must provide name  
field!");
        done();
      });
  });

  it('should not be able to join a game if none exists',  
function(done) {
    request(app).post('/join')
      .send({name: 'koa'})



Multiplayer Game API – Connect 4

[ 60 ]

      .expect(418)
      .end(function(err, res) {
        expect(res.body.error).to.equal("No games to  
join!");
        done();
      });
  });

6. Always remember to cover input the edge-cases! In the preceding test,  
we make sure that we cover the case that we have no games left to join.  
If not, we might crash the server or return the 500 error (which we should 
attempt to eradicate because that means it's your fault, not the user!).  
Now let's write the following code:
  it('should create a game and add it to the queue',  
function(done) {
    request(app).post('/create')
      .send({name: 'express'})
      .expect(200)
      .end(function(err, res) {
        done();
      });
  });

  it('should join the game on the queue', function(done) {
    request(app).post('/join')
      .send({name: 'koa'})
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.boardId).to.be.a('string');
        expect(b.p1Key).to.be.undefined;
        expect(b.p1Name).to.be.a('string').and.equal('express');
        expect(b.p2Key).to.be.a('string');
        expect(b.p2Name).to.be.a('string').and.equal('koa');
        expect(b.turn).to.be.a('number').and.equal(1);
        expect(b.rows).to.be.a('number');
        expect(b.columns).to.be.a('number');
        done();
      });
  });
});



Chapter 3

[ 61 ]

7. These tests describe the core logic of creating a game and joining it. Enough 
tests to describe this endpoint. Let's now write the accompanying code:

app.post('/join', Validate.name, function(req, res) {
    client.rpop('games', function(err, boardId) {
      if (err) return res.status(418).json(err);

      if (!boardId) {
        return res.status(418).json({
          error: 'No games to join!'
        });
      }

      Game.findOne({ boardId: boardId }, function (err,  
game){
        if (err) return res.status(400).json(err);

        game.p2Name = req.body.name;
        game.save(function(err, game) {
          if (err) return res.status(500).json(err);
          game.p1Key = undefined;
          res.status(200).json(game);
        });
      });
    });
  });

We reuse the Validate.name middleware here to make sure that we have a name for 
player 2. If so, we will look for the next joinable game in the queue. When there are 
no joinable games, we will return an appropriate 418 error.

If we successfully retrieve the next joinable boardId, we will fetch the board from 
the database, and store the name of player 2 in it. We also have to make sure that we 
do not return player 1's token along with the game object.

Now that both players have fetched their respective tokens, let the games begin!

Playing the game
The game state is stored in the database and can be retrieved with a GET request to 
/board/{boardId}. The essence of making a move is a change to the game state. 
In familiar CRUD terms, we would be updating the document. Following REST 
conventions whenever possible, a PUT request to /board/{boardId} would be the 
logical choice to make a move.



Multiplayer Game API – Connect 4

[ 62 ]

To make a valid move, a player needs to include an X-Player-Token in their request 
header matching that of the corresponding player, as well as a request body 
identifying which column to make a move in:

{ column: 2 }

However, not all moves are legal, for example, we need to ensure that players  
only play moves when it is their turn. There are a few more things that need to be 
checked for every move:

• Is the move valid? Does the column parameter specify an actual column?
• Does the column still have space?
• Is the X-Player-Token a valid token for the current game?
• Is it your turn?
• Did the move create a victory condition? Did this player win with this move?
• Did the move fill up the board and cause a draw game?

Now we will model all these scenarios.

1. Let's play a full game with the following tests:
var expect = require('chai').expect,
    request = require('supertest'),
    redis = require('redis'),
    client = redis.createClient();

var app = require('../src/lib/app'),
    p1Key, p2Key, boardId;

describe('Make moves | ', function() {
  before(function(done){
    client.flushall(function(err, res){
      if (err) return done(err);
      done();
    });
  });

  it('create a game', function(done) {
    request(app).post('/create')
      .send({name: 'express'})
      .expect(200)
      .end(function(err, res) {
        p1Key = res.body.p1Key;



Chapter 3

[ 63 ]

        boardId = res.body.boardId;
        done();
      });
  });

  it('join a game', function(done) {
    request(app).post('/join')
      .send({name: 'koa'})
      .expect(200)
      .end(function(err, res) {
        p2Key = res.body.p2Key;
        done();
      });
  });

The first test creates the game and the second test joins it. The next six tests 
are validation tests to make sure that the requests are valid.

2. Make sure that the X-Player-Token is present:
  it('Cannot move without X-Player-Token', function(done) {
    request(app).put('/board/' + boardId)
      .send({column: 1})
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Missing X-Player- 
Token!');
        done();
      });
  });

3. Make sure that the X-Player-Token is the correct one:
  it('Cannot move with wrong X-Player-Token',  
function(done) {
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', 'wrong token!')
      .send({column: 1})
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Wrong X-Player- 
Token!');
        done();
      });
  });



Multiplayer Game API – Connect 4

[ 64 ]

4. Make sure that the board you move on exists:
  it('Cannot move on unknown board', function(done) {
    request(app).put('/board/3213')
      .set('X-Player-Token', p1Key)
      .send({column: 1})
      .expect(404)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Cannot find  
board!');
        done();
      });
  });

5. Make sure that a column parameter is sent when making a move:
  it('Cannot move without a column', function(done) {
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p2Key)
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Move where?  
Missing column!');
        done();
      });
  });

6. Make sure that the column is not off the board:
  it('Cannot move outside of the board', function(done) {
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p1Key)
      .send({column: 18})
      .expect(200)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Bad move.');
        done();
      });
  });

7. Make sure that the wrong player cannot move:
  it('Player 2 should not be able to move!', function(done)  
{
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p2Key)
      .send({column: 1})



Chapter 3

[ 65 ]

      .expect(400)
      .end(function(err, res) {
        console.log(res.body);
        expect(res.body.error).to.equal('It is not your  
turn!');
        done();
      });
  });

8. Now that we have covered all the validation cases, let's test the entire  
game play:
it('Player 1 can move', function(done) {
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p1Key)
      .send({column: 1})
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.p1Key).to.be.undefined;
        expect(b.p2Key).to.be.undefined;
        expect(b.turn).to.equal(2);
        expect(b.board[b.rows-1][0]).to.equal('x');
        done();
      });
  });

9. Just a quick check that player 1 cannot move again, before player 2 makes  
a move:
  it('Player 1 should not be able to move!', function(done)  
{
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p1Key)
      .send({column: 1})
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('It is not your  
turn!');
        done();
      });
  });

  it('Player 2 can move', function(done) {
    request(app).put('/board/' + boardId)



Multiplayer Game API – Connect 4

[ 66 ]

      .set('X-Player-Token', p2Key)
      .send({column: 1})
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.p1Key).to.be.undefined;
        expect(b.p2Key).to.be.undefined;
        expect(b.turn).to.equal(3);
        expect(b.board[b.rows-2][0]).to.equal('o');
        done();
      });
  });

10. The remainder of this test suite plays out a full game. We won't show it 
all here, but you may refer to the source code. The last three tests are still 
interesting though because we cover the final game state and prevent any 
more moves.

  it('Player 1 can double-check victory', function(done) {
    request(app).get('/board/' + boardId)
      .set('X-Player-Token', p1Key)
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.winner).to.equal('express');
        expect(b.status).to.equal('Game Over.');
        done();
      });
  });

  it('Player 2 is a loser, to be sure', function(done) {
    request(app).get('/board/' + boardId)
      .set('X-Player-Token', p2Key)
      .expect(200)
      .end(function(err, res) {
        var b = res.body;
        expect(b.winner).to.equal('express');
        expect(b.status).to.equal('Game Over.');
        done();
      });
  });



Chapter 3

[ 67 ]

  it('Player 1 cannot move anymore', function(done) {
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', p1Key)
      .send({column: 3})
      .expect(400)
      .end(function(err, res) {
        expect(res.body.error).to.equal('Game Over. Cannot  
move anymore!');
        done();
      });
  });
});

Now that we have described our expected behavior, let's begin with implementing 
the move endpoint.

1. First, let's cover the validation pieces, making the first 8 tests pass.
app.put('/board/:id', [Validate.move, Validate.token],  
function(req, res) {

    Game.findOne({boardId: req.params.id }, function(err,  
game) {

2. We fetch the board that the move is sent to. If we cannot find the board, 
we should return a 400 error. This should make the test 'Cannot move on 
unknown board' pass.
      if (!game) {
        return res.status(400).json({
          error: 'Cannot find board!'
        });
      }

3. If the game is over, you cannot make any moves.
      if(game.status !== 'Game in progress') {
        return res.status(400).json({
          error: 'Game Over. Cannot move anymore!'
        });
      }

4. The following code will make sure that the token is either p1Key or p2Key.  
If not, return the 400 error with the according message:

      if(req.headers['x-player-token'] !== game.p1Key &&  
req.headers['x-player-token'] !== game.p2Key) {
        return res.status(400).json({



Multiplayer Game API – Connect 4

[ 68 ]

          error: 'Wrong X-Player-Token!'
        });
      }

Now that we have verified that the token is indeed a valid one, we still need to  
check if it is your turn.

The game.turn() method will increment with each turn, so we have to take the 
modulo to check who's turn it is. Incrementing the turn, instead of toggling, will 
have the benefit of keeping a count on the number of turns that have been played, 
which will also be handy later, when we want to check whether the board is full,  
and end in a tie.

Now we know which key to compare the token with.

1. If your token does not match, then it is not your turn:
      var currentPlayer = (game.turn % 2) === 0 ? 2 : 1;
      var currentPlayerKey = (currentPlayer === 1) ? game.p1Key : 
game.p2Key;
      if(currentPlayerKey !== req.headers['x-player-token']){
        return res.status(400).json({
          error: 'It is not your turn!'
        });
      }

2. We added two more validation middleware for this route, move and token, 
which we can add to the validators library in src/lib/validators.js:
    move: function(req, res, next) {
      if (!req.body.column) {
        return _return400Error(res, 'Move where? Missing  
column!');
      }
      next();
    },
    token: function(req, res, next) {
      if (!req.headers['x-player-token']) {
        return _return400Error(res, 'Missing X-Player- 
Token!');
      }
      next();
    }



Chapter 3

[ 69 ]

3. Since we are sending the 400 error four times in the preceding code,  
let's dry it up and reuse the same helper we had in validators.js,  
by extracting that helper into src/lib/utils.js:
var crypto = require('crypto');

module.exports = {
  randomValueHex: function(len) {
    return crypto.randomBytes(Math.ceil(len/2))
        .toString('hex')
        .slice(0,len);
  },
  // Helper to return 400 error with a custom message
  return400Error: function(res, message) {
    return res.status(400).json({
      error: message
    });
  }
}

4. Don't forget to update src/lib/validators.js to use this utils, by 
replacing the line with the following:

  var _return400Error = require('./utils').return400Error;

5. Now we can refactor the move route to make a move as follows:

app.put('/board/:id', [Validate.move, Validate.token],  
function(req, res) {

    Game.findOne({boardId: req.params.id }, function(err,  
game) {
      if (!game) {
        return _return400Error(res, 'Cannot find board!');
      }

      if(game.status !== 'Game in progress') {
        return _return400Error(res, 'Game Over. Cannot move  
anymore!');
      }



Multiplayer Game API – Connect 4

[ 70 ]

      if(req.headers['x-player-token'] !== game.p1Key &&  
req.headers['x-player-token'] !== game.p2Key) {
        return _return400Error(res, 'Wrong X-Player- 
Token!');
      }

      var currentPlayer = (game.turn % 2) === 0 ? 2 : 1;
      var currentPlayerKey = game['p' + currentPlayer +  
'Key'];
      if(currentPlayerKey !== req.headers['x-player- 
token']){
        return _return400Error(res, 'It is not your  
turn!');

Much cleaner, ain't it!

For the remainder of the controller logic, we will use the connect4.js library  
(see Appendix), which implements the makeMove() and checkForVictory() 
methods.

The makeMove() method will return a new board that results from the move,  
or return false if the move is invalid. Invalid here means that the column is already 
full, or the column is out of bounds. No turn validation is done here.

    // Make a move, which returns a new board; returns false if  
the move is invalid
      var newBoard = connect4.makeMove(currentPlayer,  
req.body.column, game.board);
      if(newBoard){
        game.board = newBoard;
        game.markModified('board');
      } else {
        return _return400Error(res, 'Bad move.');
      }

One really important thing to point out is the line game.markModified('board'). 
Since we are using a 2D array for board, Mongoose is unable to auto-detect any 
changes. It can only do so with the basic field types. So if we do not explicitly mark 
the board as modified, it will not persist any changes when we call game.save!

      // Check if you just won
      var win = connect4.checkForVictory(currentPlayer,  
req.body.column, newBoard);
      if(win) {
        game.winner = game['p'+ currentPlayer + 'Name'];



Chapter 3

[ 71 ]

        game.status = 'Game Over.';
      } else if(game.turn >= game.columns*game.rows) {
        game.winner = 'Game ended in a tie!';
        game.status = 'Game Over.';
      }

The checkForVictory() method is a predicate that will check for victory based on 
the last move by the last player. We don't need to be checking the entire board each 
time. If the last move was a winning move, this method will return true; otherwise, it 
will return false.

      // Increment turns
      game.turn++;

      game.save(function(err, game){
        if (err) return res.status(500).json(err);
        return res.status(200).json(_sanitizeReturn(game));
      });
    });
  });

It is a good idea to keep the controller logic as thin as possible and defer as 
much of the business logic as possible to the libraries or models. This decoupling 
and separation of concerns improves maintainability and testability, as well as 
modularity and reusability. Given the current architecture, it would be very easy to 
reuse the core components of our application in another Express project.

Testing for a tie
The only thing we haven't covered yet in our test suite is a tie game. We could create 
another test suite that would fill the entire board manually using 42 individual 
moves, but that would be too tedious. So let's fill the board programmatically.

That may sound easy, but it can be a bit tricky with JavaScript's asynchronous 
control flow. What would happen if we were to simply wrap the move request  
in a for loop?

In short, it would be a mess. All requests would go out at the same time, and there 
will be no order. And how would you know that all moves are finished? You would 
need to maintain a global state counter that increments with each callback.

This is where the async library becomes indispensable from Github.



Multiplayer Game API – Connect 4

[ 72 ]

Async is a utility module, which provides straightforward, powerful functions to 
work with asynchronous JavaScript.

There is so much that you can do with async that would make your life easier; 
definitely a library that you should acquaint yourself with and add to your toolbox.

In our situation, we will use async.series, which allows us to send a flight of 
requests serially. Each request will wait until the previous request has returned.

Run the functions in the tasks array in series, each one running 
once the previous function has completed. If any functions in 
the series pass an error to its callback, no more functions can 
be run, and callback is immediately called with the value of the 
error; otherwise, callback receives an array of results when tasks 
are completed.

So to prepare our moves to be passed to async.series, we will use the following 
helper to create a thunk:

function makeMoveThunk(player, column) {
  return function(done) {
    var token = player === 1 ? p1Key : p2Key;
    request(app).put('/board/' + boardId)
      .set('X-Player-Token', token)
      .send({column: column})
      .end(done);
  };
}

A thunk is simply a subroutine; in this case calling the API to make a move,  
that is wrapped in a function, to be executed later. In this case, we create a thunk  
that accepts a callback parameter (as required by async), which notifies async  
that we're done.

Now we can fill the board programmatically and check for the tie state:

it('Fill the board! Tie the game!', function(done) {
    var moves = [],
        turn = 1,
        nextMove = 1;

    for(var r = 0; r < rows; r++) {
      for(var c = 1; c <= columns; c++) {



Chapter 3

[ 73 ]

        moves.push(makeMoveThunk(turn, nextMove));
        turn = turn === 1 ? 2 : 1;
        nextMove = ((nextMove + 2) % columns) + 1;
      }
    }

    async.series(moves, function(err, res) {
      var lastResponse = res[rows*columns-1].body;
      console.log(lastResponse);
      expect(lastResponse.winner).to.equal('Game ended in a  
tie!');
      expect(lastResponse.status).to.equal('Game Over.');
      done();
    });
  });

Summary
Congratulations! By now, all your tests should be passing and your game should be 
complete. You have mastered developing a robust and well-tested API and deal with 
validation using reusable middleware. Along the way you've also learned to use 
Redis for a simple queue.

Now you can deploy your API and you'll have your Connect4-as-a-Service available 
for the world to build their own connect 4 game upon, using their own favorite 
platform. Whether it is an HTML5 interface, a mobile app, or a command-line 
interface, it will all be powered by your backend!

In the next chapter, we'll be taking game development to another level—it will be a 
realtime massively multiplayer online game!





[ 75 ]

MMO Word Game
Word Chain Game is a real-time, massive multiplayer online game. Each player 
will be able to see the other online players when playing the game, along with a 
score leaderboard for score. In this chapter we will introduce the Promise pattern 
and explain how Promises simplify asynchronous operations. You will learn how 
to build a real-time application with Express and SocketIO, perform authentication 
over socket handshaking, and deal with race conditions using the atomic update of 
MongoDB. You will also learn how to build the game client to connect to the game 
server over socket, and how to debug WebSocket on the client side using Chrome 
Developer Tools.

Once you have mastered this, you can build similar games such as online  
quiz competitions.

Gameplay
The game starts with a randomly selected English word and each player tries 
to submit a word where the first character of their submission matches the last 
character of the current word; we call this chaining with the current word. For 
example, if the game starts with the word Today, then players can send words  
such as Yes or Yellow.

The first person to submit a valid word will have their word become the starting 
word for the next round and gets the points for that round. Once the new word is 
accepted, the server will broadcast the change to all online players. The players will 
see the new word and submit another word to chain with it.



MMO Word Game

[ 76 ]

For example, if player 1 sends Yes to chain with Today, the server will accept the 
word and broadcast the current word Yes to all other players. If a player submits a 
word that is invalid based on the dictionary we have or was submitted by another 
player earlier, the game server will ignore that request. If multiple players submit 
valid words simultaneously, the server will only accept the first submitted word.

Real-time application overview
In this game, we will introduce the Promise pattern and explain how Promise will 
simplify async operations.

Despite this being a real-time game, we will not rush into implementing a real-time 
feature at the beginning. Instead, we will first build a game model, which contains all 
the game logic.

In the game logic, we first introduce how to keep track of active users and then 
explain how we verify users' input. After verifying the input, during the updating 
game state phase, we deal with race conditions by utilizing the atomic operation of 
MongoDB. We also look into how to cover the race conditions with test cases.



Chapter 4

[ 77 ]

After the game logic is done, we will introduce how to broadcast game state changes 
to all players using Socket.IO.

In the end, we will create an Express app, a Socket.IO server, and a game client that 
can talk to our server using the socket.io-client libraries.

Keeping track of active users
Since the game is a multiplayer game, players can see the number of players and 
their usernames. To keep track of active users, we need to track when a player joins 
the game and when a player leaves the game.

Schema design
Each player can simply be represented by a document with a single field for  
the name:

{ name: 'leo' }

User schema
We will use Mongoose for our data modeling. Let's start with designing our user 
schema. The schemas are placed in the models folder in the app. The following 
screenshot shows the folder structure. The schema will have one required field  
name, this is done by adding required: true to the name object in the schema.



MMO Word Game

[ 78 ]

To make querying a user by name fast, we can add an index to name. By default, 
only the _id field that MongoDB generates will be indexed. This means, to perform 
a search by name, the database will need to iterate over all the documents in the 
collection to find a matching name. When you add an index to name, you can query 
by name as quickly as when you query by _id. Now, when a user leaves, we can find 
the user by name directly and remove that user.

Also, we add the unique : true property to the index to avoid having multiple 
users with the same name, as shown in the following code:

var mongoose = require('mongoose');
var schema = new mongoose.Schema({ 
  name: { 
    type: String, 
    required: true, 
    index: { 
      unique: true 
    }
  }
});

var User = mongoose.model('user', schema);
module.exports = User;

User join
When a user joins a game, we create a user with the key name and save this user to 
MongoDB, as follows:

schema.statics.join = function(name, callback) { 
  var user = new User({ 
    name: name 
  });

  user.save(function(err, doc) { 
    if (!callback) { return ; }
    if (err) { return callback(err); }

    callback(null, doc);
  });
};



Chapter 4

[ 79 ]

The save() method in the preceding code uses callback patterns, which is also 
known as callback hell. If an error occurs, we make a call to the callback function 
passing the error as a parameter; otherwise, the operation succeeds and it returns  
the updated document.

The preceding callback pattern involves a lot of logic and condition checks.  
The nested callback pattern of JavaScript can quickly turn into a spaghetti nightmare. 
A good alternative is to use Promises to simplify things.

Mongoose's model.create() method (http://mongoosejs.com/docs/api.
html#model_Model.create) can create and save a new document into the database 
if valid. Functions and documents such as objects and arrays are valid parameters  
for the model.create() method. The create method returns a Promise.

With this Promise, the caller of the join method can define the success and fail 
callbacks, simplifying the code:

schema.statics.join = function(name) { 
  return User.create({ 
    name: name
  });
};

Promises
A Promise is the eventual result of an asynchronous operation, just like giving 
someone a promise. Promises help handle errors, which results in writing cleaner 
code without callbacks. Instead of passing in an additional function that takes an 
error and result as parameters to every function, you can simply call your function 
with its parameter and get a Promise:

 getUserinfo('leo', function(err, user){ 
   if (err) {
    // handle error
     onFail(err);
     return;
   }
  
   onSuccess(user);
 });

http://mongoosejs.com/docs/api.html#model_Model.create
http://mongoosejs.com/docs/api.html#model_Model.create


MMO Word Game

[ 80 ]

versus

var promiseUserInfo = getUserinfo('leo');

promiseUserInfo.then(function(user) {
  onSuccess(user);
});

promiseUserInfo.catch(function(error) {
  // code to handle error
  onFail(user);
});

The benefit of using Promises isn't obvious if there is only one async operation.  
If there are many async operations with one depending on another, the callback 
pattern will quickly turn into a deeply nested structure, while Promises can keep 
your code shallow and easier to read.

Promises can centralize your error handling and when an exception happens, you 
will get stack traces that reference actual function names instead of anonymous ones.

In our word game, you could use Promises to turn this:

var onJoinSuccess = function(user) { 
  console.log('user', user.name, 'joined game!');
  return user;
};

var onJoinFail = function(err) { 
  console.error('user fails to join, err', err);
};

User.join('leo', function(err, user) { 
  if (err) { 
    return onJoinFail(err);
  }

  onJoinSuccess(user);
});



Chapter 4

[ 81 ]

into this:

User.join('leo')
.then(function(user) { 
  onJoinSuccess(user); 
})
.catch(function(err) { 
  onJoinFail(err);
});

or even simplier:

User.join('leo')
.then(onJoinSuccess)
.catch(onJoinFail);

To understand the execution flow of the preceding, let's create a complete example 
that calls the user model's join() method, and then add some log statements to see 
the output:

var User = require('../app/models/user.js');
var db = require('../db');

var onJoinSuccess = function(user) {
  console.log('user', user.name, 'joined game!');
  return user;
};

var onJoinFail = function(err) {
  console.error('user fails to join, err', err);
};

console.log('Before leo send req to join game');

User.join('leo')
.then(onJoinSuccess)
.catch(onJoinFail);

console.log('After leo send req to join game');



MMO Word Game

[ 82 ]

If a user joins the game successfully, the Promise returned by the User.join() 
method will be resolved. A newly created user document object will be passed to  
the onJoinSuccess callback and the output result will be printed as follows:

If we run this script again, we will see that the user fails to join the game and the 
error is printed. It fails because the user model already has an index on name 
property because a user with the name leo was created when we ran the script the 
first time. When we run it again, we can't create another user with the same name 
leo, so the Promise fails and the error is passed into onJoinFail.

A Promise has three states: pending, fulfilled, or rejected; a Promise's initial state  
is pending, then it Promises that it will either succeed (fulfilled) or fail (rejected). 
Once it is fulfilled or rejected, it cannot change again. A major benefit of this is that 
you can chain multiple Promises together and define one error handler to handle  
all the errors.

As the join() method returns a Promise, we can define the success and fail callbacks 
as follows.



Chapter 4

[ 83 ]

The then and catch method
The then and catch methods are used to define success and fail callbacks; you  
might wonder when they are actually being called. When the User.create() 
method is called, it will return a Promise object and at the same time send an async 
query to MongoDB. The success callback, onJoinSuccess, is then passed into the 
then method and will be called when the async query is successfully completed, 
resolving the Promise.

Once the Promise is resolved, it can't be resolved again, so onJoinSuccess won't  
be called again, it will only be called once at the most.

Chain multiple Promises
You can chain Promise operations by calling them on the Promise that is returned 
by the previous then() function. We use the .then() method when we want to do 
something with the result from the Promise (once x resolves, then do y) as follows:

var User = require('../app/models/user.js');
var db = require('../db');

var onJoinSuccess = function(user) {
  console.log('user', user.name, 'joined game!');
  return user;
};

var onJoinFail = function(err) {
  console.error('user fails to join, err', err);
};

console.log('Before leo send req to join game');
User.join('leo')
.then(onJoinSuccess)
.then(function(user) {
  return User.findAllUsers();
})
.then(function(allUsers) {
  return JSON.stringify(allUsers);
})



MMO Word Game

[ 84 ]

.then(function(val) {
  console.log('all users json string:', val);
})
.catch(onJoinFail);

console.log('After leo send req to join game');

We can centralize the error handling at the end. It's much easier to deal with errors 
with Promise chains. If we run the code, we will get the following result:

Now that we've gone through all the logic and error handling of creating a new user, 
let's look into how we will ensure that multiple users with the same name can't join.

Prevent duplicates
Earlier, when we defined our user schema, we added index with a unique set to 
true on the name field:

var schema = new mongoose.Schema({ 
  name: { 
    type: String, 
    required: true, 
    index: { 
      unique: true 
    }
  }
});



Chapter 4

[ 85 ]

MongoDB will issue a query to see whether there is another record with the same 
value for the unique property and, if that query comes back empty, it allows the save 
or update to proceed. If another user joins with the same name, Mongo throws the 
error: Duplicate Key Error. This prevents the user from being saved and the player 
must choose another name to join with.

To make sure our code works as we want it to, we need to create tests; we will create 
a test case with Mocha. The test case will pass a username to the User.join method 
and expect that the username of the newly created user is valid. The User.join 
method returns a Promise. If it succeeds, the object returned from the Promise will 
be sent to the then method; otherwise it fails and the Promise will .reject with an 
error that will be caught by the catch method.

In the case of the success callback, we have the newly created user, and we can  
check whether it's correct by expecting user.name to return leo, since leo was 
entered as the username (illustrated in the following code).

In the case of fail callback, we can pass the error object to Mocha, done(error), to 
fail the test case. Since we created a user named leo for the first time, we expect this 
test to pass. Since Mocha tests are synchronous and Promises are async, we need to 
wait for the function to be done. When the code is successful, it will call the done() 
function and report success to Mocha; if it fails, the catch method will catch the error 
and return the error to the done method, which will tell Mocha to fail the test case.

var User = require('../../app/models/user');

  describe('when leo joins', function() { 
    it('should return leo', function(done) { 
      User.join('leo')
        .then(function(user) { 
          expect(user.name).to.equal('leo'); 
          done();
        })
        .catch(function(error) { 
          done(error);
        });
    });
  });



MMO Word Game

[ 86 ]

Version 1.18.0 or above of Mocha allows you to return a Promise in a test case. 
Mocha will fail the test case if the Promise fails without needing to explicitly  
catch the error as given in the following:

 describe('when leo joins', function() { 
    it('should return leo', function() { 
      return User.join('leo')
        .then(function(user) { 
          expect(user.name).to.equal('leo');
        });
    });
  });

Now that we tested that submitting the first user with a unique name works, we 
want to test what happens when another user with the same name joins:

 describe('when another leo joins', function() { 
    it('should be rejected', function() { 
      return User.join('leo')
        .then(function() { 
          throw new Error('should return Error');
        })
        .catch(function(err) { 
          expect(err.code).to.equal(11000);
          return true;
        });
    });
  });

When we submit leo again as a username, the Promise of Game.join comes back 
rejected and goes to the .catch method. The return true turns a failed Promise 
into a success, which tells us that it succeeded in rejecting the second leo and that  
we successfully caught the error; we basically swallow the error to tell Mocha that 
this is the correct behavior we expect.

User leaves the game
When a user leaves the game, we need to remove their entry in the database; this 
would also free up their user name so that a new user can take it. Mongoose has a 
delete method called findOneAndRemove, which can find that player by name, and 
then remove it as shown in the following code.



Chapter 4

[ 87 ]

For our Promises, we use Bluebird (https://github.com/petkaantonov/
bluebird) (spec: PromiseA) because of its better performance, utility, and  
popularity (support).

We call the Promise.resolve method, which creates a Promise that is resolved with 
the value inside: Promise.resolve(value). Therefore, we can take a method that 
does not normally return a Promise and wrap it with the Bluebird Promise.resolve 
method to get a Promise back, which we can then chain with then if it succeeds or 
catch if it fails. Receiving Promises from our methods will ensure that we deal with 
successes and errors efficiently and also lets the callee deal with the error when it 
runs (.exec()).

schema.statics.leave = function(name) {
  return Promise.resolve(this.findOneAndRemove({ 
    name: name
  })
  .exec());
};

Show all active users
So far we demonstrated how to add and remove users, we will now dive into how 
we will display the game data to a user that's joined. To show the total active users, 
we could simply return all users, as offline users have already been removed. In 
order to return an array of just the user names, rather than an array of the entire user 
object, we could use the Promise.map() method to convert each user object in the 
array into a user name.

Since User.find returns an array of users, we use the Promise.map()method to 
return the values from the name key. This effectively turns the array of user objects 
into an array of user names. Again, notice that we use the promise.resolve()
method to obtain a Promise from our input. This will allow us to display a list of the 
currently logged in users by their user name.

schema.statics.findAllUsers = function() { 
  return Promise.resolve(User.find({}).exec())

    .map(function(user) { 
      return user.name;

    });

};

https://github.com/petkaantonov/bluebird
https://github.com/petkaantonov/bluebird


MMO Word Game

[ 88 ]

The words – Subdocuments
We have gone through the game logic involving creating, displaying, and deleting 
users but what about the meat of the game itself—the words?

In app/models/stat.js, we see how we model our word data. The word field shows 
the current word, and the used field saves the game's history.

We embedded the used list as subdocuments into the Stat document, so that we can 
update stats atomically. We will explain this later.

{ 
  'word': 'what', 
  'used': [ 
    { 'user': 'admin', 'word': 'what' }, 
    { 'user': 'player1', 'word': 'tomorrow' }, 
    { 'user': 'player2', 'word': 'when' }, 
    { 'user': 'player2', 'word': 'nice' }, 
    { 'user': 'player1', 'word': 'egg' }, 
  ]
}

The preceding code gives you an overview of what we will store in the database.

We first create a model for our word inputs, new word (word) and used words 
(used), in a similar method to our user's model, by defining a type (string for new 
and array for old). The old words are stored in an array so that they can be accessed 
when we check whether or not a new word has been used before.

var schema = new mongoose.Schema({ 
  word: { 
    type: String, 
    required: true 
  },
  used: { 
    type: Array
  },
});

Further logic about validating word inputs and scoring will be described after we 
create a new game.



Chapter 4

[ 89 ]

When we create a new game, we want to make sure that no old game data exists and 
that all values in our database are reset, so we will first remove the existing game, 
and then create a new one, as shown in the following code:

schema.statics.newGame = function() { 
  return Promise.resolve(Stat.remove().exec())
  .then(function() { 
    return Stat.create({ 
      word: 'what', 
      used: [{ 
        word: 'what', 
        user: 'admin' 
      }]
    });
  });
};

In the preceding example, we use Stat.remove() to remove all old game data 
and when the Promise is fulfilled, we create a new game using Stat.create() by 
passing a new word, 'what', to start off the new round and also submit both the 
word and the user who submitted the word into the used array. We want to submit 
the user in addition to the word so that other users can see who submitted the 
current word and also use that information to calculate scores.

Validate input
We can't just accept any word a user might input; users might enter an invalid word 
(as determined by our internal dictionary), a word that can't chain with the current 
word or a word that has already been used before in this game.

Our internal dictionary model is found in models/dictionary.js and consists of 
the dictionary json. Requests with an invalid word should be ignored and should 
not change the game's state (see app/controllers/game.js); if the word is not in 
the dictionary, the Promise will be rejected and will not go to Stat.chain().

In the following code example, we illustrate how to check whether the submitted 
word chains with the current word:

schema.statics.chain = function(word, user) { 
  var first = word.substr(0, 1).toLowerCase();

  return Promise.resolve(Stat.findOne({}).exec())
  .then(function(stat) { 
    var currentWord = stat.word;



MMO Word Game

[ 90 ]

    if (currentWord.substr(-1) !== first) { 
      throw Helper.build400Error('not match');
    }

    return currentWord;
  })
  .then(function(currentWord ) { 
    return Promise.resolve(Stat.findOneAndUpdate({ 
      word: currentWord, 
    }, { 
      $push: { 
        used: { 'word': word, 'user': user } 
      }
    }, { 
      upsert: false 
    }).exec();
  });
});

The first step is to query the Stat collection to get the current game state.  
From the game state, we know the current word that needs to be matched by  
calling stat.word and assigning it to the variable currentWord.

We then compare the current word with the user's input. First we determine the first 
letter of the submitted word using calling substr(0, 1) and then we compare 
it to the last letter of the current word (currentWord ) by calling substr(-1). If the 
first character of the user's input doesn't match with the last character of the current 
word of the game, we throw a 400 error. The Promise will catch this error, and call 
the catch callback to handle the error.

Here, in the model's method, we let the model object return a Promise object. Later 
on, we will introduce how to catch this error in the controller's method and return a 
400 response to the user.

throw Helper.build400Error('not match');

The Helper.build400Error() function is a utility function that returns a 400 Error 
with an error message:

exports.build400Error = function(message) { 
  var error = new Error(message);
  error.status = 400;
  return error;
};



Chapter 4

[ 91 ]

If the word can chain with the current word, it's a valid request. We will get back a 
successful Promise, which allows us to chain with the next then and save the word 
along with the player's username to the database.

To save the data into the database, we use Mongoose's findOneAndUpdate method, 
which takes three arguments. The first is a query object to find the document to be 
updated. We find the stat document where the word is currentWord we get from 
Stat.findOnequery. The second argument is the update object. This defines what  
to update.

We use Mongo's modifier $push to push a word chain history into the used field, 
which is an array. The last argument is options.

We use the { upsert: false } option, which means if we can't find the document 
with the query defined in the first argument, we won't update or insert a new 
document. This makes sure no other operation occurs in between the time it takes to 
find the document and update the document, that is, we don't insert a new word if 
the current word cannot be found. Therefore, the game status doesn't change because 
the current word is assigned to word and is still the same.

If we successfully find the word, we add a new used word object to the used word 
array consisting of the new valid word and the username that submitted it.

Stat.findOneAndUpdate({ 
  word: currentWord, 
}, { 
  $push: { 
    used: { 'word': word, 'user': user }
  }
}, { 
  upsert: false
}).exec();

Dealing with race conditions
You might have questions about the preceding code. Finding a document and 
updating a document seem like two separate operations; what if two users send the 
same request? It may cause a race condition.

For example, if the current word is Today, Player 1 submits yes, and Player 2 
submits yellow; both players chain a valid word. While both these words are valid, 
we can't accept both of them for two reasons; only one player can win each round, 
and if we had two or more winning words, the words could end with different 
letters, which would affect the next word chain. 



MMO Word Game

[ 92 ]

If yes arrives at the server first and gets accepted, then the next word should  
start with an s, and yellow from Player 2 should become invalid and be rejected. 
This is called a race condition.

How do we solve this? We need to combine the two database operations, 
finding a document and updating a document, into one operation. We could use 
Mongoose model's findOneAndUpdate method. This method will actually call 
the findAndModify method of MongoDB, which is an isolated update and return 
operation. Since it becomes one database operation, MongoDB will update the 
document atomically.

schema.statics.chain = function(word, user) { 
  var first = word.substr(0, 1);

  return Promise.resolve(Stat.findOne({}).exec())
  .then(function(stat) { 
    var currentWord = stat.word;

    if (currentWord.substr(-1).toLowerCase() !== first.toLowerCase()) 
{ 
      throw Helper.build400Error('not match');
    }

    return currentWord;
  })
  .then(function(currentWord) { 
    return Promise.resolve(Stat.findOneAndUpdate({ 
      word: currentWord, 
      'used.word': { $ne: word }
    }, { 
      word: word, 
      $push: { 
        used: { 'word': word, 'user': user } 
      }
    }, { 
      upsert: false,
    })
    .exec());
  })
  .then(function(result) { 
    if (!result) { 
      throw Helper.build404Error('not found');
    }

    return result;
  });
};



Chapter 4

[ 93 ]

When a user submits a word, we first query the current game state, when the 
Promise is resolved and successful, and then check that the first letter of our 
submitted word (first) and last letter of the current word (currentWord) are the same.

If they are the same, we call findOneAndUpdate() to search for the submitted  
word and make sure that it is not present in the array of previously used words. 
used.word: { $ne: word } then returns a Promise object.

If the Promise comes back fulfilled, then we push the submitted word and user  
to the used words array.

If the Promise is rejected and/or the conditions are not satisfied, then no data  
will be pushed into the array (upsert: false).

The last then statement returns the new result; if none was returned, then the  
not found error will be thrown.

Test case to test race conditions
Now that we implemented the logic, we want to test it out. The test case is shown  
as follows:

 describe('when player1 and player2 send different valid word  
together', function() { 
    it('should accept player1\'s word, and reject player2\'s  
word', function(done) { 
      Game.chain('geoffrey', 'hello')
        .then(function(state) { 
          expect(state.used.length).to.equal(4);
          expect(state.used[3].word).to.equal('hello');
          expect(state.used[3].user).to.equal('geoffrey');

          expect(state.word).to.equal('hello');
        });

      Game.chain('marc', 'helium')
        .then(function(state) { 
          done(new Error('should return Error'));
        })
        .catch(function(err) { 
          expect(err.status).to.equal(400);
          done();
        });

    });
  });



MMO Word Game

[ 94 ]

As the word by player 1 goes in first, the hello word by player 1 should increase the 
length of the used array to 4, the current word position in the array should be equal to 
hello, and the successful user who submitted it should be updated to be geoffrey.

When marc submits a word beginning with h, it should return an error because the 
last letter of the current word, hello, is o and helium does not begin with o.

Socket.IO
We can send information to our servers when we submit user info or words  
but how do we get the server to update us without requesting updates manually? 
We use Socket.IO to enable real-time two-way event-based communication. 
Documentation for Socket.IO is available at socket.io/docs. We install it by 
executing the following code:

npm install --save socket.io

Socket handshaking, user join
First, we require socket.io and our game in socket.js:

var socketIO = require('socket.io');
var Game = require('./app/controllers/game');

Authorization takes place during handshaking, which is when the socket  
connection is established. Without handshaking, we would not know which socket 
connection belongs to which Express session. As given in the following code:

module.exports = function(server) { 

  var io = socketIO(server, { 
    transports: ['websocket'] 
  });

  io.use(function(socket, next) { 
    var handshakeData = socket.request;
    console.log('socket handshaking',  
handshakeData._query.username);
    socket.user = handshakeData._query.username;

    Game.join(socket.user)
    .then(function(users) { 
      console.log('game joined successfully', socket.user);
      socket.broadcast.emit('join', users);



Chapter 4

[ 95 ]

      next();
    })
    .catch(function(err) { 
      console.log('game joined fail', socket.user);
      next(err);
    });
  });

};

The io.use() method lets you give the Socket.IO server functions to run after a 
socket is created.

The request sent from the client (consisting of a URL and name) will be stored in 
handshakeData. The console will output the username and make sure that the 
sockets are handshaking.

Next, it will assign the username to socket.user so that it can be passed in to the 
join() function. The socket will call the Game.join() function and if the user is 
able to join, a console message will be displayed with the message game joined 
successfully and the name of the user.

The Socket.broadcast.emit method sends the message to all other clients except 
the newly created connection telling them that a new user has joined.

If the user was not successfully created (that is, there were two users with the same 
name) the error will be sent to the catch method and the console will log that the 
user was not able to join the game. Then, next(err) will send the error message 
back to the connecting client, so that on the client side we can show a pop-up 
message telling the user that the name is being used.

Adding and pushing updates to clients
With Socket.IO, you can send and receive any events you want as well as any data 
you want in the JSON format.

There are three additional socket events (after connecting) that we're going to need 
for our game: disconnect, chain (chain new word to last), and game status.

In socket.js, add these three socket events:

 io.sockets.on('connection', function(socket) { 
    console.log('client connected via socket', socket.user);



MMO Word Game

[ 96 ]

    socket.on('disconnect', function() { 
      console.log('socket user', socket.user, 'leave');
      Game.leave(socket.user)
      .then(function(users) { 
        socket.broadcast.emit('leave', users);
      });
    });

    socket.on('chain', function(word, responseFunc) { 
      console.log('socket chain', word);
      Game.chain(socket.user, word)
      .then(function(stat) { 
        console.log('successful to chain', stat);
        if (responseFunc) { 
          responseFunc({ 
            status: 200,
            resp: stat
          });
        }
        console.log('broadcasting from', socket.user, stat);
        socket.broadcast.emit('stat', stat);
      })
      .catch(function(err) { 
        console.log('fail to chain', err);
        if (responseFunc) { 
          responseFunc(err);
        }
      });
    });

    socket.on('game', function(query, responseFunc) { 
      console.log('socket stat', socket.user);
      Game.state()
      .then(function(game) { 
        console.log('socket stat end', game);
        if (responseFunc) { 
          responseFunc(game);
        }
      });
    });

    socket.on('error', function(err) { 
      console.error('error', err);
    });
  });



Chapter 4

[ 97 ]

The first socket event connection we subscribe to will be triggered when a user 
establishes a socket connection with the server. Once a client is connected, we log that 
event and display their name on to the console so that we know who is connected.

The second event disconnect will be triggered when users are disconnected 
from the server. It happens when they leave the game or the network connection 
is broken. Once this event is triggered, we broadcast to all other sockets that the 
user has left (via socket.broadcast.emit) so that the other users can see that the 
disconnected user is no longer in the list of active players.

The last two socket events, chain and game, are game actions.

The chain takes in the user's submitted word and calls the Game.chain() function;  
if it succeeds, then it logs that the chain was successful and broadcasts the status to 
all other users.

The game responds with the latest game status.

Launch Socket.IO applications
To launch our game, let's create a launch script called www, and place it under the bin 
folder. This is our code for ./bin/www as given in the following:

#!/usr/bin/env node
var app = require('../app');
var socket = require('../socket');

app.set('port', process.env.PORT || 3000);

var server = app.listen(app.get('port'), function() { 
  console.log('Express server listening on port ' + server.address().
port);
});
socket(server);

The first line tells shell which interpreter should be used to execute this script.  
Here, we tell shell that the interpreter is node. Then, we can launch the server  
locally with the following command:

./bin/www

Next, in bin/www, we will set up an Express application listening on a port,  
which is defined in the environment variable or 3000 if nothing is there.



MMO Word Game

[ 98 ]

We then bind socket to our HTTP server, which is created by our Express 
application. Since the Socket.IO server needs to be attached to an HTTP server, we 
pass the server object to the socket function, where we initialize the socket server.

So now we have the launch script in place. If we launch the server locally, we will see 
the following message printed to the console:

$ ./bin/www

connecting db...

Express server listening on port 3000

db connected

Test Socket.IO applications with the  
Socket.IO client
We will write the JavaScript for the client-side frontend application, which we will 
test our game with.

You can find the JavaScript file under public/javascripts/app.js and the view in 
app/views/index.jade. We will not be covering frontend components such as jade 
and stylus/css in this book.

We begin by setting up our game with all our variables, which are classes in the 
index.jade file that we will refer to. We also initialize our game with the init() 
function, which will be described in the next code block:

$(function() { 
  var game = new Game({ 
    $viewLogin: $('.view-login'), 
    $viewGame: $('.view-game'), 
    $username: $('.username'), 
    $wordInput: $('.word-input'), 
    $word: $('.word'), 
    $bywho: $('.bywho'), 
    $users: $('.users'), 
  });
});

var Game = function(views) { 
  this.views = views;

  this.init();
};



Chapter 4

[ 99 ]

The Game.prototype adds functions to our Game method in app/controllers/
game.js. We will break this up into several smaller code blocks to show the  
client-side logic that we're working with.

The init() function begins by bringing the username input box into focus,  
and then when the submit button is pressed, obtain the value of the user input  
and assign it to the variable username.

We then send the user name to the join() function listed as follows, in the next  
code block.

We also set up a function that will take the input from the submit button for chain 
(which is where you input the word you would like to chain with the current word), 
store it in the chain variable, and then send it to the chain function (discussed later) 
and clear out the text input box.

Game.prototype = { 
  init: function() { 
    var me = this;

    this.views.$username.focus();

    this.views.$viewLogin.submit(function() { 
      var username = me.views.$username.val(); 
      me.join(username);
      return false;
    });

    this.views.$viewGame.submit(function() { 
      var word = me.views.$wordInput.val();
      me.chain(word);
      me.views.$chain.val('');
      return false;
    });
  };



MMO Word Game

[ 100 ]

The login UI will look like this:

When a user submits a user name, it is passed on to the join function, which  
first establishes a socket connection and then calls User.join() (covered earlier)  
on the server (game.js) and initializes a socket handshake (with the configuration  
to only use WebSocket as the transport) with the submitted username and a URL 
that consists of /?username= + username.

When the connection is established, the socket emits the game status and users  
list (updateStat() and updateUsers() functions, which we will discuss later)  
and calls the showGameView() function.

The showGameView() function (see the following code block) hides the login form, 
displays the view-game form where you can input a word to chain, and focuses on 
the chain input box.

 join: function(username) { 
    var socket = io.connect('/?username=' + username, { 
      transports: ['websocket'],
    });

    this.socket = socket;

    var me = this;
    this.socket.on('connect', function() { 
      console.log('connect');



Chapter 4

[ 101 ]

      me.socket.emit('game', null, function(game) { 
        console.log('stat', game);
        me.updateStat(game.stat);
        me.updateUsers(game.users);
      });

      me.showGameView();
    });

    this.socket.on('join', function(users) { 
      me.updateUsers(users);
    });

    this.socket.on('leave', function(users) { 
      me.updateUsers(users);
    });

    this.socket.on('stat', function(stat) { 
      me.updateStat(stat);
    });
  },

  showGameView: function() { 
    this.views.$viewLogin.hide();
    this.views.$viewGame.show();
    this.views.$wordInput.focus();
  },

When a user joins or leaves the game, it's passed to the socket server (game.js) join 
or leave functions, and the client-side updateUsers() function is called.

The updateUsers() function takes the array of users that was returned by the server 
and maps it to get the usernames that are displayed as a list.

Similarly, when a stat call is made to the server, updateStat() method gets called, 
which receives the current word (stat.word) from the server and displays it.

Additionally, the input box will contain the last letter of that word as a placeholder 
and the user who submitted the current word will be displayed by accessing the user 
array and popping out the last user.

  updateStat: function(stat) { 
    this.views.$word.html(stat.word);



MMO Word Game

[ 102 ]

    this.views.$wordInput.attr('placeholder', stat.word.substr(-1));
    this.views.$bywho.html('current word updated by: ' + stat.used.
pop().user);
  },

  updateUsers: function(users) { 
    this.views.$users.html(users.map(function(user) { 
      return '<li>' + user + '</li>';
    }).join(''));
  },

The chain function given in the following alerts a user if they try to submit  
without entering a word; it then sends a call to the server's chain function,  
the input word, and the callback function, which will output the data received  
from the server (which is the response word and used array).

Looking in the server's socket code (socket.js line 47), if a callback is present,  
and the function was successful, then a status of 200 is sent back.

If the client side receives a status of 200, then it will call the updateStat()  
function with data.resp, which is the stat object containing the word and  
used words; otherwise, if no data was received from the server or the chain was 
unsuccessful and a status code that is not 200 is sent back, the user will see an alert 
telling them that their input word doesn't chain with the current word.

 chain: function(word) { 
    if (!word) { 
      return alert('Please input a word');
    }

    var me = this;
    this.socket.emit('chain', word, function(data) { 
      console.log('chain', data);
      if (!data || data.status !== 200) { 
        return alert('Your word "' + word + ' can\'t chain with 
current word.');
      }

      me.updateStat(data.resp);
    });
  }
};



Chapter 4

[ 103 ]

Debug Socket.IO with Chrome Developer 
Tools
To debug Socket.IO, we want to know what socket request we send to our server, 
what the request arguments are, and what the broadcast messages look like.  
Chrome has a built-in powerful WebSocket debugging tool; let's see how to use it.

To open Chrome Developer Tools, go to the menu, select View | Developer | 
Developer Tools. You can also right click on the page, and select Inspect Element.



MMO Word Game

[ 104 ]

From the Developer tools, select the Network panel.

Now when we go back to the page and join the game, we will see a Socket.IO 
request in the Network panel of the Chrome Developer Tools. The request URL is 
ws://127.0.01:3000/socket.io/?username=marc&EIO=2&transport=websocket 
and Status Code is 101 Switching Protocols, meaning we passed the handshaking 
and established a socket connection with the server.

Now, click on the Frames tab on the right-hand side panel. We will see some 
messages there in the table. The white rows are the messages our client sent to the 
server and the green rows are the messages that the server sent to the client.



Chapter 4

[ 105 ]

Let's take a look at each row and understand what happened in the game.

0{"sid":"XNhi9CiZ-rbgbS5VAAAC","upgrades":[],"pingInterval":25000," 
pingTimeout":60000}:. After the connection is established, the server returned  
some configuration to the client such as the socket session id (sid), pingInterval,  
and pingTimeout.

420["game",null]: The client sent a socket request to get the latest game status.

430[{"users":["leo"],"stat":{"word":"what","_id":"54cec37c0ffeb2cca1778ae6","__v":0,"
used":[{"word":"what","user":"admin"}]}}]: The server responded with the  
latest game status, which shows that the current word is what.

421["chain","tomorrow"]: The client sent a request to chain the current word  
what with tomorrow.

431[{"status":200,"resp":{"__v":0,"_id":"54cec37c0ffeb2cca1778ae6","word":"tomorro
w","used":[{"word":"what","user":"admin"},{"user":"leo","word":"tomorrow"}]}}]: The 
server accepted the request and returned the updated game status.  
So now, the current word is tomorrow

42["join",["leo","marc"]]: marc joined the game. Now we have leo and marc  
in the game.

42["stat",{"__v":0,"_id":"54cec37c0ffeb2cca1778ae6","word":"we","used":[{"word"
:"what","user":"admin"},{"user":"leo","word":"tomorrow"},{"user":"marc","word
":"we"}]}]: Here marc chained the current word tomorrow with we. So the server 
pushed the game status to the client.

42["join",["leo","marc","geoffrey"]]: geoffrey joined the game. Now we have three 
players in the game: leo, marc, and geoffrey.

42["leave",["leo","geoffrey"]]: marc left the game, leo and geoffrey are still in  
the game.

Now you've had a chance to actually test the game developed for this app and can 
see how the different aspects intertwine.



MMO Word Game

[ 106 ]

Summary
We created an Express app, a Socket.IO server, and a game client that can talk to  
our server using the socket.io-client library, and receive the push updates from 
our server. We've also gone through the user creation and word chaining logic so 
that we can validate new users and words to be chained. In this process, we dived 
into the world of Promises; hopefully, illustrating their versatility and how they can 
simplify your code.

In the next chapter, we will introduce how to build a user matching system, and 
make it a service. You will also learn how to set up periodical tasks with node-cron.



[ 107 ]

Coffee with Strangers
In this chapter, we will write an API that allows users to go for a coffee!  
This comprises of a simple yet extendable user matching system.

Initially, we'll just ask the user to enter their name and e-mail, which is stored  
on MongoDB. Whenever we can match these with the nearest other user, e-mails  
are sent to both sides and then it's coffee time. After we set up the base, it's time to 
make sure we keep a record of the matches and avoid duplicates from happening  
for a better user experience.

Soon after, let's make ourselves ready to go global and take into account their  
geo positioning.

Assuming everything goes well (which is a mistake), we are validated. So it's time  
to refactor to a more maintainable architecture, where the pairing becomes a service 
by itself.

Finally, let's allow our users to rate how their meeting was and tell us whether it was 
a successful meeting or not in real-world applications, the usage of user generated 
feedback is invaluable!

We expect that this sort of application structure will offer the reader inspiration to 
create real world matching applications.



Coffee with Strangers

[ 108 ]

Code structure
Before getting into actual code, we want to provide a heads up on the structure for 
the code in this chapter, which is a bit different than before, and we hope it adds 
another view to structure code for Express and Node.js in general.

Some may call it a Factory pattern; it consists of wrapping each of the file's code  
with a function that can be used to configure or test it. While this requires a bit  
more of scaffolding, it frees our code from depending on a static state. It will often 
look as follows:

'''javascript
module.exports = function (dependency1){
  // these will be public
  var methods = {}

  // individual for each instance
  var state = 0

  // some core functionality of this file
  methods.addToState = function(x) {
    state += x
  };

  methods.getResult = function() {
    return dependency1.getYforX(state)
  };

  return methods
}
'''

A corollary of this structure is that each invocation of this file will have its own state, 
exactly like the instance of a class, except we don't depend on this, but the scope that 
never goes missing.

Going a bit further, we'll try centralizing the structure of the pieces per folder, each 
with a respective index.js, the main responsibilities of which are to initialize 
instances when needed, keep references to dependencies that will be passed down, 
and return only public methods.



Chapter 5

[ 109 ]

Defining routes
Let's start by defining the first routes we need and how we want them to behave  
and simple logical steps building what's strictly essential first, in a TDD style.

1. The first thing is that we need users to be able to register; the smallest  
test case to register our user is as follows:
'''javascript
var dbCleanup = require('./utils/db')
var expect = require('chai').expect;
var request = require('supertest');
var app = require('../src/app');

describe('Registration', function() {
  it("shoots a valid request", function(done){
    var user = {
      'email': 'supertest'+Math.random()+'@example.com',
      'name': 'Super'+Math.random(),
    };

    request(app)
      .post('/register')
      .send(user)
      .expect(200, done);
  })
})

2. Assuming you have Mocha installed with npm i -g mocha, execute mocha.
3. See 404? Good start! Now let's expand and create a file, src/route/index.js, 

which will declare all the routes known to the app. It uses controllers  
that handle each concern.

4. Start with user.js, which implements a create action, as shown in the 
following code:
'''javascript
// src/routes/index.js
module.exports = function() {
  var router = require('express').Router();
  var register = require('./user)();
  router.post("/user", user.create);
  return router;
};



Coffee with Strangers

[ 110 ]

// src/routes/user.js
module.exports = function() {
  var methods = {};

  methods.create = function(req,res,next) {
    res.send({});
  }

  return methods;
};

5. This amount of code should be enough to make the tests pass with Mocha.

6. For this app, we'll have all route definitions in one place, that is, routes/
index.js.

At this stage, we know that the testing setup works. Next, let's move onto persistence 
and some business logic!

Persisting data
Adding some diversity to the libraries, let's experiment with Mongojs  
(https://github.com/mafintosh/mongojs), a simple library for MongoDB  
that aims to be as close as possible to the native client.

1. First things first, let's create a small config file, ./config.js, to store all the 
common data and just return a simple object with relevant configurations for 
each environment. For now let's just make sure we have a URLin a format 
accepted by Mongojs.

https://github.com/mafintosh/mongojs


Chapter 5

[ 111 ]

2. This file should be able to hold all global configs for the app. It ensures we 
also have different settings depending on the environment.
module.exports = function(env) {
  var configs = {};
  configs.dbUrl = "localhost/coffee_"+env;
  return configs;
};

3. This file needs to be in app.js, a central place to initialize and gather 
dependencies, and it will be passed to our DB, which then returns public 
methods. Let's see that happening in the following code:
'''javascript
//..
var config  = require('../config')(app.get('env'));
var models  = require('./models')(config.dbUrl);
app.set('models', models);
//..

4. For our models, let's define one file to rule them all src/models/index.js 
with its main responsibilities being to instantiate the db and expose public 
methods to other modules so that storage details stay encapsulated, keeping 
the code clean and decoupled.
'''javascript
module.exports = function(dbUrl) {
  var mongojs = require('mongojs');
  var db = mongojs(dbUrl);
  var models = {
    User: require('./user')(db)
  };
  return models;
};

5. Our first model, user, has the ability to create one user. Notice that we are 
not making any validations in this model to keep things simple. Don't go to 
production without having the models double-checked.
'''javascript
module.exports = function (db) {
  var methods = {};
  var User = db.collection('users');

  methods.create = function(name,email,cb) {
    User.insert({
      name: name,



Coffee with Strangers

[ 112 ]

      email: email
    }, cb)
  };

  return methods;
}

6. Let's update our user.js route to make use of our DB:
'''javascript
module.exports = function(Model) {
  var methods = {};

  methods.create = function(req,res,next) {
    Model.User.create(req.param('name'), req.param('email'), 
function(err, user) {
      if(err) return next(err);
      res.send(user);
    });
  }

7. With this simple change, we should have a user created in our DB.

Let's open Robomongo (http://robomongo.org/) to see what user data was 
created; it's super handy to lookup what data we have in MongoDB no matter  
what library we use.

http://robomongo.org/


Chapter 5

[ 113 ]

Exception handling
Let's open a parenthesis here and talk about the if(err) return next(err);.
command This is a pattern that is used to abstract error handling in a single action 
that is supposed to be treated in Express further down the stack, via app.use.

1. To keep things neat, we can abstract error handling to a file of its own 
where we will define specific handlers for each type of error src/routes/
errorHandler.js.

2. Let's define a catchAll() method for now. Express will know the type of 
use for this function because its functionality is 4.
'''
module.exports = function() {
  var methods = {};

  methods.catchAll = function(err, req, res, next) {
    console.warn("catchAll ERR:", err);
    res.status(500).send({
      error: err.toString ? err.toString() : err
    });
  }

  return methods;
};
'''

3. Lastly, it's activated in routes/index.js. error handling should be the  
very last middleware(s):

//..
  router.use(errorHandler.catchAll);

  return router;
};

Naive pairing
The simplest pairing system we can implement is to simply lookup if there is  
another user available without a pair whenever someone signs up.

In order to do so, we'll start a new collection and model: Meeting, which will be  
the base matching structure we'll be expanding on. The fundamental idea here is  
that each document will represent a meeting; either it's in the request phase, already 
set or occurred, finally will also store the feedback.



Coffee with Strangers

[ 114 ]

We'll be elaborating and defining the structure for it as it goes. For an initial 
implementation, let's run the scheduling logic right when the user decides to be 
matched. The strategy will be to look for a meeting document, where only the first  
user is set, and update it. In case there is no document like that, let's create a new one.

There are a couple of race conditions that might kick in, which we certainly want to 
avoid. These are as follows:

• The user who's trying to find someone to schedule gets scheduled in the 
middle of the process.

• The user who's available to be scheduled is selected but then reserved by 
someone else.

Lucky MongoDB offers the findAndModify() method, which can find and update 
on a single document automatically, while also returning the updated document. 
Keep in mind that it also offers an update() method to update multiple methods.

Check out the docs from the following link: http://docs.
mongodb.org/manual/reference/method/db.collection.
findAndModify/#comparisons-with-the-update-method

Let's get started with a new collection, Meeting, where we will keep track of a  
user's interest in finding a pair as well as keeping track of meetings as follows:

1. This document will contain all of the user's info up to that point in time,  
so we can use it as a history, as well as use its contents to send e-mails  
and setup reviews.

2. Let's see what the code looks like in src/models/meeting.js:
'''javascript
  var arrangeTime = function() {
    var time = moment().add(1,'d');
    time.hour(12);
    time.minute(0);
    time.second(0);
    return time.toDate();
  };

  methods.pairNaive = function(user, done) {
    /**

http://docs.mongodb.org/manual/reference/method/db.collection.findAndModify/#comparisons-with-the-update-method
http://docs.mongodb.org/manual/reference/method/db.collection.findAndModify/#comparisons-with-the-update-method
http://docs.mongodb.org/manual/reference/method/db.collection.findAndModify/#comparisons-with-the-update-method


Chapter 5

[ 115 ]

     * Try to find an unpaired User in Meeting collection,
     * at the same time, update with an pair id, it either:
     * 1. Add the new created user to  Meeting collection, or
     * 2. The newly created user was added to a Meeting document
     */
    Meeting.findAndModify({
      new: true,
      query: {
        user2: { $exists: false },
      },
      update: {
        $set: {
          user2: user,
          at: arrangeTime()
        }
      }
    }, function(err, newPair) {
      if (err) { return done(err) }

      if (newPair){
        return done(null, newPair);
      }

      // no user currently waiting for a match
      Meeting.insert({user1: user}, function(err,meeting) {
        done();
      })
    });
  };
'''

3. In the case of a successful pairing, user2 would be set in the Meeting object 
to meet the following day at noon, as you can see on the attribute at, which 
we set via the aux arrangeTime() function and the lightweight library 
moment.js (http://momentjs.com/). It's amazing to deal with dates in a 
super readable way. It is recommended that you take a look and become 
more familiar with it.

Also, notice new: true as a parameter. It ensures that MongoDB returns the updated 
version of the object, so we don't need to duplicate the logic in the app.

The new object Meeting needs to be created, as it carries the information of the users 
at that point in time and can be used to compose the emails/notification for both.

http://momentjs.com/


Coffee with Strangers

[ 116 ]

This is a good opportunity to define some basic structure for our tests that will 
follow a pattern of making several calls to the endpoints and asserting the response. 
There is a thorough explanation about the decisions to implement tests immediately, 
as shown in the following code:

'''
describe('Naive Meeting Setup', function() {
  // will go over each collection and remove all documents
  before(dbCleanup);

  var userRes1, userRes2;

  it("register user 1", function(done){
    var seed = Math.random()
    var user = {
      'name': 'Super'+seed,
      'email': 'supertest'+seed+'@example.com',
    }

    request(app)
      .post('/register')
      .send(user)
      .expect(200, function(err,res){
        userRes1 = res.body
        done(err)
      })
  });

  it('should be no meeting for one user', function(done) {
    models.Meeting.all(function(err,meetings) {
      expect(meetings).to.have.length(1);
      var meeting = meetings[0];
      expect(meeting.user1).to.be.an("object");
      expect(meeting.user2).to.be.an("undefined");
      done(err);
    });
  });



Chapter 5

[ 117 ]

  it("register user 2", function(done){
    var seed = Math.random();
    var user = {
      'name': 'Super'+seed,
      'email': 'supertest'+seed+'@example.com',
    };

    request(app)
      .post('/register')
      .send(user)
      .expect(200, function(err,res){
        userRes2 = res.body
        done(err)
      });
  });

  it('should be a meeting setup with the 2 users', function(done) {
    models.Meeting.all(function(err,meetings) {
      expect(meetings).to.have.length(1)
      var meeting = meetings[0]
      expect(meeting.user1.email).to.equal(userRes1.email)
      expect(meeting.user2.email).to.equal(userRes2.email)
      done(err)
    });
  });
});
'''

(Source:git checkout e4fbf672d409482028de7c7427eab769ab0a20d2)



Coffee with Strangers

[ 118 ]

Notes about tests
When using Mocha, a test is much like any javascript file and is executed as 
expected, allowing for any sort of regular Node.js require as you would do usually.

The describe() method is the context on which our tests execute; in our case, it's a 
full run of a certain functionality. The before() method will run once; in this case, 
our logic is set to clean up all of our MongoDB collections.

It stands for a simple expectation to be fulfilled. It will run in the same order it's 
declared, and we will try to make the assertions small and predictable as far as 
possible. Each of these functions defines steps and in this case, because we are doing 
end-to-end tests, we make requests to the API and check the results, and sometimes 
save it to variables that are used later to assert.

There are advices that say that tests shouldn't be dependent on the previous state, 
but those don't usually test the application flow, rather, individual portions of 
logic. For this particular test scenario, in case of a failure, it's important to interpret 
the error from the first it that fails; fixing it will likely fix errors after it. You can 
configure Mocha to stop at the first error by using the -b flag.

While testing, the most important point to make sense is that our test cases should 
make sure all of the expected cases are checked, and bad behaviors don't happen.  
We can never expect to predict everything that may go wrong of course, but it's  
still our duty to test as many points as we are certain about common issues.

Considering user history
Our users will probably want to always be paired to meet new people, so we have to 
avoid repetitive meetings. How should we handle this?

First, we need to allow for a method to set up new meetings. Think of it as a button 
in an app that would trigger a request to the route POST/meeting/new.

This endpoint will reply with the status 200 when the request is allowed and a pair 
is found, or if there is no pair but they are now attached to a meeting object and can 
now be matched with another user; 412 if the user is already scheduled in another 
meeting and 400 in case the expected e-mail of the user isn't sent; in this case, it can't 
be fulfilled because the user wasn't specified.



Chapter 5

[ 119 ]

The usage of status codes is somewhat subjective, (see a more 
comprehensive list on Wikipedia at http://en.wikipedia.org/
wiki/List_of_HTTP_status_codes). However, having distinct 
responses is important so that the client can display meaningful 
messages to the user.

Let's implement an Express.js middleware, that requires an e-mail for all requests 
that are made on behalf of the user. It should also load their document and attach it 
to res.locals, which can be used in subsequent routes.

Our src/routes/index.js will look like this:

'''javascript
//...
  app.post("/register", register.create);
  app.post("/meeting", [filter.requireUser], meeting.create);
//...
'''

The filter in 'src/routes/filter.js' is:

'''javascript
module.exports = function(Model) {
  var methods = {};

  methods.loadUser = function(req,res,next) {
    var email = req.query.email || req.body.email
    if(!email) return res.status(400).send({error: "email missing, it 
should be either in the body or querystring"});
    Model.User.loadByEmail(email, function(err,user) {
      if(err) return next(err);
      if(!user) return res.status(400).send({error: "email not 
associated with an user"});
      res.locals.user = user;
      next();
    })
  }

  return methods;
};

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes


Coffee with Strangers

[ 120 ]

The goal of this middleware is to stop and return an error message for every  
request that doesn't have a user email. It's a validation that would usually  
require a username and password or a secret token.

Let's set up a small but important test suite for this middleware:

• Clear DB
• Try to get me without email and fail
• Create a valid user; it succeeds
• Try to get me with another email; it fails
• Access me with the email we registered and it works!

Now that we have a way to load the user who's making the request, let's go back 
to the goal of matching people without repetition. As a pre-condition, their past 
meeting time has to be in the past already, otherwise it returns a 412 code.

If we want to schedule a meeting for our users but any scheduled meeting will be  
set for tomorrow, how can we test it? Meet timekeeper (https://github.com/
vesln/timekeeper), library with a simple interface to alter the system dates in 
Node.js; this is especially useful for tests. Look closely for the snippet of this test:

'''javascript
describe('Meeting Setup', function() {
  before(dbCleanup);

  after(function() {
    timekeeper.reset();
  });

  // ...

  it('should try matching an already matched user', function(done) {
    request(app)
      .post('/meeting')
      .send({email:userRes1.email})
      .expect(412, done);
  });

  it('should be able match the user again, 2 days later', function() {
    var nextNextDay = moment().add(2,'d');
    timekeeper.travel(nextNextDay.toDate());

https://github.com/vesln/timekeeper
https://github.com/vesln/timekeeper


Chapter 5

[ 121 ]

    request(app)
      .post('/meeting')
      .send({email:userRes1.email})
      .expect(200, function(err,res){
        done(err);
      });
  });

It's of vital importance to set an after hook to reset timekeeper so that the dates go 
back to normal after the scenario is finished in either success or failure; otherwise, 
there is a chance it will alter the results of other tests. It's also worth checking 
how date manipulation is made easy with moment() method and once you use 
timekeeper.travel() function, the time is warped to that date. For all Node.js 
knows, the new warped time is the actual time (although it does not affect any other 
applications). We can also switch it back and forth as required.

The Meeting method to perform this check on our user (defined at models/
meeting.js) is as follows:

  methods.isUserScheduled = function(user, cb) {
    Meeting.count({
      $or:[
        {'user1.email': user.email},
        {'user2.email': user.email}
      ],
      at: {$gt: new Date()}
    }, function(err,count) {
      cb(err, count > 0);
    });
  };

The $or operator is necessary because we don't know whether the user we are 
looking for is going to be user1 or user2, so we take advantage of the query 
capabilities of MongoDB that can look inside objects in a document and match the 
email as a String, and the at field as mentioned earlier.

Our newly created src/routes/meeting.js, is given as follows:

'''javascript
module.exports = function(Model) {
  var methods = {};

  methods.create = function(req,res,next) {
    var user = res.locals.user;



Coffee with Strangers

[ 122 ]

    Model.Meeting.isUserScheduled(user, function(err,isScheduled) {
      if(err) return next(err);
      if(isScheduled) return res.status(412).send({error: "user is 
already scheduled"});
      Model.Meeting.pair(user, function(err,result) {
        // we don't really expect this function to fail, if that's the 
case it should be an internal error
        if(err) return next(err);
        res.send({});
      })
    })
  }

  return methods;
};

Moving on, we'll define a very important helper function that finds previous 
meetings involving the user who's making the request and returns the emails  
of everyone they have been matched with, so we can avoid matching those two  
users again.

Helper functions like this are super useful to keep the code understandable when 
dealing with complicated pieces of logic. As a rule of thumb, always separate into 
smaller functions when a chunk of code can be abstracted into a concept.

  /**
   * the callback returns an array with emails that have previously 
been
   * matched with this user
   */
  methods.userMatchHistory = function(user,cb) {
    var email = user.email;
    Meeting.find({
      $or:[
        {'user1.email': email},
        {'user2.email': email}
      ],
      user1: {$exists: true},
      user2: {$exists: true}
    }, function(err, meetings) {
      if(err) return cb(err);
      var pastMatches = meetings.map(function(m) {



Chapter 5

[ 123 ]

        if( m.user1.email != email) return m.user1.email;
        else return m.user2.email;
      });
      // avoid matching themselves!
      pastMatches.push(user.email);
      cb(null, pastMatches);
    })
  }

The key to userMatchHistory object; is through the MongoDB $nin operator, which 
performs a match when the element doesn't match what's in the array. The matching 
logic follows the very same logic we had in naive pairing.

In our Meeting model, we removed our previous pairNaive method with the pair 
method, which does similar, but first build a list of the previous matches to ensure 
we don't match those again.

  methods.pair = function(user,done) {
    // find the people we shouldn't be matched with again
    methods.userMatchHistory(user, function(err, emailList) {
      if(err) return done(err);

      Meeting.findAndModify({
        new: true,
        query: {
          user2: { $exists: false },
          'user1.email': {$nin: emailList}
        },
        update: {
          $set: {
            user2: user,
            at: arrangeTime()
          }
        }
      }, function(err, newPair) {
        if (err) { return done(err); }

        if (newPair){
          return done(null, newPair);
        }

        Meeting.insert({user1: user}, function(err,meeting) {
          done();



Coffee with Strangers

[ 124 ]

        })
        return;
      });
    })
  }

Optimizing for distance
Let's use a down-to-earth geolocation approach (ah! I'm so funny) to the match.  
We have to be realistic. Our service was born in Smallville but it's going global  
and we can't match people who are too far apart.

Because our meetings are arranged free of racing conditions on the Meeting 
collection and we would like to keep it that way, let's adapt our existing pair 
method to incorporate the user's location. We can assume that at registration, they 
will supply their location (or we could also easily update the meeting document once 
they provide the location). In our existing strategy, we have one user who creates a 
meeting document; in this case, let's also set their location, so the next user looking 
for a match will have to be in a similar location as an additional constraint, as shown 
in the following code:

'''javascript
  Meeting.ensureIndex({location1: "2dsphere"});

  //..

  methods.pair = function(user,done) {
    methods.userMatchHistory(user, function(err, emailList) {
      if(err) return done(err);

      Meeting.findAndModify({
        new: true,
        query: {
          user2: {$exists: false},
          'user1.email': {$nin: emailList},
          'location1': {$nearSphere:{
            $geometry :
              { type : 'Point',
              coordinates : user.location } ,
              $maxDistance : 7*1000
          }}
        },



Chapter 5

[ 125 ]

        update: {
          $set: {
            user2: user,
            at: arrangeTime()
          }
        }
      }, function(err, newPair) {
        if (err) { return done(err); }

        if (newPair){
          return done(null, newPair);
        }

        Meeting.insert({
          user1: user,
          location1: user.location
        }, function(err,meeting) {
          done();
        })
        return;
      });

    });
  }
'''

Our Meeting collection now has location1 indexed as 2dsphere. The geoquery 
for this field can easily be integrated with our previous query, using the operator 
$nearSphere to match geo positions in a sphere object. $maxDistance is the 
maximum radius for the match. It's expressed in meters and in this case, we intersect 
the coordinates with Point, which is a previously registered user. 7km was chosen 
arbitrarily because it seems like a reasonable enough radius to meet someone.

If we changed $maxDistance to something considerably smaller, some of our tests 
would fail because matches wouldn't happen; see test/meeting_near.js.

• Clear DB
• Create user 1 in Santiago
• Create user 4 in Valparaiso
• Check whether there is a match
• Create user 2 in Santiago



Coffee with Strangers

[ 126 ]

• Check whether there was a match between 1 and 2
• Create user 3 in Vancouver
• Check whether 3 has a match
• Create user 5 in Valparaiso
• Check whether there is a match between 4 & 5

(Source:git checkout 52e8f80b7fe3b9482ff27ea1bcc410270752a796)

E-mail follow up
Users can now be matched. The meetings are unique and made between people 
that are nearby, which is awesome! There is no end to possible improvements on a 
matching system; so instead, lets now collect some data about how their meeting went!

To do so, we'll send an email to each of the attendees, which will consist of a few 
simple options to promote engagement. Some of them are listed as follows:

• It was awesome
• It was awful
• Meh…
• My pair didn't show up!

Those values are added to src/models/meeting.js as key-value pairs, which we 
can store for ratings and use them to communicate back to users.

  methods.outcomes = function() {
    return {
      awesome : "It was awesome",
      awful   : "It was awful",
      meh     : "Meh",
      noshow  : "My pair didn't show up!"
    }
  }

We could store these responses in the respective meeting object, associating it with 
the user who responded.

For this purpose, we'll rely primarily on the package Nodemailer (https://github.
com/andris9/Nodemailer). It is broadly used and offers support for a number 
of integrations, including transport providers and templates so we can make our 
e-mails dynamic.

https://github.com/andris9/Nodemailer
https://github.com/andris9/Nodemailer


Chapter 5

[ 127 ]

Coming to the setup decision, as you probably realized Node.js & Express are free of 
conventions about how to set up your code because these apps may do very different 
things and there is no one-size-fits-all. Let's make mailing a concern of its own, as 
much as persistence and routes are separated concerns integrated into src/app.js.

The src/mailer/index.js will be our entry point and its main responsibility is  
to instantiate the nodemailer variable and provide public methods other files can 
refer to.

'''
var nodemailer = require('nodemailer')

module.exports = function (mailConfig){
  var methods = {};
  var transporter;

  // Setup transport
  if(process.env.NODE_ENV == 'test'){
    var stubTransport = require('nodemailer-stub-transport');
    transporter = nodemailer.createTransport(stubTransport());
  } else if( mailConfig.service === 'Mailgun'){
    transporter = nodemailer.createTransport({
        service: 'Mailgun',
        auth: {
            user: mailConfig.user,
            pass: mailConfig.password
        }
    });
  } else {
    throw new Error("email service missing");
  }

  // define a simple function to deliver mails
  methods.send = function(recipients, subject, body, cb) {
    // small trick to ensure dev & tests emails go to myself
    if(process.env.NODE_ENV !== 'production') {
      recipients = ["my.own.email@provider.com"];
    }
    transporter.sendMail({
      to: recipients,
      from: mailConfig.from,
      subject: subject,
      generateTextFromHTML: true,
      html: body



Coffee with Strangers

[ 128 ]

    }, function(err, info) {
      // console.info("nodemailer::send",err,info)
      if(typeof cb === 'function'){
        cb(err,info);
      }
    })
  }

  return methods;
}

When it comes to the test environment, we definitely don't want to be sending  
real e-mails, that's why we register the stub transport. For other environments,  
we decided to go with Mailgun but we could also go with any service that integrates 
via SMTP (remember to use Gmail since there is a risk of failing to send e-mails,  
as they have a bunch of heuristics to prevent spam).

When it comes to testing, this section is one of the harder ones to test, we will 
implement something very basic in test/send_mail.js

var dbCleanup = require('./utils/db');
var app = require('../src/app');
var mailer = app.get('mailer');

describe('Meeting Setup', function() {

  it('just send one.', function(done) {
    this.timeout(10*1000);
    mailer.send(
      "my.own.email@provider.com",
      "Test "+(new Date()).toLocaleString(),
      "Body "+Math.random()+"<br>"+Math.random()
    , done);
  })
})

Add to config.js, and have the correspondent environment variables defined 
because it's not a good idea to keep our secrets in the code.

  var ENV = process.env;
  configs.email = {
    service: "Mailgun",
    from: ENV.MAIL_FROM,
    user: ENV.MAIL_USER,
    password: ENV.MAIL_PASSWORD
  };



Chapter 5

[ 129 ]

When I disable the test environment, I can actually see the email in my inbox.  
Win! To make the service look better, let's experiment with some templates, which 
is what email-templates (https://github.com/niftylettuce/node-email-
templates) is all about.

It makes it easy to implement dynamic e-mails including packing the CSS inline; 
these are required to be inline by many e-mail clients.

On src/mailer/followUp.js

'''javascript
module.exports = function(sendMail, models) {
  //..

  function sendForUser (user1, user2, id, date, cb) {
    emailTemplates(templatesDir, function(err,template) {
      if(err) return cb(err);

      template('followup', {
        meetingId: id.toString(),
        user1    : user1,
        user2    : user2,
        date     : date,
        outcomes : Meeting.outcomes()
      }, function(err,html) {
        if(err) return cb(err);
        sendMail(
          user1.email,
          "How was your meeting with "+user2.name+"?",
          html,
          cb
        )
      });
    });
  }

  // call done() when both emails are sent
  return function followUp(meeting, done) {
    async.parallel([
      function(cb) {
        sendForUser(meeting.user1, meeting.user2, meeting._id,  
meeting.at, cb);
      },

https://github.com/niftylettuce/node-email-templates
https://github.com/niftylettuce/node-email-templates


Coffee with Strangers

[ 130 ]

      function(cb) {
        sendForUser(meeting.user2, meeting.user1, meeting._id,  
meeting.at, cb);
      },
    ], done)
  }
}

Essentially, we send two identical emails so we get feedback from both users. 
There is a bit of complexity there that we will manage by using async.parallel() 
method. It allows us to start two asynchronous operations and callbacks (done)  
when both are completed. See https://github.com/caolan/async#parallel.

The actual print of the email is created by two files, src/mailer/templates/
followup/followUp.html.swig and style.css, which are combined and set  
via our transport solution, respectively:

'''html
<h4 class="title">
  Hey {{user1.name}},
</h4>
<div class="text">
  We hope you just had an awesome meeting with {{user2.name}}!
  You guys were supposed to meetup at {{date|date('jS \o\f F H:i')}}, 
how did it go?
</div>
<ul>
  {% for id, text in outcomes %}
  <li><a href="http://127.0.0.1:8000/followup/{{meetingId}}/{{user2._
id.toString()}}/{{id}}">{{text}}</a></li>
  {% endfor %}
</ul>
<div class="text">
  Hope to see you back soon!
</div>
'''

'''css
body{
  background: #EEE;
  padding: 20px;
}
.text{
  margin-top: 30px;
}

https://github.com/caolan/async#parallel


Chapter 5

[ 131 ]

ul{
  list-style-type: circle;
}
ul li{1
  line-height: 150%;
}
a{
  text-decoration: none;
}

We can choose from many template solutions. swig (http://paularmstrong.
github.io/swig/docs/) comes with convenient helpers, makes it easy to work  
with lists, and has the familiar HTML visual. A bit of insight is given as follows:

• {{string}} is the general interpolating method
• | is for helpers (aka filters); you can use built-ins or define your own
• for k,v in obj is a tag and works looping over key-value pairs

When it came to the logic for the follow-up links, we made it really easy for the user 
to provide feedback; usually, the less friction, the better for outstanding UX. All 
they have to do is click on the link and their review is instantly recorded! In terms 
of Express.js, this means we have to set up a route that links all the piece of data 
together; in this case, in src/routes/index.js:

  app.get("/followup/:meetingId/:reviewedUserId/:feedback",  
meeting.followUp);

http://paularmstrong.github.io/swig/docs/
http://paularmstrong.github.io/swig/docs/


Coffee with Strangers

[ 132 ]

To have an endpoint that actually changes the data defined as a GET is an exception 
to HTTP & REST conventions, but the reason is that email clients will send the 
request as a GET; not a lot we can do about it.

The method is defined at src/routes/meeting.js as follows:

  methods.followUp = function(req,res,next) {
    var meetingId = req.param("meetingId");
    var reviewedUserId = req.param("reviewedUserId");
    var feedback = req.param("feedback");
    // validate feedback
    if(!(feedback in Model.Meeting.outcomes())) return  
res.status(400).send("Feedback not recognized");
    Model.Meeting.didMeetingHappened(meetingId, function(err,  
itDid) {
      if(err){
        if(err.message == "no meeting found by this id"){
          return res.status(404).send(err.message);
        } else {
          return next(err);
        }
      }
      if(!itDid){
        return res.status(412).send("The meeting didn't happen  
yet, come back later!");
      }
      Model.Meeting.rate(meetingId, reviewedUserId, feedback,  
function(err, userName, text) {
        if(err) return next(err);
        res.send("You just rated your meeting with "+userName+" as  
"+text+". Thanks!");
      });
    });

  }

This method does quite a bit of checking and that's because there is a considerable 
amount of input that needs validation along with providing the appropriate 
response. First, we check whether the feedback provided is valid, since we are only 
taking quantitative data. didMeetingHappened returns two important pieces of info 
about the meeting; the ID may be completely wrong, or it might not have happened 
yet. Both scenarios should deliver different results. Finally, if everything looks good, 
we attempt to rate the meeting, which should work just fine and return some data to 
respond with and finish the request with an implied 200 status.



Chapter 5

[ 133 ]

The implementation of the preceding methods are available at src/models/
meeting.js

'''
  // cb(err, itDid)
  methods.didMeetingHappened = function(meetingId, cb) {
    if(!db.ObjectId.isValid(meetingId)) return cb(new Error("bad 
ObjectId"));
    Meeting.findOne({
      user1: {$exists: true},
      user2: {$exists: true},
      _id: new db.ObjectId(meetingId)
    }, function(err, meeting) {
      if(err) return cb(err);
      if(!meeting) return cb(new Error('no meeting found by this 
id'));
      if(meeting.at > new Date()) return cb(null,false);
      cb(null,true);
    })
  }

  // cb(err, userName, text)
  methods.rate = function(meetingId, reviewedUserId, feedback, cb) {
    Meeting.findOne({
      _id: new db.ObjectId(meetingId),
    }, function(err,meeting) {
      if(err) return cb(err)
        var update = {};
        // check the ids present at the meeting object, if user 1 is 
being reviewed then the review belongs to user 2
        var targetUser = (meeting.user1._id.toString() == 
reviewedUserId) ? '1' : '2';
        update["user"+targetUser+"review"] = feedback;
        Meeting.findAndModify({
          new: true,
          query: {
            _id: new db.ObjectId(meetingId),
          },
          update: {
            $set: update
          }
        }, function(err, meeting) {
          if(err) return cb(err);
          var userName = (meeting["user"+targetUser].name);
          var text = methods.outcomes()[feedback];
          cb(null, userName, text);
        })
    })
  }
'''



Coffee with Strangers

[ 134 ]

The implementation method should be pretty readable. The didMeetingHappened() 
method looks for a maximum of one document with _id, where user1 and user2 
are filled. When this document is found, we look at the at field and compare with 
the current time to check whether it already happened.

The rate is a bit longer but just as simple. We find the meeting object and figure out 
which user is being rated. Such feedback belonging to the opposite user is stored in 
an atomic operation, setting either field user1reviewed or user2reviewed with the 
key for the feedback.

We have a thorough test suite implemented for this case, where we mind both 
success & failure cases. It can be used to check the emails by simply calling the 
test with NODE_ENV=development mocha test/meeting_followup.js, which 
then overrides the test environment with development and delivers emails to our 
provider, so we can see how it looks and fine-tune it.

Our test for this whole scenario is a bit long but we need to test several things!

• Clean up DB
• Setting up the meeting
• Register user 1
• Register user 2 at the same position
• STest that non-existent meetings can't be reviewed
• Status 412 on meeting reviews that still didn't happen
• Travel time two days ahead
• Send an email
• Taking up a review that makes sense
• User 1 should be able to review the meeting
• User 2 should be able to review the meeting as well

Seems like we can now send emails and receive reviews, which is great, but how 
do we send the emails in a time-sensitive manner? A couple of minutes after the 
meeting has started, the emails should be sent to both parties.

(Source:git checkout 7f5303ef10bfa3d3bfb33469dea957f63e0ab1dc)



Chapter 5

[ 135 ]

Periodical tasks with node-cron
Maybe you are familiar with cron (http://en.wikipedia.org/wiki/Cron).  
It's a Unix-based task scheduling system that makes running tasks easy. One 
problem with it is that it's linked to your platform, and it's not trivial to turn it  
on and off from code.

Meet node-cron (https://github.com/ncb000gt/node-cron). It's basically the 
same task scheduler but it runs directly from your Node application, so as long as  
it is up, your jobs should run.

Our strategy is simple: Periodically select all meetings that need mailing, call our 
mailer with each of these meetings, and then mark it as emailed.

Following this app's convention, let's separate concerns into their own folders, 
starting with src/tasks/index.js, as shown in the following code:

var CronJob = require('cron').CronJob;

module.exports = function(models, mailer) {
  var tasks = {};

  tasks.followupMail = require('./followupMail')(models,mailer);

  tasks.init = function() {
    (new CronJob('00 */15 * * * *', tasks.followupMail)).start();
  };

  return tasks;
}

It needs to take models and mailer as parameters, which can be used inside tasks. 
followupMail is the single user defined for now because it's all we need. The 
exported method init is what will kick start the cron job, the timer presenting 
respectively: 00 defined as the seconds, meaning it will run at second 00, for every 
*/15 minutes, any hour, any day of the month, any month, any day of the week. For 
the actual task, see src/mailer/followUp.js

'''
module.exports = function(Model, mailer) {
  return function() {
    Model.Meeting.needMailing(function(err,meetings) {
      if(err) return console.warn("needMailing", err);
      if(!meetings || meetings.length < 1) return;
      meetings.forEach(function(meeting) {

http://en.wikipedia.org/wiki/Cron
https://github.com/ncb000gt/node-cron


Coffee with Strangers

[ 136 ]

        mailer.followUp(meeting, function(err) {
          if(err) return console.warn("needMailing followup failed 
"+meeting._id.toString(), err);
          Model.Meeting.markAsMailed(meeting._id);
        });
      });
      Model.Meeting.markAsMailed(meetings);
    });
  };
};
'''

It returns a function, which when executed, looks up all meeting documents that  
still need to be mailed and for each one, use mailer.followUp as we defined before 
and upon completion, mark each email as sent. Notice that fails here have nowhere 
to communicate and that's because it's an automated task. It's important for web 
servers to have meaningful log reporting, so in this case, the warning messages 
should be reported.

Of course, this would require us to add two methods to src/models/meeting.js, 
which you should be able to easily make sense of by now:

  // all meetings that are due and not mailed yet
  methods.needMailing = function(cb) {
    Meeting.find({
      at: {$lt: new Date},
      mailed: {$exists: false}
    },cb);
  };

  // mark a meeting as mailed
  methods.markAsMailed = function(id,cb) {
    Meeting.findAndModify({
      query: {
        _id: id
      },
      update:{
        $set: {mailed: new Date()}
      }
    },cb);
  };



Chapter 5

[ 137 ]

For our final test, we'll be creating four users implying 2 meetings, travel 2 days  
in the future and try sending the emails through the task, it should work and mark 
both emails as sent.

• Clear DB
• Register users 1, 2, 3, and 4 at the same location
• Travel time after the meeting is done
• Task should send an email
• Verify that the emails were sent

Summary
In this chapter, we created an API that can set up meetings between users taking 
into account their matching history and the pair of longitude and latitude, while 
providing them the chance to give feedback on how it went-essential information 
which can be used in many ways to further improve the algorithm!

We hope you learned about many interesting and practical concepts, such as making 
geo queries, testing time-sensitive code, sending e-mails with style, and tasks that 
run periodically.

Besides the technical bits, hope you had fun and perhaps were able to spark some 
insight on the framework behind match-making apps!

Next on, we'll see how Koa.js works by leveraging the power of generators, 
bringing the readability of synchronous code on top of the async features of Node.js.





[ 139 ]

Hacker News API on Koa.js
In this chapter, we will build an API to power our own Hacker News! While 
technically this wouldn't be very different from the previous chapters, we will  
use a different framework altogether, Koa.js (http://koajs.com/).

Koa.js is a new web framework designed by the team behind Express.  
Why did they create a new framework? Because it is designed from the bottom  
up, with a minimalistic core for more modularity, and to make use of the new 
generator syntax, proposed in ECMAScript 6, but already implemented in node 0.11.

The odd version releases of node are considered unstable. At the time of 
writing, the latest stable release was version 0.10. However, when this book 
went to print, node 0.12 was finally released and is the latest stable version.

An alternative to node 0.11 would be io.js, which at the time of writing reached 
version 1.0, and also implements ES6 goodies (forked from Node.js and maintained 
by a handful of node core contributors). In this chapter, we will stick to node 0.11. 
(When this book went to print, node 0.12 was finally released and is the latest stable 
version of node.)

One of the main benefits of the generator syntax is that you can very elegantly avoid 
callback hell, without the use of complicated promise patterns. You can write your 
APIs even more cleanly than ever before. We'll go over the subtleties as well as some 
caveats that come with the bleeding edge.

Some things we will cover in this chapter are as follows:

• Generator syntax
• Middleware philosophy
• Context, versus req,res

http://koajs.com/


Hacker News API on Koa.js

[ 140 ]

• Centralized error handling
• Mongoose models in Koa.js
• Thunkify to use Express modules
• Testing generator functions with Mocha
• Parallel HTTP requests using co-mocha
• Rendering views with koa-render
• Serve static assets with koa-mount and koa-static

Generator syntax
Generator functions are at the core of Koa.js, so let's dive right into dissecting  
this beast. Generators allow adept JavaScript users to implement functions in 
completely new ways. Koa.js makes use of the new syntax to write code in a 
synchronous-looking fashion while maintaining the performance benefits of  
an asynchronous flow.

The following defines a simple generator function in src/helloGenerator.js  
(note the asterisk syntax):

module.exports = function *() {
  return 'hello generator';
};

To use Mocha with Koa.js:

1. You will need to include co-mocha to add generator support, requiring once 
at the first line of each test file is the safe way to do it. Now you can pass 
generator functions to Mocha's it function as follows:
require('co-mocha');
var expect = require('chai').expect;
var helloGenerator = require('../src/helloGenerator');

describe('Hello Generator', function() {
  it('should yield to the function and return hello',  
function *() {
    var ans = yield helloGenerator();
    expect(ans).to.equal('hello generator');
  });
});



Chapter 6

[ 141 ]

2. In order to run this code, you will need to have node 0.11 installed, and use 
the --harmony-generators flag as you run Mocha:
./node_modules/mocha/bin/mocha --harmony-generators

3. If all is well, congratulations, you have just written your first generator 
function! Now let's explore the execution flow of generator functions  
a little more.

Note the magic use of the yield keyword. The yield keyword can 
only be used within a Generator function, and works somewhat 
similar to return, expecting a single value to be passed, that can also 
be a generator function (also accepts other yieldables—more on that 
later), and yields the process to that function.

When a function* is passed, the execution flow will wait until that function 
returns before it continues further down. In essence, it would be equivalent 
to the following callback pattern:
helloGenerator(function(ans) {
  expect(ans).to.equal('hello generator');
});

Much cleaner, right? Compare the following code:
var A = yield foo();
var B = yield bar(A);
var C = yield baz(A, B);

With the nasty callback hello if we didn't have generator functions:
var A, B, C;

foo(function(A) {
  bar(A, function(B) {
    baz(A, B, function(C) {
      return C;
    });
  });
});



Hacker News API on Koa.js

[ 142 ]

Another neat advantage is super clean error handling, which we will get  
into later.
The preceding example is not too interesting because the helloGenerator() 
function is a synchronous function anyway, so it would've worked the same, 
even if we didn't use generator functions!

4. So let's make it more interesting and change helloGenerator.js to  
the following:
module.exports = function *() {
  setTimeout(function(){
    return 'hello generator';
  }, 1000);
}

Wait! Your test is failing?! What is going on here? Well, yield should have 
given the flow to the helloGenerator() function, let it run asynchronously, 
and wait until it is done before continuing. Yet, ans is undefined. And 
nobody is lying.
The reason why it is undefined is because the generator() function returns 
immediately after calling the setTimeout function, which is set to ans.  
The message that should have returned from within the setTimeout  
function is broadcast into the infinite void, nowhere to be seen, ever again.

One thing to keep in mind with generator functions is that once 
you use a generator function, you better commit, and not resort 
to callbacks down the stack! Recall that we mentioned that yield 
expects a generator function. The setTimeout function is not a 
generator function, so what do we do? The yield method can also 
accept a Promise or a Thunk (more on this later).

5. The setTimeout() function isn't a Promise, so we have two options left; we 
can thunkify the function, which basically takes a normal node function with 
a callback pattern and returns a Thunk, so we can yield to it; alternatively, we 
use co-sleep, which is basically a minuscule node package that has done it for 
you as follows:
module.exports = sleep;
function sleep(ms) {



Chapter 6

[ 143 ]

  return function (cb) {
    setTimeout(cb, ms);
  };
}

6. We will talk about how to thunkify later, so let's use co-sleep. Generally 
a good idea to reuse what's available is to just do a quick search in the npm 
registry. There are numerous co packages out there!
var sleep = require('co-sleep');

module.exports = function *() {
  yield sleep(1000);
  return 'hello generator';
}

7. Now all should be good; your tests should pass after sleeping for 1 second.
8. Note that the co library is what's under the hood of Koa.js, giving it the 

generator-based control flow goodies. If you want to use this sort of flow 
outside Koa.js, you can use something like this:

var co = require('co');
var sleep = require('co-sleep');

co(function*(){
  console.log('1');
  yield sleep(10);
  console.log('3');
});

console.log('2');

Middleware philosophy
You should be familiar by now with the middlewares in Express. We used them  
a lot to dry out code, especially for validation and authentication. In Express, 
middleware is placed between the server that receives the request and the handler 
that responds to a request. The request flows one way, until it terminates at  
res.send or something equivalent.



Hacker News API on Koa.js

[ 144 ]

In Koa.js, everything is a middleware, including the handler itself. As a matter of 
fact, a Koa.js application is just an object, which contains an array of middleware 
generator functions! The request flows all the way down the stack of middlewares, 
and back up again. This is best explained with a simple example:

var koa = require('koa');
var app = koa();

app.use(function *(next){
  var start = new Date();
  yield next;
  var ms = new Date() - start;
  this.set('X-Response-Time', ms + 'ms');
});

app.use(function *(){
  this.body = 'Hello World';
});

app.listen(3000);

Here we have a Koa.js application with two middlewares. The first middleware adds 
an X-Response-Time header to the response, whereas the second middleware simply 
sets the response body to Hello World for each request. The flow is as follows:

• The request comes in on port 3000.
• The first middleware receives the execution flow.
• A new Date object is created and assigned to start.
• The flow yields to the next middleware on the stack.
• The second middleware sets body on the Context to Hello World.
• Since there is no more middleware down the stack to be yielding to, the flow 

returns back upstream.
• The first middleware receives the execution flow again and continues down.
• The response time is calculated and the response header is set.
• The request has reached the top and the Context is returned.

The Koa.js does not use req, res anymore; they are encapsulated 
into a single Context.



Chapter 6

[ 145 ]

To run this app, we can use the following command:

node --harmony app.js

Context versus req,res
A Koa.js Context is created for each incoming request. Within each middleware,  
you can access the Context using the this object. It includes the Request and 
Response object in this.request and this.response, respectively, although  
most methods and accessors are directly available from the Context.

The most important property is this.body, which sets the response body.  
The response status is automatically set to 200 when the response body is set.  
You may override this by setting this.status manually.

Another very useful syntactic sugar is this.throw, which allows you to return an 
error response by simply calling this.throw(400), or if you want to override the 
standard HTTP error message, you may pass a second argument with the error 
message. We will get to Koa.js slick error handling later in this chapter.

Now that we've got the basics down, let's start building a Hacker News API!

The link model
The following code describes the straightforward link document model in src/
models/links.js:

var mongoose = require('mongoose');

var schema = new mongoose.Schema({
  title: { type: String, require: true },
  URL: { type: String, require: true },
  upvotes: { type: Number, require: true, 'default': 0 },
  timestamp: { type: Date, require: true, 'default': Date.now }
});

schema.statics.upvote = function *(linkId) {
  return yield this.findByIdAndUpdate(linkId, {
    $inc: {
      upvotes: 1
    }



Hacker News API on Koa.js

[ 146 ]

  }).exec();
};

var Links = mongoose.model('links', schema);
module.exports = Links;

Note that this is pretty much identical to how you would define a model in Express, 
with one exception: the upvotes static method. Since findByIdAndUpdate is an 
asynchronous I/O operation, we need to make sure that we yield to it, so as to 
make sure we wait for this operation to complete, before we continue the execution.

Earlier we noted that not only generator functions can be yielded to; it also accepts 
Promises, which is awesome, because they are quite ubiquitous. Using Mongoose, 
for example, we can turn Mongoose query instances into Promises by calling the 
exec() method.

The link routes
With the link model in place, let's set up some routes in src/routes/links.js:

var model = require('../models/links');

module.exports = function(app) {
  app.get('/links', function *(next) {
    var links = yield model.find({}).sort({upvotes:  
'desc'}).exec();
    this.body = links;
  });

  app.post('/links', function *(next) {
    var link = yield model.create({
      title: this.request.body.title,
      URL: this.request.body.URL
    });
    this.body = link;
  });

  app.delete('/links/:id', function *(next) {
    var link = yield model.remove({ _id: this.params.id }).exec();
    this.body = link;
  });



Chapter 6

[ 147 ]

  app.put('/links/:id/upvote', function *(next) {
    var link = yield model.upvote(this.params.id);
    this.body = link;
  });
};

This should start to look familiar. Instead of function handlers with the signature 
(req, res) that we are used to in Express, we simply use middleware generator 
functions and set the response body in this.body.

Tying it together
Now that we have our model and routes defined perform the following steps:

1. Let's tie it together in a Koa.js application in src/app.js:
var koa = require('koa'),
    app = koa(),
    bodyParser = require('koa-body-parser'),
    router = require('koa-router');

// Connect to DB
require('./db');

app.use(bodyParser());
app.use(router(app));
require('./routes/links')(app);

module.exports = app;

Note that we use koa-body-parser to parse the request body 
in this.request.body and koa-router, which allows you to 
define Express style routes, the kind you saw earlier.

2. Next, we connect to the database, which isn't different from the previous 
chapters, so we will omit the code here.



Hacker News API on Koa.js

[ 148 ]

3. Finally, we define the Koa app, mount the middleware, and load the routes. 
Then, in the root folder, we have /app.js as given in the following:

var app = require('./src/app.js');
app.listen(3000);
console.log('Koa app listening on port 3000');

This just loads the app and starts an HTTP server, which listens on port 3000.  
Now to start the server, make sure you use the --harmony-generators flag.  
You should now have a working Koa API to power a Hacker News-like website!

Validation and error handling
Error-handling is one of the fortes of Koa.js. Using generator functions we don't  
need to deal with error handling in every level of the callbacks, avoiding the use of 
(err, res) signature callbacks popularized by Node.js. We don't even need to use 
the .error or .catch methods known to Promises. We can use plain old try/catch 
that ships with JavaScript out of the box.

The implication of this is that we can now have the following centralized error 
handling middleware:

var logger = console;

module.exports = function *(next) {
  try {
    yield next;
  } catch (err) {
    this.status = err.status || 500;
    this.body = err.message;
    this.app.emit('error', err, this);
  }
};

When we include this as one of the first middlewares on the Koa stack, it will basically 
wrap the entire stack, which is yielded to downstream, in a giant try/catch clause. 
Now we don't need to worry about exceptions being thrown into the ether. In fact, 
you are now encouraged to throw common JavaScript errors, knowing that this 
middleware will gracefully unpack it for you, and present it to the client.



Chapter 6

[ 149 ]

Now this may not always be exactly what you want though. For instance, if you try 
to upvote an ID that is not a valid BSON format, Mongoose will throw CastError 
with the message Cast to ObjectId failed for value xxx at path _id'. While 
informative for you, it is pretty dirty for the client. So here's how you can override 
the error by returning a 400 error with a nice, clean message:

app.put('/links/:id/upvote', function *(next) {
  var link;
  try {
    link = yield model.upvote(this.params.id);
  } catch (err) {
    if (err.name === 'CastError') {
      this.throw(404, 'link can not be found');
    }
  }

  // Check that a link document is returned
  this.assert(link, 404, 'link not found');

  this.body = link;
});

We basically catch the error where it happens, as opposed to let it bubble up all the 
way to the error handler. While we could throw a JavaScript error object with the 
status and message fields set to pass it along to the errorHandler middleware, we 
can also handle it here directly with the this.throw helper of the Context object.

Now if you pass a valid BSON ID, but the link does not exist, Mongoose will not 
throw an error. Therefore, you still have to check whether the value of link is not 
undefined. Here is yet another gorgeous helper of the Context object: this.assert. 
It basically asserts whether a condition is met, and if not, it will return a 400 error 
with the message link not found, as passed in the second and third argument.

Here are a few more validations to the submission of links:

app.post('/links', function *(next) {
  this.assert(typeof this.request.body.title === 'string', 400,  
'title is required');
  this.assert(this.request.body.title.length > 0, 400, 'title is  
required');



Hacker News API on Koa.js

[ 150 ]

  this.assert(utils.isValidURL(this.request.body.URL), 400, 'URL  
is invalid');

  // If the above assertion fails, the following code won't be  
executed.
  var link = yield model.create({
    title: this.request.body.title,
    URL: this.request.body.URL
  });
  this.body = link;
});

We ensure that a title is being passed, as well as a valid URL, for which we use the 
following RegEx util:

module.exports = {
  isValidURL: function(url) {
    return /(ftp|http|https):\/\/(\w+:{0,1}\w*@)?(\S+)(:[0- 
9]+)?(\/|\/([\w#!:.?+=&%@!\-\/]))?/;
  }
};

Now there are still ways to refactor the validation checks into modular middleware; 
similar to what we did in Chapter 3, Multiplayer Game API – Connect this is left as an 
exercise to the reader.

Update route
A CRUD API is not complete with the update route! If you are a Hacker News 
frequenter, you'll know that titles of the submissions can change (but not the URL). 
This route should be straightforward, but there is one caveat! Yes, you could use 
findByIdAndUpdate, which is used by upvote, but what if you wanted to use 
Mongoose's instance method .save()?

Well, it does not return a Promise, so therefore we cannot yield to it. In fact, at the 
time of writing, there is still an open issue about this. Using save(), we can only use 
the traditional callback pattern. However, remember the rule—do not mix generator 
functions with callbacks!



Chapter 6

[ 151 ]

So now what? Well, it will be quite common for certain node modules to be only 
available in the callback format. While most common modules are ported to a  
Koa version, you can still use Express packages; you just have to thunkify them.  
In fact, you could turn any callback style function into a thunk.

npm install --save thunkify

Now here's how to turn a function that accepts a callback into a yieldable thunk:

var thunk = require('thunkify');

...

// Thunkify save method
Links.prototype.saveThunk = thunk(Links.prototype.save);

Adding the preceding code to model/links.js, we can now do the following  
in the update route:

app.put('/links/:id', function *(next) {
  this.assert((this.request.body.title || '').length > 0, 400,  
'title is required');

  var link;
  try {
    link = yield model.findById(this.params.id).exec();
  } catch (err) {
    if (err.name === 'CastError') {
      this.throw(400, 'invalid link id');
    }
  }

  // Check that a link document is returned
  this.assert(link, 400, 'link not found');

  link.title = this.request.body.title;
  link = yield link.saveThunk()[0];
  this.body = link;
});



Hacker News API on Koa.js

[ 152 ]

Notice the use of saveThunk() near the bottom. It is basically a thunkified version 
of the original save() method. This means that an error that would originally be 
passed as the first argument in the callback is now thrown as an Error. We can afford 
not to wrap it in a try/catch block because the errorHandler middleware will catch 
it and throw a 500 error, which would be appropriate in this case.

Also, note how the thunk returns an array. This is because the original callback 
has an arity of 3. The first argument is the error, the second argument is the new 
document, while the third argument is the number of affected documents. The array 
returned by the thunk contains the latter two values. If the arity of the callback was 
2, it would've just returned the value; something to keep in mind.

Let's perform some tests
In this chapter we omitted the disciplined TDD approach, since it has been covered 
multiple times in previous chapters. However, testing is slightly different in Koa.js, 
so let's highlight some of those differences.

We can still use supertest in the neat way that we did before, with one slight 
adjustment as follows:

var app = require('../src/app').callback();

We need to call the .callback() method to return an object that we can pass to 
supertest. In fact, the returned object can even be mounted on top of an Express app.

Testing the routes to submit links is pretty straightforward:

var app = require('../src/app').callback(),
    Links = require('../src/models/links');

describe('Submit a link', function() {

  before(function(done) {
    Links.remove({}, function(err) {
      done();
    });
  });



Chapter 6

[ 153 ]

  it('should successfully submit a link', function (done) {
    request(app).post('/links')
      .send({title: 'google', URL: 'http://google.com'})
      .expect(200, done);
  });

At the start of this test suite, we clear the collection in the DB and submit a link  
using a post request. Nothing special here; note that we use Mocha's default 
callbacks for the asynchronous requests, and not co-mocha.

Let's submit a few more links, and check that they are indeed stored in the DB:

  it('should successfully submit another link', function (done) {
    request(app).post('/links')
      .send({title: 'Axiom Zen', URL: 'http://axiomzen.co'})
      .expect(200, done);
  });

  it('should successfully submit a third link', function (done) {
    request(app).post('/links')
      .send({title: 'Hacker News', URL:  
'http://news.ycombinator.com'})
      .expect(200, done);
  });

  // To be used in next test
  var linkIDs = [];
  it('should list all links', function (done) {
    request(app).get('/links')
      .expect(200)
      .end(function(err, res) {
        var body = res.body;
        expect(body).to.have.length(3);

        // Store Link ids for next test
        for(var i = 0; i < body.length; i++) {
          linkIDs.push(body[i]._id);
        }
        done();
      });
  });



Hacker News API on Koa.js

[ 154 ]

Notice that we store link IDs in an array for the next test case to demonstrate  
the final, most awesome bonus feature of Koa.js, parallel asynchronous requests,  
out of the box!

Parallel requests
The backend of Hacker News should be able to deal with the race condition,  
that is, it should handle hundreds of concurrent upvote requests without losing  
data (recall Chapter 4, MMO Word Game on race conditions). So let's write a test  
case that simulates parallel requests.

Traditionally, you would immediately think of using the extremely powerful and 
popular async library, which has a lot of very useful tools to deal with complex 
asynchronous execution flows. One of the most useful tools that async offers is 
async.parallel, with which you can make asynchronous requests in parallel.  
It is used to be the go-to solution for parallel requests, but now Koa offers something 
out of the box and with a much cleaner syntax!

Recall that co is actually what gives Koa the power of generator functions,  
so refer to the readme page of the co project to read more about all the patterns  
that it has to offer.

So far we yielded to generator functions, Promises, and thunks. However, that is not 
all. You can also yield to an array of the preceding which would execute them in 
parallel! Here's how:

// Add to top of file
require('co-mocha');
var corequest = require('co-supertest');

…

  it('should upvote all links in parallel', function *() {
    
    var res = yield linkIDs.map(function(id) {
     return corequest(app)
        .put('/links/' + id + '/upvote')
        .end()
    });
;



Chapter 6

[ 155 ]

    // Assert that all Links have been upvoted
    for(var i = 0; i < res.length; i++) {
      expect(res[i].body.upvotes).to.equal(1);
    }

  });

Firstly, notice how we use a generator function, so be sure that you have 
require(co-mocha) on top of your test file.

Secondly, supertest does not return a thunk or a promise, which we can yield to,  
so we require co-supertest for this test case:

npm install co-supertest --save-dev

Thirdly, we build an array of requests to be executed later. We are basically pushing 
thunks into an array; they could be promises too. Now when we yield the array, it 
will execute all requests in parallel, and return an array of all the response objects!

Quite mind blowing if you're used to async.parallel for these things, right?

Rendering HTML pages
At this point, we have a simple Koa API that has all the basic functionalities quite 
well tested. Let's add a simple view layer on top to show how you can serve static 
files from a Koa app as well. So if the app receives a request from a browser for 
HTML content, we'll serve a functional web page, where we can see the links 
submitted, submit a link, as well as upvote a link.

Let's pause here for a quick real-developer-life anecdote to implement the preceding. 
The tendency for modularity is an empowering force of the open source community. 
A modern day developer has access to a plethora of well-tested modules. Oftentimes, 
the majority of the developer's work is simply to compose an app of several such 
modules. We learn of these modules from prior experience, books, news websites, 
social media, and so on. So how do we go about choosing the right tools instead of 
reinventing the wheel?



Hacker News API on Koa.js

[ 156 ]

It is always recommended to do a simple search to see whether a module is already 
available. In this case, we are interested in rendering views with Koa.js, so let's try 
the search term koa-render on www.npmjs.com. Two popular packages come up 
that seem to quite fit our needs, as shown in the following screenshot:

The koa-views is a template rendering middleware for Koa, supporting many 
template engines. Sounds promising! koa-render adds a render() method to  
Koa that allows you to render almost any templating engine. Not bad either.  
As shown in the following screenshot:

www.npmjs.com


Chapter 6

[ 157 ]

One of the things we can look at to guide our choice is the number of downloads; 
both packages have a decent amount of downloads, which shows some credibility. 
The koa-views has about 5 times more downloads than koa-render per month. 
While these badges are a minor touch, it does show that the author cared enough and 
is likely to support it. The number of recent commits is also a of good indicator that 
can be found on the GitHub page for the project, the number issues that have been 
resolved, and so on.

At the time of writing, both projects' GitHub links redirect to koa-views,  
which is unexpected, but good for us! Looking at the GitHub account of the  
author of koa-render, we cannot find the project anymore, so it's safe to assume 
it was discontinued; avoid it! When you can, try to avoid using non-maintainable 
packages as it might pose a threat given the fact that Node.js (and io.js) are rapidly 
evolving ecosystems.

Back to rendering HTML pages, Koa, unlike Express, has no pre-baked opinion 
about the rendering of views. However, it does provide us with some mechanisms 
for content negotiation, some of which we can use to enhance and reuse the routes 
we already have for our API. Let's see what our /links handler will look like:

  app.get('/links', function *(next) {
    var links = yield model.find({}).sort({upvotes:  
'desc'}).exec();
    if( this.accepts('text/html') ){
      yield this.render('index', {links: links});
    } else {
      this.body = links;
    }

Our use case is rather simple; we either serve JSON or HTML. When the request 
header accepts is set to text/html, something browsers set automatically, we'll 
render the HTML. For the rendering of dynamic jade views to work as expected,  
we must not forget to include the koa-views middleware in app.js somewhere 
before the router middleware:

var views = require('koa-views');

...

app.use(views('./views', {default: 'jade'}));



Hacker News API on Koa.js

[ 158 ]

The middleware points to a folder with a relative path that will contain the 
templates. Right now, we just need a single template views/index.jade:

doctype html
html(lang="en")
  head
    title Koa News
  body
    h1 Koa News
    div
      each link in links
        .link-row
          a(href='#', onclick="upvote('#{link._id}', $(this))") ^
          span &nbsp;
          a(href=link.URL)= link.title
          .count= link.upvotes
            |  votes
    h2 Submit your link:
    form(action='/links', method='post')
      label Title:
      input(name='title', placeholder="Title")
      br
      label URL:
      input(name='URL', placeholder="https://")
      br
      br
      button.submit-btn Submit
    script(src="https://code.jquery.com/jquery-2.1.3.min.js")
    script.
      var upvote = function(id, elem) {
        $.ajax({url:'/links/'+id+'/upvote', type:'put' })
        .done(function(data) {
          elem.siblings('.count').text(data.upvotes + ' votes');
        })
      }



Chapter 6

[ 159 ]

It's a jade file similar to the ones presented before in this book. It loops over every 
link loaded at the controller, which has a single action to upvote. Links are displayed 
in the descending order of votes, which only happens when the page is reloaded. 
There is also a simple form that allows the user to submit new links.

We chose to load jQuery from a CDN simply in order to make the PUT request  
for upvotes. Notice that our use of inline JavaScript as well as adding a click event 
using the onclick element is highly discouraged, other than to make this example 
simple to digest.

Now if you have your app running and you go to localhost:3000/links,  
here's the result:

So that's a start from a functional standpoint! Clearly not good enough if we want to 
add more frontend JavaScript and CSS styling to it; we still need to be able to serve 
static files.



Hacker News API on Koa.js

[ 160 ]

Serving static assets
Although usually you'd be incentivized to create a separate server for your  
assets, let's keep things simple and dive straight to the goal. We want to serve any 
files from a certain folder to a certain base path. For that purpose, we'll need two 
small middlewares, respectively, koa-static and koa-mount. In src/app.js,  
we add the following:

var serve = require('koa-static');
var mount = require('koa-mount');

// ..

app.use(mount('/public', serve('./public') ));

The function mount() will namespace the request for each middleware that follows, 
in this particular case being combined with serve, which will serve any file inside 
the public/ directory. If we decide not to mount to any particular URL, serving files 
would still work; it just won't have a nice namespace.

Now all you need to do is create a public/ directory in the root folder with 
filepublic/main.css and it will able to serve a stylesheet.

This method allows to serve all static files you'd expect; CSS, JavaScript, images,  
and even videos.

To take it even further, there are many build tools and best practices for front-end 
assets, including ways to set up asset pipelines with Grunt, Gulp, Browserify, SASS, 
CoffeeScript, and many others tools. Not to mention front-end frameworks such as 
Angular, Ember, React, and so on. This is only the beginning.

Hope you enjoyed the introduction to Koa.js!



Chapter 6

[ 161 ]

Summary
We built an API with which you can now host your own Hacker News of X! 
Obviously, we're still missing the sort and decay algorithm, as well as comments,  
but since you reached this far, it should be an easy exercise for you.

The purpose of this chapter was really to give you a taste of the neat features of  
Koa.js, and demonstrate the use of the generator function pattern, which will be 
available in ECMAScript 6. If you like being on the bleeding edge, and enjoy the 
generator syntax, it is definitely a good alternative to Express.js.





[ 163 ]

Connect 4 – Game Logic
In Chapter 3, Multiplayer Game API – Connect we built a multiplayer game API for the 
game Connect 4 in which we focused on the general mechanics of creating a game, 
joining a game, and playing it. This Appendix shows the accompanying game logic 
that we omitted in Chapter 3, Multiplayer Game API main text.

src/lib/connect4.js

/*
  Connect 4 Game logic

  Written for Blueprints: Express.js, Chapter 3

*/
var MIN_ROWS = 6,
    MIN_COLUMNS = 7,
    players = ['x','o'];

// Initializes and returns the board as a 2D array.
// Arguments accepted are int rows, int columns,
// Default values: rows = 6, columns = 7
exports.initializeBoard = function initializeBoard(rows, columns){
  var board = [];
  rows = rows || MIN_ROWS;
  columns = columns || MIN_COLUMNS;

  // Default values is minimum size of the game
  if (rows < MIN_ROWS) {
    rows = MIN_ROWS;
  }



Connect 4 – Game Logic

[ 164 ]

  if (columns < MIN_COLUMNS) {
    columns = MIN_COLUMNS;
  }

  // Generate board
  for (var i = 0; i < rows; i++){
    var row = [];
    for (var j = 0; j < columns; j++){
      row.push(' ');
    }
    board.push(row);
  }
  return board;
};

// Used to draw the board to console, mainly for debugging
exports.drawBoard = function drawBoard(board){
  var numCols = board[0].length,
      numRows = board.length;
  consolePrint(' ');
  for (var i = 1; i <= numCols; i++){
    consolePrint(i+'');
    consolePrint(' ');
  }
  consolePrint('\n');
  for (var j = 0; j < numCols*2+1; j++){
    consolePrint('-');
  }
  consolePrint('\n');
  for (i = 0; i < numRows; i++){
    consolePrint('|');
    for (j = 0; j < numCols; j++){
      consolePrint(board[i][j]+'');
      consolePrint('|');
    }
    consolePrint('\n');
    for (j = 0; j < numCols*2+1; j++){
      consolePrint('-');
    }
    consolePrint('\n');
  }
};



Appendix

[ 165 ]

// Make a move for the specified player, at the indicated column  
for this board
// Player should be the player number, 1 or 2
exports.makeMove = function makeMove(player, column, board){
  if (player !== 1 && player !== 2) {
    return false;
  }
  var p = players[player-1];
  for (var i = board.length-1; i >= 0; i--){
    if (board[i][column-1] === ' '){
      board[i][column-1] = p;
      return board;
    }
  }
  return false;
}

// Check for victory on behalf of the player on this board,  
starting at location (row, column)
// Player should be the player number, 1 or 2
exports.checkForVictory = function checkForVictory(player,  
lastMoveColumn, board){
  if (player !== 1 && player !== 2) {
    return false;
  }
  var p = players[player-1],
      directions = [[1,0],[1,1],[0,1],[1,-1]],
      rows = board.length,
      columns = board[0].length,
      lastMoveRow;
  lastMoveColumn--;
  // Get the lastMoveRow based on the lastMoveColumn
  for (var r = 0; r < rows; r++) {
    if(board[r][lastMoveColumn] !== ' ') {
      lastMoveRow = r;
      break;
    }
  }

  for (var i = 0; i<directions.length; i++){
    var matches = 0;
    // Check in the 'positive' direction



Connect 4 – Game Logic

[ 166 ]

    for (var j = 1; j < Math.max(rows,columns); j++){
      if (board[lastMoveRow + j*directions[i][1]] && p ===  
board[lastMoveRow + j*directions[i][1]][lastMoveColumn +  
j*directions[i][0]]){
        matches++;
      } else {
        break;
      }
    }
    // Check in the 'negative' direction
    for (j = 1; j < Math.max(rows,columns); j++){
      if (board[lastMoveRow - j*directions[i][1]] && p ===  
board[lastMoveRow - j*directions[i][1]][lastMoveColumn -  
j*directions[i][0]]){
        matches++;
      } else {
        break;
      }
    }
    // If there are greater than three matches, then that means  
there are at least 4 in a row
    if (matches >= 3){
      return true;
    }
  }
  return false;
};

function consolePrint(msg) {
  process.stdout.write(msg);
}
And the accompanying unit tests:
var expect = require('chai').expect;

var connect4 = require('../src/lib/connect4');

describe('Connect 4 Game Logic | ', function() {
  describe('#Create a board ', function() {
    var board = connect4.initializeBoard();

    it('should return game boards of the defaults length when too  
small', function(done) {
      var board2 = connect4.initializeBoard(3,3),
          board3 = connect4.initializeBoard(5),



Appendix

[ 167 ]

          board4 = connect4.initializeBoard(3,10),
          board5 = connect4.initializeBoard(10,3);

      // Make sure the board is a 2D array
      expect(board2).to.be.an('array');
      expect(board2.length).to.equal(board.length);
      expect(board2[0].length).to.equal(board[0].length);
      for(var i = 0; i < board2.length; i++){
        expect(board2[i]).to.be.an('array');
      }

      // Make sure the board is a 2D array
      expect(board3).to.be.an('array');
      expect(board3.length).to.equal(board.length);
      expect(board3[0].length).to.equal(board[0].length);
      for(var i = 0; i < board3.length; i++){
        expect(board3[i]).to.be.an('array');
      }
      // Board initialized with 3 rows, but should default to 6
      expect(board4).to.be.an('array');
      expect(board4.length).to.equal(board.length);
      for(var i = 0; i < board4.length; i++){
        expect(board4[i]).to.be.an('array');
      }
      // Board initialized with 3 columns, but should default to 7
      expect(board5).to.be.an('array');
      expect(board5[0].length).to.equal(board[0].length);
      for(var i = 0; i < board5.length; i++){
        expect(board5[i]).to.be.an('array');
      }

      done();

    });

    it('should only allow pieces to be placed #row amount of  
times', function(done) {
      board = connect4.initializeBoard();
      for (var i = 0; i < board.length; i++) {
        board = connect4.makeMove(1, 1, board);
      }
      // Column should be full



Connect 4 – Game Logic

[ 168 ]

      expect(connect4.makeMove(1, 1,  
board)).to.be.an('boolean').and.equal(false);
      // Out of bounds
      expect(connect4.makeMove(1, 0,  
board)).to.be.an('boolean').and.equal(false);
      expect(connect4.makeMove(1, board[0].length+1,  
board)).to.be.an('boolean').and.equal(false);

      done();

    });

    it('should return victory if there are 4 in a row',  
function(done) {
      // Vertical Win
      board = connect4.initializeBoard();
      for (var i = 0; i < 3; i++) {
        board = connect4.makeMove(1, 1, board);
        expect(connect4.checkForVictory(1, 1,  
board)).to.equal(false);
      }
      board = connect4.makeMove(1, 1, board);
      expect(connect4.checkForVictory(1, 1,  
board)).to.equal(true);

      // Horizontal Win
      board = connect4.initializeBoard();
      for (var i = 1; i < 4; i++) {
        board = connect4.makeMove(1, i, board);
        expect(connect4.checkForVictory(1, 1,  
board)).to.equal(false);
      }
      board = connect4.makeMove(1, 4, board);
      expect(connect4.checkForVictory(1, 4,  
board)).to.equal(true);

      // Diagonal Win
      board = connect4.initializeBoard();
      for (var i = 1; i < 4; i++) {
        for (var j = 1; j <= i; j++){
          if (j===i){
            board = connect4.makeMove(1, i, board);
          } else {



Appendix

[ 169 ]

            board = connect4.makeMove(2, i, board);
          }
          expect(connect4.checkForVictory(1, 1,  
board)).to.equal(false);
        }
      }
      for (var i = 0; i < 3; i++) {
        board = connect4.makeMove(2, 4, board);
        expect(connect4.checkForVictory(2, 4,  
board)).to.equal(false);
      }
      board = connect4.makeMove(1, 4, board);
      expect(connect4.checkForVictory(1, 4,  
board)).to.equal(true);

      done();

    });
  });
});





[ 171 ]

Index
A
actor

creating, with POST  29
removing, with DELETE  30-32
retrieving, with GET  28
updating, with PUT  30

API endpoints
testing  18

B
Bluebird

URL  87
builds

automating  19

C
catch method  83
Chrome Developer Tools

used, for debugging Socket.IO  103-105
code structure  108
Connect 4

about  45
new game, creating  49

CRUD operations
about  27, 28
actor, creating with POST  29
actor, removing with DELETE  30-32
actor, retrieving with GET  28
actor, updating with PUT  30
DELETE  27
GET  27
POST  27
PUT  27

D
data

exception handling  113
persisting  110-112

database
validating  36

DELETE
actor, removing with  30-32

deploys
automating  19

distance optimization  124, 125

E
e-mail follow up  126-134
error handling  148-150
exception handling  113
Express

about  1
Hello World!  2, 3
Jade templating  3, 4
setting, for static site  1

Express middleware  7

F
Factory pattern  108
folder structure  25, 26
functions

extracting, to reusable middleware  36-39

G
game

creating  50-54
game state, obtaining  56



[ 172 ]

input validation  54, 55
joining  58-61
playing  61-71
testing, for tie  71-73

game logic, Connect 4  163
game state

modeling, with Mongoose  46-48
generator syntax

about  140-143
benefits  139
Context, versus req  145
Context, versus res  145
middleware  143, 144

GET
actor, retrieving with  28

H
Heroku

about  22
URL  22

HTML pages
rendering  155-159

J
Jade

URL  16

K
Koa.js

about  139, 140, 147, 148
URL  139

L
link model  145, 146
link routes  146, 147
local user authentication

about  4
Express middleware  7
passport, setting up  8, 9
user object modeling  5, 6
users, authenticating  11
users, registering  10

M
Mocha  17
moment.js

URL  115
Mongoose

object modeling, using with  32
URL  7, 32

multiplayer game API
building  45, 46

N
naive pairing

about  113-115
tests  118

node-cron
periodical tasks, used with  135-137
URL  135

Node.js
about  1
deploying  22, 23
URL  2

O
OAuth, with passport

about  12
adding, to user model  12
API tokens, obtaining  13
third party registration strategies,  

installing  14, 15
object modeling

with Mongoose  32

P
parallel requests  154, 155
params object  28
periodical tasks

with node-cron  135-137
POST

actor, creating with  29
profile pages

about  15
profile templates  16
URL params  15



[ 173 ]

Promise
about  79-82
active users, displaying  87
benefits  80
catch method  83
duplicates, preventing  84-86
input, validating  89, 90
multiple Promises, chaining  83, 84
race conditions, dealing with  91-93
race conditions, testing  93, 94
subdocuments  88
then method  83
user exit  86

PUT
actor, updating with  30

R
res parameter  28
reusable middleware

functions, extracting to  36-39
route

defining  109, 110
updating  150-152

S
schema

user, joining  78
user schema, designing  77

Socket.IO
applications, launching  97
debugging, with Chrome  

Developer Tools  103-105
documentation  94
updates, adding to clients  95-97
updates, pushing to clients  95-97

Socket.IO applications
launching  97
testing, with Socket.IO client  98-102

Socket.IO client
used, for testing Socket.IO  

applications  98-102
static assets

serving  160
swig

URL  131

T
testing

about  16, 40-43
API endpoints  18, 19

tests
about  118
HTML pages, rendering  155-159
parallel requests  154, 155
performing  152-154
static assets, serving  160

then method  83
timekeeper

URL  120
Travis CI  21

U
unique IDs

generating  34, 35
user history  118-122
user object modeling  5, 6

V
validation  148-150

W
Word Chain Game

about  75
active users, tracking  77
real-time application overview  76





Thank you for buying  
Express.js Blueprints

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


Express Web Application 
Development
ISBN: 978-1-84969-654-8              Paperback: 236 pages

Learn how to develop web applications with the 
Express framework from scratch

1. Exploring all aspects of web development  
using the Express framework.

2. Starts with the essentials.

3. Expert tips and advice covering all  
Express topics.

Mastering Web Application 
Development with Express
ISBN: 978-1-78398-108-3             Paperback: 358 pages

A comprehensive guide to developing  
production-ready web applications with Express

1. Create fast, secure and reliable  
production-ready web applications  
using Express.

2. Packed with the latest techniques for  
tackling real world issues.

3. Improve code quality and speed up 
development by using a variety of patterns  
and tools.

 
Please check www.PacktPub.com for information on our titles



Advanced Express Web 
Application Development
ISBN: 978-1-78328-249-4           Paperback: 148 pages

Your guide to building professional real-world web 
applications with Express

1. Learn how to build scalable, robust, and 
reliable web applications with Express using a 
test-first, feature-driven approach.

2. Full of practical tips and real world examples, 
and delivered in an easy-to-read format.

3. Explore and tackle the issues you encounter 
in commercially developing and deploying an 
Express application.

Learning Express Web 
Application Development [Video]
ISBN: 978-1-78398-988-1             Duration: 2:27 hours

Build powerful and modern web apps that run 
smoothly on the webserver with Express.js

1. Use Express.js and get the best out of JavaScript 
to build robust server based web apps.

2. Incorporate MongoDB, the blazingly  
fast document-based database into  
your applications.

3. Impress your colleagues with production  
ready code through test-driven development.

 

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Basic Express Site
	Setting up Express for a static site
	Saying Hello, World in Express
	Jade templating

	Local user authentication
	User object modeling
	Introducing Express middleware
	Setting up passport
	Registering users
	Authenticating users

	OAuth with passport
	Adding OAuth to user model
	Getting API tokens
	Third-party registration and login

	Profile pages
	URL params
	Profile templates

	Testing
	Introducing Mocha
	Testing API endpoints

	Automate builds and deploys
	Introducing the Gruntfile
	Continuous integration with Travis
	Deploying Node.js applications

	Summary

	Chapter 2: A Robust Movie API
	Folder structure and organization
	Responding to CRUD operations
	Retrieving an actor with GET
	Creating a new actor with POST
	Updating an actor with PUT
	Removing an actor with DELETE

	Object modeling with Mongoose
	Generating unique IDs
	Validating your database
	Extracting functions to reusable middleware
	Testing
	Summary

	Chapter 3: Multiplayer Game API – Connect 4
	Modeling Game State with Mongoose
	Creating a new game
	Input validation
	Getting the game state
	Joining a game
	Playing the game
	Testing for a tie

	Summary

	Chapter 4: MMO Word Game
	Gameplay
	Real-time application overview
	Keeping track of active users

	Schema design
	User schema
	User join

	Promises
	The then and catch method
	Chain multiple Promises
	Prevent duplicates
	User leaves the game
	Show all active users
	The words – Subdocuments
	Validate input
	Dealing with race conditions
	Test case to test race conditions

	Socket.IO
	Socket handshaking, user join
	Adding and pushing updates to clients
	Launch Socket.IO applications
	Test Socket.IO applications with the 
Socket.IO client
	Debug Socket.IO with Chrome 
Developer Tools

	Summary

	Chapter 5: Coffee with Strangers
	Code structure
	Defining routes
	Persisting data
	Exception handling

	Naive pairing
	Notes about tests

	Considering user history
	Optimizing for distance
	E-mail follow up
	Periodical tasks with node-cron
	Summary

	Chapter 6: Hacker News API on Koa.js
	Generator syntax
	Middleware philosophy
	Context versus req,res
	The link model
	The link routes
	Tying it together


	Validation and error handling
	Update route
	Let's perform some tests
	Parallel requests
	Rendering HTML pages
	Serving static assets

	Summary

	Appendix: Connect 4 – Game Logic
	Index

