Eloquent JavaScript

A Modern Introduction
to Programming

By

<
(o4
- J fog
Yoo, p,.

< + N 7 7
fu_ - ~

www.allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

ELOQUENT JAVASCRIPT

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Eloquent JavaScript

A Modern Introduction
to Programming

Marijn Haverbeke

vww allitebooks.conl

http://www.allitebooks.org

ELOQUENT JAVASCRIPT. Copyright © 2011 by Marijn Haverbeke.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

1514131211 123456789

ISBN-10: 1-59327-282-0
ISBN-13: 978-1-59327-282-1

Publisher: William Pollock
Production Editor: Serena Yang
Cover Design: Your Neighbours
Interior Design: Octopod Studios
Developmental Editor: Keith Fancher
Technical Reviewer: Patrick Corcoran
Copyeditor: Kim Wimpsett
Compositor: Serena Yang
Proofreader: Nancy Sixsmith

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Haverbeke, Marijn.

Eloquent JavaScript: a modern introduction to programming / by Marijn Haverbeke.

p. cm.

Includes index.

ISBN-13: 978-1-59327-282-1

ISBN-10: 1-59327-282-0

1. JavaScript (Computer program language) I. Title.

QA76.73.J39H38 2009

005.13”3-dc22

2010032246

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the authors nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the infor-
mation contained in it.

vww allitebooks.conl

http://www.allitebooks.org

To little Lotte.

vww allitebooks.conl

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

BRIEF CONTENTS

INtrodUCHioNo 1
Chapter 1: Basic JavaScript: Values, Variables, and Control Flow 9
Chapter 2: FUNCHONS oot e 29
Chapter 3: Data Structures: Objects and Arrays ..o 41
Chapter 4: Error Handlingo oo 63
Chapter 5: Functional Programmingt 71
Chapter 6: Object-Oriented Programmingt 93
Chapter 7: Modularity ... o 129
Chapter 8: Regular EXpressionsoiuiiiii e 139
Chapter 9: Web Programming: A Crash Course ..ot 151
Chapter 10: The Document Object Model 163
Chapter 11: Browser Events i 173
Chapter 12: HTTP reqQUeStS . ..o\ttt ettt ettt 189
T = 197

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

CONTENTS IN DETAIL

INTRODUCTION 1
ON Programming u ottt et e e 2
Why Language Matters e 3
What Is JavaSceript?o 6
Trying Programs 7
Overview of This BoOKo ..ttt 7
Typographic ConVENtIONSttt e et e e e et eeeens 8
1
BASIC JAVASCRIPT: VALUES, VARIABLES, AND
CONTROL FLOW 9
ValUES e 9
NUMBEIS . oot 10
AR RMEtiC L ot e 11
)T Te T3P 12
Unary Operators.t 13
Boolean Values, Comparisons, and Boolean Logicooeun.s. 13
Expressions and Statementseiiii i 14
Variables 15
Keywords and Reserved Words ... 16
The Environment.ottt e 17
Funchions. ... 17
prompt and confirm 18
The print FUNCHONo e 18
Modifying the Environment.ot 18
Program SHructure e 19
Conditional EXECUHON ... oottt 19
while and do Loops vve 20
INdenting Code ... vun ittt 22
FOr LOOPS - vttt 22
Breaking Out of @ Loop. ... vue it 23
Updating Variables Succinctly 23
Dispatching on a Value with switch ... 24
CapitalizZation 24

COMMENES .« vttt ettt et e e 25

MOTE ON TYPES . . ettt ettt e et 25

Undefined Valuesooi i 25
Automatic Type ConVersionc.euueieiuinin i 26
Dangers of Automatic Type Conversionoovveveiriireinnennennnn. 27
More on &&and || ... o 28
2
FUNCTIONS 29
The Anatomy of a Function Definitionoiuiin i 29
Definiion Orderttt 30
Local Variables 31
Nested SCOPE ..t u ittt e e 31
The SHACK . et 33
Function Valueso o.eon et 33
CloSUTE e 34
Optional Arguments.t 35
TeChniQUES . ..ot 36
Avoiding Repetitionuui 36
Uy et e e 37
ReCUISION ... 37
3
DATA STRUCTURES: OBJECTS AND ARRAYS 41
The Problem: Aunt Emily’s Cats .. .ovueie et 41
Basic Data SIructureso.oe e 43
Propertieso 43
Object Values 43
Objects aS Sets . ..ttt 45
Mutability ..o 45
Obijects as Collections: Arraysovueereiieieiiieieieeaennnn. 46
Methods ... 48
Solving the Problem of Aunt Emily’s Cats. ..o, 48
Separating Paragraphs 49
Finding Relevant Paragraphs ... 49
Extracting Cat Namesot e 51
The Full Algorithmo 51
Cleaning Up the Codet 52
Date Representationc.ouin i 54
Date Extraction ...t 56
Gathering More Informationo 57
Data Presentation 58
SOME MOTe TREOTY ..ttt 59
The arguments Objectt 59
TyingUp aloose Endoouiiii 61

X Contents in Detail

The Math Object. . ..o .t 61

Enumerable Properties.ooi i 62
4
ERROR HANDLING 63
Types of Problems o 63
Programmer Mistakescouioiuii 64
Run-Time Errors . ..o 64
Handling Errorsottt et et e 64
Returning a Special Value ... 65
EXceptions 66
Cleaning Up After EXCEPHONSottt 67
Error Objects ... v e 68
Unhandled Exceptions.ooviinei e 68
Selective Catchingoiui 69
Automated TeStNGo ettt ettt 70
5
FUNCTIONAL PROGRAMMING 71
ADBSIFACHON .« e ettt 71
Higher-Order FUNCHONS ot 73
Modifying FUNCHONS v et 74
The reduce FUNCHONo ot e 75
MAPPING AITAYS « ettt 76
The Sad Story of the Recluse.oveie e 77
HTML o 77
The Recluse’s Text Fileo i 79
Finding Paragraphs ... 82
Emphasis and Footnotesoouieniii i 82
Moving the FOotnotesiunii i 85
Generating HTML . ..o e 86
Converting the Recluse’s Bookooiiiiiiiii i 89
Other Functional Trickso .ottt 90
Operator FUNCHONS . .« ..t e 90
Partial Applicationii 91
COMPOSHION . .« ettt et e 92
6
OBJECT-ORIENTED PROGRAMMING 93
@ oY1= 94
Defining Methodsoui i 94
CONSITUCIONS .« ettt ettt e 95
Building from Prototypeo 96

Contents in Detail xi

Constructors and Protolypes ve e e 96

Prototype Pollution o 98
Objects as DICHONAIIES .« .ottt et 100
Specifyingan Interfaceooi i 101
Building an Ecosystem Simulationoiiiii 102
Defining the Terrariumooii e 102
Points in SPACE . ..o v et 103
Representing the Gridot 104
A Bug’s Programming Interface.ooooiiiiiiii 106
The Terrarium ObJect . ..o\ v vttt et e 106
this and It SCOPE - v vttt 108
Animating Lifeo 109
[FMOVES o 111
More Life FOrmso 112
Polymorphism 114
A More Lifelike Simulation. 115
INREFIIANCE .. ettt e e 115
Keeping Track of Energy........ooueiiui e 116
Adding Plant Life.ooe e 118
The Herbivoreooui 119
Bringing Itto Lifeo ooine it 120
Artificial Stupidity . ..o 121
Prototypal Inheritanceo 122
Type-Definition Utilitiesoouiiiie e 123
Prototypes as TYPES ... v ettt e 124
A World of Objectsooovii 125
The instanceof Operatorouuei et 126
Mixing TYPes . .ot 127
7
MODULARITY 129
ModUIES 130
An Example . ..o 130
Modules as Files 130
The Shape of aModule 131
Functions as Local Namespacescooviiiiiiiiiiiiiiiiiiiiaennns, 132
Module Objectsoue 133
Inferface Design en et 134
Predictabilityo 134
Composability ..ot 135
Layered Inferfaces.o.uinei e 135
Argument Objects. . ..o vttt 136
] T 137

Xii Contents in Detail

8
REGULAR EXPRESSIONS

Matching Sets of Characters ...,
Matching Word and String Boundaries
Repeating Patterns ...
Grouping Subexpressions.ooiiiiiiiiiiiiiiiin.
Choosing Between Alternatives............ccvviiiinenn....
Matching and Replacingcoviiii i
The match Method
Regular Expressions and the replace Method
Dynamically Creating RegExp Objects
Parsing an .ini File. ...
ConClUSION ..t

9
WEB PROGRAMMING: A CRASH COURSE

Server-Side Programmingcooviiiiiiiiiiii i
Client-Side Programmingcoiiiiiiiiiiinann....
Basic Web Scriphing ... o.oooii
The window Objectoviiiii i
The document Object.ovviiiiiii i
TiMers .o

Scriptinga Form ...
AUTOfOCUS .o et
Browser Incompatibility
Further Readingoonii e

10
THE DOCUMENT OBJECT MODEL

DOMEIBMENTS ee ettt et
Node Linksoonri
Types of Nodesottt
The innerHTML Propertycoviiiii e
Finding Your Nodecooiiiiiiiiiiiii e
Node Creationoviiiiiiiiiiii i,
A Creation Helper Function ...l
Moving Nodes Aroundoooiiiiiiiii i,

An Implementation of print............cooiiiiiiii

Contents in Detail

xiii

Style Sheetst 169

The style Propertyo 170
Hiding Nodesouii e 171
POSIHONING « . et 171
Controlling Node Sizeouniiiiiii e 172
Word of Cautiono 172
11
BROWSER EVENTS 173
Event Handlerso. oo 173
Registering a Handler i 174
Event Objects. ..ottt e 175
MouseRelated Event Typesouiuin i 176
Keyboard Eventsoiuet e 177
Stopping an Event e 178
Normalizing Event Objectsoooiiiii e 178
Tracking FOCUS ..o vt 179
Form Eventso 180
WINdow EVents . ..ot e 180
Example: Implementing Sokoban 181
Level Input Format.o oo 181
Program Designo.onin i 182
Game Board Representation ..o 182
The Controller Objectot e 185
12
HTTP REQUESTS 189
The HTTP Protocolt 189
The XMLHtpRequest APl e 190
Creating a Request Objectvvuei it 191
Simple ReqUests ...ttt 191
Making Asynchronous Requestsoouiiiiiiiiiiiiiiiiii e, 192
Fetching XML Data . ..o vttt 193
Reading JSON Data .o euvetti et 194
A Basic Request Wrapper 195
Learning HT TP ..o e e 195
INDEX 197

xiv Contents in Detail

INTRODUCTION

Back in the 1970s, when personal computers were
first introduced, most of them came equipped with a
simple programming language—usually a variant of
BASIC—and interaction with the computer required
use of this language. This meant that, for those of us
to whom technological tinkering came naturally, go-
ing from simple computer use to programming was
easy.

These days, with computers being many times more powerful and cheap-
er than in the 1970s, software interfaces tend to present a slick graphics in-
terface manipulated with the mouse, rather than a language. This has made
computers much more accessible and, on the whole, is a big improvement.
However, it has also put up a barrier between the computer user and the
world of programming—hobbyists have to actively find themselves a pro-

gramming environment rather than having one available as soon as the com-
puter starts.

2

Under the covers, our computer systems are still pervaded by various
programming languages. Most of these languages are much more advanced
than the BASIC dialects in those early personal computers. For example, the
JavaScript language, the subject of this book, exists in every mainstream web
browser.

On Programming

Introduction

I do not enlighten those who are not eager to learn, nor arouse
those who are not anxious to give an explanation themselves. If I
have presented one corner of the square and they cannot come
back to me with the other three, I should not go over the points
again.

—Confucius

Besides explaining JavaScript, this book tries to be an introduction to
the basic principles of programming. Programming, it turns out, is hard.
The fundamental rules are typically simple and clear—but programs, while
built on top of these basic rules, tend to become complex enough to intro-
duce their own rules and complexity. Because of this, programming is rarely
simple or predictable. As Donald Knuth, who is something of a founding
father of the field, says, it is an art rather than a science.

To get something out of this book, more than just passive reading is re-
quired. Try to stay sharp, make an effort to understand the example code,
and only continue when you are reasonably sure you understand the mate-
rial that came before.

The computer programmer is a creator of universes for which he
alone is responsible. Universes of virtually unlimited complexity
can be created in the form of computer programs.

—Joseph Weizenbaum, Computer Power and Human Reason

A program is many things. It is a piece of text typed by a programmer, it
is the directing force that makes the computer do what it does, it is data in
the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are famil-
iar with tend to fall short, but a superficially fitting one is that of a machine.
The gears of a mechanical watch fit together ingeniously, and if the watch-
maker was any good, it will accurately show the time for many years. The el-
ements of a program fit together in a similar way, and if programmers know
what they are doing, their program will run without crashing.

A computer is a machine built to act as a host for these immaterial ma-
chines. Computers themselves can only do stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can ingeniously combine enormous numbers of
these simple actions in order to do very complicated things.

To some of us, writing computer programs is a fascinating game. A pro-
gram is a building of thought. It is costless to build, it is weightless, and it
grows easily under our typing hands. If we are not careful, its size and com-
plexity will grow out of control, confusing even the person who created it.
This is the main problem of programming: keeping programs under con-
trol. When a program works, it is beautiful. The art of programming is the
skill of controlling complexity. The great program is subdued, made simple
in its complexity.

Today, many programmers believe that this complexity is best managed
by using only a small set of well-understood techniques in their programs.
They have composed strict rules (best practices) about the form programs
should have, and the more zealous among them will denounce those who
break these rules as bad programmers.

What hostility to the richness of programming—to try to reduce it to
something straightforward and predictable and to place a taboo on all the
weird and beautiful programs! The landscape of programming techniques
is enormous, fascinating in its diversity, and still largely unexplored. It is cer-
tainly littered with traps and snares, luring the inexperienced programmer
into all kinds of horrible mistakes, but that only means you should proceed
with caution and keep your wits about you. As you learn, there will always
be new challenges and new territory to explore. Programmers who refuse
to keep exploring will surely stagnate, forget their joy, and lose the will to
program (and become managers).

Why Language Matters

In the beginning, at the birth of computing, there were no programming
languages. Programs looked something like this:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from 1 to 10 together and print
out the result (1 + 2 + ... + 10 = 55). It could run on a very simple, hypo-
thetical machine. To program early computers, it was necessary to set large
arrays of switches in the right position, or punch holes in strips of cardboard
and feed them to the computer. You can imagine how this was a tedious, er-

Introduction 3

ror prone procedure. Even the writing of simple programs required much
cleverness and discipline, and complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (which is what
the ones and zeros shown previously are generally called) did give the pro-
grammer a profound sense of being a mighty wizard. And that has to be
worth something in terms of job satisfaction.

Each line of the program contains a single instruction. It could be writ-
ten in English like this:

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.

4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0, continue with instruc-
tion 9.

6. Add the value of memory location 1 to memory location 0.

7. Add the number 1 to the value of memory location 1.

8. Continue with instruction 3.

9. Output the value of memory location 0.

Although that is more readable than the binary soup, it is still rather un-
pleasant. It might help to use names instead of numbers for the instructions
and memory locations:

Set 'total' to o0

Set 'count' to 1

[Loop]

Set 'compare' to 'count’
Subtract 11 from 'compare’
If 'compare' is zero, continue at [end]
Add 'count' to 'total'

Add 1 to 'count'

Continue at [loop]

[end]

Output 'total’

At this point it is not too hard to see how the program works. Can you?
The first two lines give two memory locations their starting values: total will
be used to build up the result of the computation, and count keeps track of
the number that we are currently looking at. The lines using compare are

4 Introduction

[vww allitebooks.cond

http://www.allitebooks.org

probably the weirdest ones. What the program wants to do is see whether
count is equal to 11 in order to decide whether it can stop yet. Because the
machine is rather primitive, it can only test whether a number is zero and
make a decision (jump) based on that. So, it uses the memory location la-
beled compare to compute the value of count - 11 and makes a decision based
on that value. The next two lines add the value of count to the result and in-
crement count by 1 every time the program has decided that it is not 11 yet.
Here is the same program in JavaScript:

var total = 0, count = 1;
while (count <= 10) {
total += count;
count += 1;
}
print(total);

This gives us a few more improvements. Most importantly, there is no
need to specify the way we want the program to jump back and forth any
more. The magic word while takes care of that. It continues executing the
lines below it as long as the condition it was given holds: count <= 10, which
means “count is less than or equal to 10.” We no longer have to create a tem-
porary value and compare that to zero. This was an uninteresting detail, and
the power of programming languages is that they take care of uninteresting
details for us.

Finally, here is what the program could look like if we happened to have
the convenient operations range and sum available, which respectively create a
collection of numbers within a range and compute the sum of a collection of
numbers:

print(sum(range(1, 10)));

The moral of this story, then, is that the same program can be expressed
in long and short, unreadable and readable ways. The first version of the
program was extremely obscure, while this last one is almost English: print
the sum of the range of numbers from 1 to 10. (We will see in later chapters
how to build things like sum and range.)

A good programming language helps the programmer by providing a
more abstract means of expression. It hides uninteresting details, provides
convenient building blocks (such as the while construct), and, most of the
time, allows the programmer to add new building blocks (such as the sum
and range operations).

Introduction 5

6

What Is JavaScript?

Introduction

JavaScript is the language that is, at the moment, mostly being used to do all
kinds of clever (and sometimes annoying) things with pages on the World
Wide Web. In recent years, the language has started to be used in other con-
texts as well—for example, the node.js framework, a way to write fast server-
side programs in JavaScript, has recently been attracting a lot of attention. If
you are interested in programming, JavaScript is definitely a useful language
to learn. Even if you do not end up doing a lot of web programming, some
of the programs I will show you in this book will stay with you, haunt you,
and influence the programs you write in other languages.

There are those who will say lerrible things about the JavaScript language.
Many of these things are true. When I was required to write something in
JavaScript for the first time, I quickly came to despise it—it would accept al-
most anything I typed but interpret it in a way that was completely different
from what I meant. This had, admittedly, a lot to do with the fact that I did
not have a clue what I was doing, but there is a real issue here: JavaScript is
ridiculously liberal in what it allows. The idea behind this design was that it
would make programming in JavaScript easier for beginners. In actuality, it
mostly makes finding problems in your programs harder, because the system
will not point them out to you.

However, the flexibility of the language is also an advantage. It leaves
space for a lot of techniques that are impossible in more rigid languages,
and, as we will see in later chapters, it can be used to overcome some of
JavaScript’s shortcomings. After learning it properly and working with it for
a while, I have really learned to like this language.

Contrary to what the name suggests, JavaScript has very little to do with
the programming language named Java. The similar name was inspired by
marketing considerations, rather than good judgment. In 1995, when Java-
Script was introduced by Netscape, the Java language was being heavily mar-
keted and was gaining in popularity. Apparently, someone thought it a good
idea to try to ride along on this success. Now we are stuck with the name.

Related to JavaScript is a thing called ECMAScript. When browsers other
than Netscape started to support JavaScript, or something that resembled it,
a document was written to describe precisely how a JavaScript system should
work. The language described in this document is called ECMAScript, af-
ter the organization that standardized it. ECMAScript describes a general-
purpose programming language and does not say anything about the inte-
gration of this language in a web browser.

There have been several “versions” of JavaScript. This book describes
ECMAScript version 3, the first version that was (and is) widely supported
by various different browsers. In the past years, there have been several ini-
tiatives to further evolve the language, but, at least for web programming,
these extensions are useful only once they are widely supported by browsers,
and it will take a while for browsers to catch up with such developments. For-
tunately, newer versions of JavaScript will mostly be an extension of ECMA-
Script 3, so almost everything written in this book will continue to hold.

Trying Programs

When you want to run the code shown in this book and play with it, one
possibility is to go to http://eloquentjavascript.net/ and use the tools provided
there.

Another approach is to simply create an HTML file containing the pro-
gram and load it in your browser. For example, you could create a file called
test.html with the following content:

<html><body><script type="text/javascript">

var total = 0, count = 1;
while (count <= 10) {
total += count;
count += 1;
}

document.write(total);

</script></body></html>

Later chapters will tell you a little more about HTML and the way a
browser interprets it. Note that the operation print in the example has been

replaced with document.write. We will see how to create the print function in
Chapter 10.

Overview of This Book

The first three chapters will introduce the JavaScript language and teach
you how to write grammatically correct JavaScript programs. They introduce
control structures (such as the while word we saw in this introduction), func-
tions (writing your own operations), and data structures. This will teach you
enough to write simple programs.

Building on this basic understanding of programming, the next four
chapters discuss more advanced techniques—things that should make you
capable of writing more complicated programs without them turning into an
incomprehensible mess. First, Chapter 4 discusses handling errors and unex-
pected situations. Then, Chapters 5 and 6 introduce two major approaches
to abstraction: functional programming and object-oriented programming.
Chapter 7 gives some pointers on how to keep your programs organized.

The remaining chapters focus less on theory and more on the tools
that are available in a JavaScript environment. Chapter 8 introduces a sub-
language for text processing, and Chapters 9 to 12 describe the facilities
available to a program when it is running inside a browser—teaching you
how to manipulate web pages, react to user actions, and communicate with a
web server.

Introduction 7

Typographic Conventions

In this book, text written in a monospaced font should be understood to rep-
resent elements of programs—sometimes they are self-sufficient fragments,
and sometimes they just refer to part of a nearby program. Programs (of
which you have already seen a few), are written as follows:

function fac(n) {
return n == 0?2 1 : n % fac(n - 1);

Sometimes, in order to demonstrate what happens when certain expres-
sions are evaluated, the expressions are written in bold, and the produced
value is written below, with an arrow in front of it:

1+1

— 2

8 Introduction

Values

BASIC JAVASCRIPT: VALUES,
VARIABLES, AND CONTROL FLOW

Inside the computer’s world, there is only data—that
which is not data does not exist. All this data is in
essence just sequences of bits and is thus fundamen-
tally alike. Bits are any kinds of two-valued things, usu-
ally described as 0s and 1s. Inside the computer, they
take forms like a high or low electrical charge, a strong

or weak signal, or a shiny or dull spot on the surface of
a CD.

Though made of the same uniform stuff, every piece of data plays its own
role. In a JavaScript system, most of this data is neatly separated into things
called values. Every value has a type, which determines the kind of role it can
play. There are six basic types of values: numbers, strings, Booleans, objects,
functions, and undefined values.

To create a value, one must merely invoke its name. This is very con-
venient. You don’t have to gather building material for your values or pay

10

Chapter 1

for them; you just call for one, and woosh, you have it. They are not created
from thin air, of course. Every value has to be stored somewhere, and if you
want to use a gigantic amount of them at the same time you might run out
of computer memory. Fortunately, this is a problem only if you need them
all simultaneously. As soon as you no longer use a value, it will dissipate, leav-
ing behind only a few bits. These bits are recycled to make the next genera-
tion of values.

Numbers

Values of the number type are, as you might have guessed, numeric values.
They are written as numbers usually are:

144

Put that into a program, and it will cause the number 144 to come into
existence inside the computer. This is what 144 might look like in bits:

010000000110001000

If you were expecting something like 10010000 here (which is the integer
representation of 144) . . . good call. It might actually be represented like
that in some situations. But the standard describes JavaScript numbers as
64-bit floating-point values. This means they can also contain fractions and
exponents.

But we won’t go too deeply into binary representations here. The inter-
esting thing, to us, is the practical repercussions they have for our numbers.
For one thing, the fact that numbers are represented by a limited amount of
bits means they have a limited precision. A set of 64 1/0 values can represent
only 264 different numbers. This is a lot, though, more than 10'? (a 1 with
19 zeroes).

Not all whole numbers below 10 fit in a JavaScript number. For one,
there are also negative numbers, so one of the bits has to be used to store
the sign of the number. A bigger issue is that nonwhole numbers must also
be represented. To do this, 11 bits are used to store the position of the deci-
mal dot within the number.

That leaves 52 bits.! Any whole number less than 252, which is more
than 10'5, will safely fit in a JavaScript number. In most cases, the numbers
we are using stay well below that.

Fractional numbers are written by using a dot:

252

9.81

For very big or very small numbers, one can also use “scientific” notation
by adding an e, followed by the exponent of the number:

! Actually, 53, because of a trick that can be used to get one bit for free. Look up the “IEEE
754” format if you are curious about the details.

2.998e8

That is 2.998 x 10% = 299800000.

Calculations with whole numbers (also called integers) that fit in 52 bits
are guaranteed to always be precise. Unfortunately, calculations with frac-
tional numbers are generally not. Like 7 (pi) cannot be precisely expressed
by a finite amount of decimal digits, many numbers lose some precision
when only 64 bits are available to store them. This is a shame, but it causes
practical problems only in very specific situations. The important thing is to
be aware of it and treat fractional digital numbers as approximations, not as
precise values.

Arithmetic

The main thing to do with numbers is arithmetic. Arithmetic operations
such as addition or multiplication take two number values and produce a
new number from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition,
and the second stands for multiplication. Putting an operator between two
values will apply it to those values and produce a new value.

Does the example mean “add 4 and 100, and multiply the result by 11,”
or is the multiplication done before the adding? As you might have guessed,
the multiplication happens first. But, as in mathematics, this can be changed
by wrapping the addition in parentheses:

(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with
/. When operators appear together without parentheses, the order in which
they are applied is determined by the precedence of the operators. The exam-
ple show that multiplication comes before addition. / has the same prece-
dence as #, and likewise for + and -. When multiple operators with the same
precedence appear next to each other (asin 1 - 2 + 1), they are applied left
to right.

These rules of precedence are not something you should worry about.
When in doubt, just add parentheses.

There is one more arithmetic operator, which is possibly less familiar to
you. The % symbol is used to represent the modulo operation. X modulo Y is
the remainder of dividing X by Y. For example, 314 % 100 is 14, 10 % 3is 1, and
144 % 12 is 0. Modulo’s precedence is the same as that of multiplication and
division.

Basic JavaScript: Values, Variables, and Control Flow 11

12

Chapter 1

Strings

The next data type is the string. Its use is not as evident from its name as with
numbers, but it also fulfills a very basic role. Strings are used to represent
text. (The name supposedly derives from the fact that it strings together

a bunch of characters.) Strings are written by enclosing their content in
quotes:

"Patch my boat with chewing gum."
'You ain't never seen a donkey fly!'

Both single and double quotes can be used to mark strings—as long as
the quotes at the start and the end of the string match.

Almost anything can be put between quotes, and JavaScript will make a
string value out of it. But a few characters are tricky. You can imagine how
putting quotes between quotes might be hard. Newlines, the things you get
when you press ENTER, can also not be put between quotes—the string has
to stay on a single line.

To be able to have such characters in a string, the following trick is used:
Whenever a backslash (\) is found inside quoted text, it indicates that the
character after it has a special meaning. A quote that is preceded by a back-
slash will not end the string, but be part of it. When an n character occurs
after a backslash, it is interpreted as a newline. Similarly, a t after a backslash
means a tab character. Take the following string:

"This is the first line\nAnd this is the second"

The actual text contained is this:

This is the first line
And this is the second

There are, of course, situations where you want a backslash in a string to
be just a backslash, not a special code. If two backslashes follow each other,
they will collapse right into each other, and only one will be left in the result-
ing string value. This is how the string A newline character is written like
"\n" can be written:

"A newline character is written like \"\\n\"."

Strings cannot be divided, multiplied, or subtracted. The + operator can
be used on them. It does not add, but it concatenates; it glues two strings
together. The following line will produce the string "concatenate":

con" + "cat" + "e" + "nate"

There are more ways of manipulating strings, which we will discuss later.

Unary Operators

Not all operators are symbols; some are written as words. One example is the
typeof operator, which produces a string value naming the type of the value
you give it:

typeof 4.5
— "number"
typeof "x"
— "string"

The other operators we saw all operated on two values; typeof takes only
one. Operators that use two values are called binary operators, while those
that take one are called unary operators. The minus operator can be used
both as a binary operator and a unary operator:

- (10 - 2)

— -8

Boolean Valves, Comparisons, and Boolean Logic

Next, we look at values of the Boolean type. There are only two of these: true
and false. Here is one way to produce them:

352
— true
3<¢2
— false

I hope you have seen the > and < signs before. They mean, respectively,
“is greater than” and “is less than.” They are binary operators, and the result
of applying them is a Boolean value that indicates whether they hold true in
this case.

Strings can be compared in the same way:

"Aardvark" < "Zoroaster"
— true

The way strings are ordered is more or less alphabetic: Uppercase letters
are always “less” than lowercase ones, so "Z" < "a" is true, and nonalphabetic
characters (!, @ and so on) are also included in the ordering. The actual way
in which the comparison is done is based on the Unicode standard. This stan-
dard assigns a number to virtually every character one would ever need, in-
cluding characters from Greek, Arabic, Japanese, Tamil, and so on. Having
such numbers is practical for storing strings inside a computer—you can rep-
resent them as a sequence of numbers. When comparing strings, JavaScript
goes over them from left to right, comparing the numeric codes of the char-
acters one by one.

Basic JavaScript: Values, Variables, and Control Flow 13

Other similar operators are >= (“is greater than or equal to”), <= (“is less

than or equal t0”), == (“is equal to”), and != (“is not equal to”).
"Itchy" !'= "Scratchy"
— true

There are also some operations that can be applied to Boolean values
themselves. JavaScript supports three logical operators: and, or, and not.
These can be used to “reason” about Booleans.

The 83 operator represents logical and. It is a binary operator, and its
result is true only if both the values given to it are true.

true && false
— false
true && true
— true

|| is the logical or; it is true if either of the values given to it is true:

false || true
— true
false || false
— false

Not is written as an exclamation mark, !. It is a unary operator that flips
the value given to it; !true produces false, and !false gives true.

When mixing these Boolean operators with arithmetic and other opera-
tors, it is not always obvious when parentheses are needed. In practice, one
can usually get by with knowing that of the operators we have seen so far,
|| has the lowest precedence, then comes 8&, then the comparison opera-
tors (», ==, and so on), and then the rest. This has been chosen in such a way
that, in typical situations, as few parentheses as possible are necessary.

Expressions and Statements

All the examples so far have used the language like you would use a pocket
calculator: We made some values and then applied operators to them to get
new values. Creating values like this is an essential part of every JavaScript
program, but it is only a part. A piece of code that produces a value is called
an expression. Every value that is written directly (such as 22 or "psychoanalysis")
is an expression. An expression between parentheses is also an expression.
And a binary operator applied to two expressions, or a unary operator ap-
plied to one, is also an expression. Using these rules, you can build up ex-
pressions of arbitrary size and complexity. (JavaScript actually has a few
more ways of building expressions, which will be revealed when the time is
ripe.)

There exists a unit that is bigger than an expression. It is called a state-
ment. A program is built as a list of statements. Most statements end with a

14 Chapter 1

[vww allitebooks.cond

http://www.allitebooks.org

semicolon (;). The simplest kind of statement is an expression with a semi-
colon after it. This is a program:

1;
Ifalse;

Itis a useless program, though. An expression can be content to just
produce a value, but a statement amounts to something only if it somehow
changes the world. It could print something to the screen—that counts as
changing the world—or it could change the internal state of the program
in a way that will affect the statements that come after it. These changes are
called side effects. The statements in the previous example just produce the
values 1 and true and then immediately throw them away again. This leaves
no impression on the world at all and is not a side effect.

In some cases, JavaScript allows you to omit the semicolon at the end of
a statement. In other cases, it has to be there, or strange things will happen.
The rules for when it can be safely omitted are complex and weird—the ba-
sic idea is that if a program is invalid but inserting a semicolon can make it
valid, the program is treated as if the semicolon is there. In this book, every
statement that needs a semicolon will always be terminated by one, and I
strongly urge you to do the same in your own programs.

Variables

How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value has to be immediately used or it
will dissipate again. To catch and hold values, JavaScript provides a thing
called a variable.

var caught = 5 x 5;

A variable always has a name, and it can point at a value, holding on to
it. The previous statement creates a variable called caught and uses it to grab
hold of the number that is produced by multiplying 5 by 5.

After a variable has been defined, its name can be used as an expression
that produces the value it holds. Here’s an example:

var ten = 10;
ten * ten;
— 100

The word var is used to create a new variable. After var, the name of the
variable follows. Variable names can be almost every word, but they may not
include spaces. Digits can also be part of variable names—catch22 is a valid
name, for example—but the name must not start with a digit. The charac-
ters $ and _ can be used in names as if they were letters. So, for example, $_$
is a correct variable name.

Basic JavaScript: Values, Variables, and Control Flow 15

16

Chapter 1

If you want the new variable to immediately capture a value, which
is often the case, the = operator can be used to give it the value of some
expression.

When a variable points at a value, that does not mean it is tied to that
value forever. At any time, the = operator can be used on existing variables
to disconnect them from their current value and have them point to a new
one:

caught;

— 25

caught = 4 * 4;
caught;

— 16;

You should imagine variables as tentacles, rather than boxes. They do
not contain values; they grasp them—two variables can refer to the same value.
Only the values that the program still has a hold on can be accessed by it.
When you need to remember something, you grow a tentacle to hold on to
it, or you reattach one of your existing tentacles to a new value.

For example, to remember the amount of dollars that Luigi still owes
you, you create a variable for it. And then, when he pays back $35, you give
this variable a new value.

var luigisDebt = 140;
luigisDebt = luigisDebt - 35;
luigisDebt;

— 105

Keywords and Reserved Words

Note that names that have a special meaning, such as var, may not be used as
variable names. These are called keywords. There are also a number of words
that are “reserved for use” in future versions of JavaScript. These are also
officially not allowed to be used as variable names, though some browsers do
allow them. The full list is rather long:

abstract boolean break byte case catch char class const continue debugger
default delete do double else enum export extends false final finally float
for function goto if implements import in instanceof int interface long native
new null package private protected public return short static super switch
synchronized this throw throws transient true try typeof var void volatile
while with

Don’t worry about memorizing these, but remember that this might be
the problem when something does not work as expected. In my experience,
char (to store a one-character string) and class are the most common names
accidentally used.

The Environment

The collection of variables and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty. It
always contains a number of standard variables. When your browser loads a
page, it creates a new environment and attaches these standard values to it.
The variables created and modified by programs on that page survive until
the browser goes to a new page.

Functions

A lot of the values provided by the standard environment have the type func-
tion. A function is a piece of program wrapped in a value. Generally, this
piece of program does something useful, which can be evoked using the
function value that contains it. In a browser environment, the variable alert,
for example, holds a function that shows a little dialog box with a message. It
is used like this:

alert("Good morning!");

":The page at http://eloguentjavascript. et says:

@ Good morning!

Executing the code in a function is called invoking or applying it. The
notation for doing this uses parentheses. Every expression that produces a
function value can be invoked by putting parentheses after it, though usu-
ally you will be directly referring to the variable that holds the function. The
string value between the parentheses is given to the function, which uses it
as the text to show in the dialog box. Values given to functions are called ar-
guments (or sometimes parameters). alert needs only one of them, but other
functions might need a different number or different types of arguments.

Showing a dialog box is a side effect. A lot of functions are useful be-
cause of the side effects they produce. It is also possible for a function to
produce a value, in which case it does not need to have a side effect to be
useful. For example, there is a function Math.max, which takes two arguments
and gives back the biggest of the two:

Math.max(2, 4);
— 4

When a function produces a value, it is said to return it. Because things
that produce values are always expressions in JavaScript, function calls can
be used as part of bigger expressions:

Math.min(2, 4) + 100;
— 102

Basic JavaScript: Values, Variables, and Control Flow 17

18

Chapter 1

Chapter 2 discusses writing your own functions.

prompt and confirm

The standard environment provided by browsers contains a few more func-
tions for popping up windows. You can ask the user an “OK”/“Cancel” ques-
tion using confirm. This returns a Boolean: true if the user clicks OK and
false if the user clicks Cancel.

confirm("Shall we, then?");

":The page at http://eloguentja

@ Shall we, then?

¥ Cancel | +/ OK|

prompt can be used to ask an “open” question. The first argument is the
question; the second one is the text that the user starts with. A line of text
can be typed into the dialog window, and the function will return this as a
string.

prompt("Tell me everything you know.", "...");

T The page at http://eloguent javascript. net saus: '[F'V

@ Tell me everything you know.

B
¥ Cancel |/ 0K|

The print Function

As mentioned earlier, web browsers provide an alert function for showing a
string in a little window. This can be useful when trying out code, but click-
ing away all those little windows can get on one’s nerves. In this book we will
pretend there exists a function named print, which writes out its arguments
to some unspecified text output device. This will make it easier to write some
of the examples. But note that the JavaScript environment provided by web
browsers does not include this function.
For example, this will write out the letter X:

print("X");

Modifying the Environment

It is possible to give almost every variable in the environment a new value.
This can be useful but also dangerous. If you give alert the value 8, it is
no longer a function, and you won’t be able to use it to show messages

anymore. In Chapter 7, we will discuss how to protect against accidentally
redefining variables.

Program Structure

One-line programs are not very interesting. When you put more than one
statement into a program, the statements are executed, predictably enough,
one at a time, from top to bottom. This program has two statements; the first
one asks the user for a number, and the second one shows the square of that
number:

var theNumber = Number(prompt("Pick a number", ""));
alert("Your number is the square root of " + (theNumber % theNumber));

The function Number converts a value to a number, which is needed in
this case because the result of prompt is a string value. There are similar func-
tions called String and Boolean that convert values to those types.

Conditional Execution

Sometimes, you do not want all the statements in your program to always
be executed in the same order. For example, in the previous program, we
might want to show the square of the input only if the input is actually a
number.

The keyword if can be used to execute or skip a statement depending
on the value of a Boolean expression. We can do this:

var theNumber = Number(prompt("Pick a number", ""));
if (!isNaN(theNumber))
alert("Your number is the square root of " + (theNumber % theNumber));

The condition expression (!isNaN(theNumber) in this case) is provided, in
parentheses, after the word if. Only when this expression produces a true
value, the statement after the if is executed.

When Number is called on something like "moo”, which does not contain a
number, the result will be the special value NaN, which stands for “not a num-
ber.” The function isNaN is used to determine whether its argument is NaN, so
lisNaN(theNumber) is true when theNumber is a proper number.

Often you have not only code that must be executed when a certain con-
dition holds but also code that handles the other case, when the condition
doesn’t hold. The else keyword can be used, together with if, to create two
separate, parallel paths that execution can take:

if (true == false)
print("How confusing!");
else
print("True still isn't false.");

Basic JavaScript: Values, Variables, and Control Flow 19

20

Chapter 1

If we have more than two paths that we want to choose from, multiple
if/else pairs can be “chained” together. Here’s an example:

var num = prompt("Pick a number:", "o");

if (num < 10)
print("Small");
else if (num < 100)
print("Medium");

else
print(“Large");

The program will first check whether num is less than 10. If it is, it chooses
that branch, prints "Small", and is done. If it isn’t, it takes the else branch,
which itself contains a second if. If the second condition (< 100) holds,
that means the number is between 10 and 100, and "Medium" is printed. If
it doesn’t, the second and last else branch is chosen.

while and do Loops

Consider a program that prints out all even numbers from 0 to 12. One way
to write this is as follows:

print(0);
print(2);
print(4);
print(6);
print(8);
print(10);
print(12);

That works, but the idea of writing a program is to make something less
work, not more. If we needed all even numbers less than 1,000, the previous
would be unworkable. What we need is a way to automatically repeat some
code.

var currentNumber = 0;

while (currentNumber <= 12) {
print(currentNumber);
currentNumber = currentNumber + 2;

}

A statement starting with the word while creates a loop. A loop, much like
a conditional, is a disturbance in the sequence of statements—but rather
than executing a statements either once or not at all, it may cause them to
be repeated multiple times. The word while is followed by an expression in
parentheses, which is used to determine whether the loop will loop or finish.
As long as the Boolean value produced by this expression is true, the code in

the loop is repeated. As soon as it is false, the program goes to the bottom
of the loop and continues executing statements normally.

The variable currentNumber demonstrates the way a variable can track the
progress of a program. Every time the loop repeats, it is incremented by 2.
Then, at the beginning of every repetition, it is compared with the number
12 to decide whether the program has done all the work it has to do.

The third part of a while statement is another statement. This is the body
of the loop, the action or actions that must take place multiple times. If we
did not have to print the numbers, the program could have looked like this:

var currentNumber = 0;
while (currentNumber <= 12)
currentNumber = currentNumber + 2;

Here, currentNumber = currentNumber + 2; is the statement that forms the
body of the loop. We must also print the number, though, so the loop state-
ment must consist of more than one statement. Braces ({ and }) are used to
group statements into blocks. To the world outside the block, a block counts
as a single statement. In the example, this is used to include in the loop both
the call to print and the statement that updates currentNumber.

As an example that actually does something useful, we can write a pro-
gram that calculates and shows the value of 21° (2 to the 10th power). We
use two variables: one to keep track of our result and one to count how of-
ten we have multiplied this result by 2. The loop tests whether the second
variable has reached 10 yet and then updates both variables.

var result = 1;

var counter = 0;

while (counter < 10) {
result = result * 2;
counter = counter + 1;

}

result;

— 1024

The counter could also start at 1 and check for <= 10, but, for reasons
that will become apparent later, it is a good idea to get used to counting
from 0.

A very similar control structure is the do loop. It differs only on one
point from a while loop: it will execute its body at least once, and only then
start testing whether it should stop. To reflect this, the test is writen below
the body of the loop:

do {
var input = prompt("Who are you?");
} while (!input);

Basic JavaScript: Values, Variables, and Control Flow 21

22

Chapter 1

Indenting Code

You will have noticed the spaces I put in front of some statements. These are
not required—the computer will accept the program just fine without them.
In fact, even the line breaks in programs are optional. You could write them
as a single long line if you felt like it. The role of the indentation inside
blocks is to make the structure of the code stand out. Because new blocks
can be opened inside other blocks, it can become hard to see where one
block ends and another begins when looking at a complex piece of code.
When lines are indented, the visual shape of a program corresponds to the
shape of the blocks inside it. I like to use two spaces for every open block,
but tastes differ—some people use four spaces, and some people use tabs.

for Loops

The uses of while we have seen so far all show the same pattern. First, a
“counter” variable is created. This variable tracks the progress of the loop.
The while itself contains a check, usually to see whether the counter has
reached some boundary yet. Then, at the end of the loop body, the counter
is updated.

A lot of loops fall into this pattern. For this reason, JavaScript, and simi-
lar languages, also provide a slightly shorter and more comprehensive form:

for (var number = 0; number <= 12; number = number + 2)
print(number);

This program is exactly equivalent to the earlier even-number-printing
example. The only change is that all the statements that are related to the
“state” of the loop are now on one line. The parentheses after the for should
contain two semicolons. The part before the first semicolon initializes the
loop, usually by defining a variable. The second part is the expression that
checks whether the loop must still continue. The final part updates the state of
the loop. In most cases, this is shorter and clearer than a while construction.

Here is the code that computes 210, using for instead of while:

var result = 1;

for (var counter = 0; counter < 10; counter = counter + 1)
result = result x 2;

result;

— 1024

Note that even if no block is opened with a {, the statement in the loop
is still indented two spaces to make it clear that it “belongs” to the line be-
fore it.

Breaking Out of a Loop

When a loop does not always have to go all the way through to its end, the
break keyword can be useful. It is a statement that immediately jumps out of
the current loop, continuing after it. This program finds the first number
that is greater than 20 and divisible by 7:

for (var current = 20; ; current++) {
if (current % 7 == 0)
break;
}
current;
— 21

The trick with the modulo (%) operator is an easy way to test whether a
number is divisible by another number. If it is, the remainder of their divi-
sion, which is what modulo gives you, is zero.

This for construct does not have a part that checks for the end of the
loop. This means that it is dependent on the break statement inside it to
ever stop. As an aside, the same loop could also have been written simply
as follows:

for (var current = 20; current % 7 != 0; current++)
5 // Do nothing.

In this case, the body of the loop is empty. A lone semicolon can be
used to produce an empty statement.

Updating Variables Succinctly

A program, especially when looping, often needs to “update” a variable with
avalue that is based on its previous value, as in counter = counter + 1. JavaScript
provides a shortcut for this: counter += 1. This also works for many other op-
erators, as in result *= 2 to double the value of result or as in counter -= 1 to
count downward.

For counter += 1 and counter -= 1, there are even shorter versions: counter++
and counter--.

Once again, the example becomes a little shorter:

var result = 1;
for (var counter = 0; counter < 10; counter++)
result *= 2;

Basic JavaScript: Values, Variables, and Control Flow 23

24

Chapter 1

Dispatching on a Valve with switch

It is common for code to look like this:

if (variable == "value1") actioni();
else if (variable == "value2") action2();
else if (variable == "value3") action3();

else defaultAction();

There is a construct called switch that is intended to solve such a “dis-
patch” in a more direct way. Unfortunately, the syntax JavaScript uses for
this (which it inherited from the C and Java line of programming languages)
is somewhat awkward—sometimes a chain of if statements still looks better.
Here is an example:

switch(prompt("What is the weather like?")) {
case "rainy":
print("Remember to bring an umbrella.");
break;
case "sunny":
print("Dress lightly.");
case "cloudy":
print("Go outside.");
break;
default:
print("Unknown weather type!");
break;

Inside the block opened by switch, you may put any number of case la-
bels. The program will jump to the label that corresponds to the value that
switch was given, or to default if no matching value is found. Then it start ex-
ecuting statements there, and continues past other labels, until it reaches a
break statement. In some cases, such as the "sunny" case in the example, this
can be used to share some code between cases (it recommends going out-
side for both sunny and cloudy weather). But beware, since it is very easy to
forget such a break, which will cause the program to execute code you do not
want executed.

Capitalization

I have been using some rather odd capitalization in my variable names. Be-
cause you cannot have spaces in these names—the computer would read
them as two separate variables—your choices for writing a variable name
that is made of several words are limited to the following: fuzzylittleturtle,
fuzzy little turtle, FuzzylittleTurtle, or fuzzylLittleTurtle. The first exam-
ple is hard to read. Personally, I like using underscores, though it is a lit-
tle painful to type. However, the standard JavaScript functions, and most

JavaScript programmers, follow the last example. It is not hard to get used to
little things like that, so we will just follow the crowd and capitalize the first
letter of every word after the first.

In a few cases, such as the Number function, the first letter of a variable
is also capitalized. This was done to mark this function as a constructor.
What a constructor is will become clear in Chapter 6. For now, the impor-
tant thing is not to be bothered by this apparent lack of consistency.

Comments

In one of the example programs, I showed a part that said // Do nothing.
This might have looked a bit suspicious to you. It is often useful to include
extra text in a program. The most common use for this is adding some ex-
planations to the program.

// The variable counter, which is about to be defined, is going
// to start with a value of 0, which is zero.
var counter = 0;
// Next, we loop. Hold on to your hat.
while (counter < 100 /x counter is less than one hundred */)
/x Every time we loop, we INCREMENT the value of counter,
You could say we just add one to it. */
counter++;
// And here, we are done.

This kind of text is called a comment. The rules are like this: /x starts a
comment that goes on until a */ is found. // starts another kind of com-
ment, which just goes until the end of the line.

As you can see, even the simplest programs can be made to look big,
ugly, and complicated by adding a lot of comments to them. On the other
hand, when a piece of code actually is difficult or confusing, a comment ex-
plaining its purpose and workings can help a lot.

More on Types

The previous should enable you to write and understand simple JavaScript
programs. However, before closing the chapter, a few more subtleties have
to be cleared up.

Undefined Valves

It is possible to define a variable using var something;, without giving it a
value. What happens when you take the value of such a variable?

var mysteryVariable;
mysteryVariable;
— undefined

Basic JavaScript: Values, Variables, and Control Flow 25

26

Chapter 1

In terms of tentacles, this variable ends in thin air—it has nothing to
grasp. When you ask for the value of an empty place, you get a special value
named undefined. Functions that do not return a specific value but are called
for their side effects, such as print and alert, also return an undefined value.

There is also a similar value, null, whose meaning is “this value is de-
fined, but it does not have a value.” The difference in meaning between
undefined and null is mostly academic and usually not very interesting. In
practical programs, it is often necessary to check whether something “has
avalue.” In these cases, the expression something == undefined may be used,
because even though they are not exactly the same value, the expression
null == undefined will produce true.

Avtomatic Type Conversion

The previous brings us to another tricky subject. Consider the following ex-
pressions and the Boolean values they produce:

false == 0;
— true
"o 0;
— true
"5" == 5;
— true

When comparing values that have different types, JavaScript uses a com-
plicated and confusing set of rules. I will not explain them precisely, but in
most cases it just tries to convert one of the values to the type of the other
value. However, when null or undefined occurs, it produces true only if both
sides are null or undefined.

What if you want to test whether a variable refers to the value false? The
rules for converting strings and numbers to Boolean values state that 0, NaN,
and the empty string count as false, while all the other values count as true.
Because of this, the expression variable == false is also true when variable
refers to 0 or "". For cases like this, where you do not want any automatic

type conversions to happen, there are two extra operators: === and !==. The
first tests whether a value is precisely equal to the other, and the second tests
whether it is not precisely equal. When rewritten to use ===, the expressions

in the previous example will return false:

null === undefined;
— false

false === 0;

— false

L

— false

Values given as the condition in an if, while, or for statement do not
have to be Booleans. They will be automatically converted to Booleans be-
fore they are checked. This means that the number 0, the empty string "",
null, undefined, and of course false will all count as false.

The fact that all other values are converted to true in this case makes
it possible to leave out explicit comparisons in many situations. If a vari-

able is known to contain either a string or null, one could check for this

very simply:

var maybeNull = null;
// ... mystery code that might put a string into maybeNull ...
if (maybeNull)

print("maybeNull has a value");

That would work except in the case where the mystery code gives
maybeNull the value "". An empty string is false, so nothing is printed. De-
pending on what you are trying to do, this might be wrong. It is often a good
idea to add an explicit === null or === false in cases like this to prevent sub-
tle mistakes. The same occurs with number values that might be o.

Dangers of Automatic Type Conversion

There are some other situations that cause automatic type conversions to
happen. If you add a nonstring value to a string, the value is automatically
converted to a string before it is concatenated. If you multiply a number and
a string, JavaScript tries to make a number out of the string.

"Apollo" + 5;

— "Apollo5"
null + "ify";

— "nullify"

"5" * 53

— 25
"strawberry" * 5;
— NaN

The NaN in the previous example refers to the fact that a strawberry is not
a number. All arithmetic operations on the value NaN result in NaN, which is
why multiplying it by 5, as in the example, still gives a NaN value. Also, and
this can be disorienting at times, NaN == NaN equals false. Checking whether a
value is NaN can be done with isNaN function, as we saw before.

These automatic conversions can be very convenient, but they are also
rather weird and error prone. Even though + and * are both arithmetic op-
erators, they behave completely different in the example. In my own code,

I use + on nonstrings a lot but make it a point not to use * and the other nu-
meric operators on string values. Converting a number to a string is always
possible and straightforward, but converting a string to a number may not
even work (as in the last line of the example). We can use Number to explicitly

Basic JavaScript: Values, Variables, and Control Flow 27

28

Chapter 1

convert the string to a number, making it clear that we might run the risk of
getting a NaN value.

Number("5") * 5;
— 25

More on && and Il

When we discussed the Boolean operators 8& and || earlier, I claimed they
produced Boolean values. This turns out to be a bit of an oversimplification.
If you apply them to Boolean values, they will indeed return Booleans. But
they can also be applied to other kinds of values, in which case they will re-
turn one of their arguments.

What || really does is this: It looks at the value to the left of it first. If
converting this value to a Boolean would produce true, it returns this left
value, and otherwise it returns the one on its right. Check for yourself that
this does the correct thing when the arguments are Booleans. Why does it
work like that? It turns out this is very practical. Consider this example:

var input = prompt("What is your name?", "Kilgore Trout");
print("Well hello " + (input || "dear"));

If the user clicks Cancel or closes the prompt dialog box in some other
way without giving a name, the variable input will hold the value null or "".
Both of these would give false when converted to a Boolean. The expression
input || "dear" can in this case be read as “the value of the variable input, or
else the string "dear".” It is an easy way to provide a “fallback” value.

The 88& operator works similarly, but the other way around. When the
value to its left is something that would give false when converted to a Bool-
ean, it returns that value, and otherwise it returns the value on its right.

Another important property of these two operators is that the expres-
sion to their right is evaluated only when necessary. In the case of true || X,
no matter what X is, the result will be true, so X is never evaluated, and if it
has side effects, they never happen. The same goes for false & X. The fol-
lowing will show only a single alert window:

false || alert("I'm happening!");
false &8 alert("Not me.");

FUNCTIONS

We have already used several functions in the previous
chapter—things such as alert and print—to order the
machine to perform a specific operation. In this chap-
ter, we will start creating our own functions, making it
possible to extend the vocabulary that we have avail-
able. In a way, this resembles defining our own words
inside a story we are writing to increase our expressive-
ness. Although such a thing is considered rather bad
style in prose, in programming it is indispensable.

The Anatomy of a Function Definition

In its most basic form, a function definition looks like this:

function square(x) {
return x * Xx;

}

square(12);
— 144

30

Chapter 2

Here, square is the name of the function. x is the name of its (first and
only) argument. return x * x; is the body of the function.

The keyword function is always used when creating a new function. When
it is followed by a variable name, the new function will be stored under this
name. After the name comes a list of argument names and finally the body
of the function. Unlike those around the body of while loops or if state-
ments, the braces around a function body are obligatory.

The keyword return, followed by an expression, is used to determine the
value the function returns. When control comes across a return statement, it
immediately jumps out of the current function and gives the returned value
to the code that called the function. A return statement without an expres-
sion after it will cause the function to return undefined.

A body can, of course, have more than one statement in it. Here is a
function for computing powers (with positive, integer exponents):

function power(base, exponent) {
var result = 1;
for (var count = 0; count < exponent; count++)
result *= base;
return result;

}

power(2, 10);
— 1024

The arguments to a function behave like variables—but ones that are
given a value by the caller of the function, not the function itself. The func-
tion is free to give them a new value though, just like normal variables.

Definition Order

Even though function definitions occur as statements between the rest of the
program, they are not part of the same timeline. In the following example,
the first statement can call the future function, even though its definition
comes later:

print("The future says: ", future());

function future() {
return "We STILL have no flying cars.";

}

What is happening is that the computer looks up all function defini-
tions, and stores the associated functions, beforeit starts executing the rest of
the program. The nice thing about this is that we do not have to think about
the order in which we define and use our functions—they are all allowed to
call each other, regardless of which one is defined first.

Local Variables

A very important property of functions is that the variables created inside
of them are local to the function. This means, for example, that the result
variable in the power example will be newly created every time the function
is called and will no longer exist after the function returns. In fact, if power
were to call itself, that call would cause a new, distinct result variable to be
created and used by the inner call and would leave the variable in the outer
call untouched.

This “localness” of variables applies only to the arguments of the func-
tion and those variables that are declared with the var keyword inside the
function. It is possible to access global (nonlocal) variables inside a function,
as long as you haven’t declared a local variable with the same name.

The following code demonstrates this. It defines (and calls) two func-
tions that both change the value of the variable x. The first one does not de-
clare the variable as local and thus changes the global variable defined at the
start of the example. The second does declare it and ends up changing only
the local variable.

var x = "A";

function setVarToB() {
x = "B";

}

setVarToB();

X5

— "B";

function setVarToC() {
var x;
x ="C";

}

setVarToC();

X5

— "B";

As an aside, note that these functions contain no return statements, be-
cause they are called for their side effects, not to create a value. The actual
return value of such functions is undefined.

Nested Scope

In JavaScript, it is not enough to simply distinguish between global and local
variables. In fact, there can be any number of stacked (or nested) variable
scopes. Functions defined inside other functions can refer to the local vari-
ables in their parent function, functions defined inside those inner func-
tions can refer to variables in both their parent and their grandparent func-
tions, and so on.

Functions 31

32

Chapter 2

Take a look at this example. It defines a function that takes the absolute
(positive) value of number and multiplies that by factor.

function multiplyAbsolute(number, factor) {
function multiply(number) {
return number % factor;
}
if (number < 0)
return multiply(-number);
else
return multiply(number);

The example is intentionally confusing in order to demonstrate a subtle-
ty—it contains two separate variables named number. When the body of the
function multiply runs, it uses the same factor variable as the outer func-
tion but has its own number variable (created for the argument of that name).
Thus, it multiplies its own argument by the factor passed to multiplyAbsolute.

What this comes down to is that the set of variables visible inside a func-
tion is determined by the place of that function in the program text. All var-
iables that were defined “above” a function’s definition are visible, which
means both those in function bodies that enclose it and those at the top lev-
el of the program. This approach to variable visibility is called lexical scoping.

People who have experience with other programming languages might
expect that a block of code (between braces) also produces a new local envi-
ronment. Not in JavaScript. Functions are the only things that create a new
scope. You are allowed to use free-standing blocks:

var something = 1;
{
var something = 2;
// Do stuff with variable something...

}
// Outside of the block again...

But the something inside the block refers to the same variable as the one
outside the block. In fact, although blocks like this are allowed, they are only
useful to group the body of an if statement or a loop. (Most people agree
that this is a bit of a design blunder by the designers of JavaScript, and later
versions of the language will add some way to define variables that stay inside
blocks.)

The Stack

To understand how functions are called and how they return, it is useful
to be aware of a thing called the stack. When a function is called, control is
given to the body of that function. When that body returns, the code that
called the function is resumed. Thus, while the body is running, the com-
puter must remember the context from which the function was called so
that it knows where to continue afterward. The place where this context is
stored is the stack.

The reason that it is called a stack has to do with the fact that, as we saw,
a function body can again call a function. Every time a function is called, an-
other context has to be stored. One can visualize this as a stack of contexts.
Every time a function is called, the current context is thrown on top of the
stack. When a function returns, the context on top is taken off the stack and
resumed.

This stack requires space in the computer’s memory to be stored. When
the stack grows too big, the computer will give up with a message like “out of
stack space” or “too much recursion.” The following code illustrates that—it
asks the computer a really hard question, which causes an infinite back-and-
forth between two functions. Or rather, it would be infinite, if we had an
infinite stack. As it is, it will run out of space, or “blow the stack.”

function chicken() {
return egg();

}

function egg() {
return chicken();

}
print(chicken() +

came first.");

Function Valves

As I mentioned in the previous chapter, everything in JavaScript is a value,
including functions. This means that the names of defined functions can
be used like normal variables, and their content can be passed around and
used in bigger expressions. The following example will call the function in
variable a, unless that is a “false” value (like null), in which case it chooses
and calls b instead.

var a = null;
function b() {return "B";}
(CHIRDIOH

—, "g"

Functions 33

34

Chapter 2

The bizarre-looking expression (a || b)() applies the “call without ar-
guments” operation represented by () to the expression (a || b). If that ex-
pression does not produce a function value, this will of course produce an
error. But when it does, as in the example, the resulting value is called, and
all is well.

When we simply need an unnamed function value, the function keyword
can be used as an expression, like this:

var a = null;
(a || function(){return "B";})();

—, "g"

This produces the same effect as the previous example, except that this
time no function named b is defined. The “nameless” (or “anonymous”)
function expression function(){return "B";} simply creates a function value.
It is possible to specify arguments or multistatement bodies in such defini-
tions as well.

In Chapter 5, the first-class nature of functions (which is the usual term
used for the “functions are values” concept) will be further explored and
used to write some very clever code.

Closure

The nature of the function stack, combined with the ability to treat func-
tions as values, brings up an interesting question. What happens to local
variables when the function call that created them is no longer on the stack?
The following code illustrates this:

function createFunction() {
var local = 100;
return function(){return local;};

}

When createFunction is called, it creates a local variable and then re-
turns a function that returns this local variable. The question of how to
treat this situation is known as the “upwards Funarg problem,” and many
old programming languages simply forbid it. JavaScript, fortunately, is from
a generation of languages that solve this problem by going out of their way
to preserve the local variable as long as it is in any way reachable. Doing
createFunction()() (creating the function and then calling it) results in the
value 100 being returned, as hoped.

This feature is called closure, and a function that “closes over” some local
variables is called a closure. This behavior not only frees you from having to
worry about variables still being “alive” but also allows for some creative use
of function values.

vww . allitebooks.cond

http://www.allitebooks.org

For example, the following function makes it possible to dynamically
create function values that add a certain number to their argument:

function makeAdder(amount) {
return function(number) {
return number + amount;

};
}
var addTwo = makeAdder(2);
addTwo(3);
— 5
Optional Arguments

It turns out we can execute the following code:

alert("Hello", "Good Evening", "How do you do?", "Good-bye");

The function alert officially accepts only one argument. Yet when you
call it like this, it does not complain. It simply ignores the other arguments
and shows you Hello.

JavaScript is notoriously nonstrict about the amount of arguments you
pass to a function. If you pass too many, the extra ones are ignored. If you
pass too few, the missing ones get the value undefined. The downside of this is
that it is possible—even likely—that you’ll accidentally pass the wrong num-
ber of arguments to functions, and no one will tell you about it.

The upside of this is that it can be used to have a function take “optional
arguments.” For example, this version of power can be called with only a sin-
gle argument, in which case it behaves like square:

function power(number, exponent) {
var result = 1;
if (exponent === undefined)
exponent = 2;
for (var count = 0; count < exponent; count+t+)
result *= base;
return result;

}

In the next chapter, we will see a way in which a function body can get at
the exact list of arguments that were passed to it. This can be useful, because
it makes it possible to have a function accept any number of arguments.
print makes use of this—the following prints R2D2:

print("R", 2, "D", 2);

Functions 35

36

Techniques

Chapter 2

Now that we have a rather good idea of what JavaScript functions are and
how they function, we will look at some considerations that come into play
when designing and writing them.

Avoiding Repefition

The reason functions were invented is to reuse pieces of code. Programs
typically need to perform the same operation (such as exponentiation) mul-
tiple times, and when you repeat the full code needed to perform the opera-
tion every time you need it, your program is going to be a lot longer.

Not only will it be longer, but it will also be more boring to read and
more likely to contain errors. For example, the power function we defined
does not work with negative exponents. If you find out that those are also
needed, you’d have to update all the places where you take the power of
a number and fix them. If you defined a function, all it takes is fixing the
function, and all uses of it will suddenly work correctly.

When finding you need the same piece of code more than once and
deciding to move it into a function, you need to determine how much of
the code should go into the function and what the interface to the function
should look like. For example, say we have some code to print a zero-padded
number, like this:

var number = 5;
if (number < 10)
print("0", number);
else
print(number);

But it turns out we need to print padded numbers in other places as
well. We now have several choices to make.

Do we make a function at all? The occurrences of the code might be
in different projects, making it more work to share functions. Usually, the
answer to this is “yes,” regardless.

Does the function include the printing action, or does it just produce
a zero-padded string? The best functions are those that perform a single,
simple action, since they are easier to name (and thus easier to understand)
and can be used in a wider variety of situations. So, write a zeroPad function,
rather than a printZeroPadded function. print(zeroPad(5)) is no harder to type
than printZeroPadded(5), after all.

How smart and versatile should the function be? We could write any-
thing from a terribly simple “pad this number with a single zero” function
to an involved formatted-output system that handles fractional numbers,
rounding, and table layout. A good principle is to not add cleverness unless
you are absolutely sure you are going to need it. It is tempting to fall into
the trap of writing complicated “frameworks” for every little bit of function-
ality you need and never getting any actual work done. In this case, a second

argument that specifies the width of the resulting number sounds like a use-
ful, simple addition.

function zeroPad(number, width) {
var string = String(Math.round(number));
while (string.length < width)
string = "0" + string;
return string;

}

Math.round is a function that rounds a number; String is a function that
converts its argument to a string.

Purity

“Purity,” when applied to functions, is not about their lack of contaminants
or their sexual behavior, but about whether they have side effects. Pure func-
tions are the things that mathematicians mean when they say “function.”
They always return the same value when given the same arguments and do
not have side effects.

The distinction between pure and nonpure functions is interesting mostly
in terms of good code design and mental overhead. If a function is pure, a
call to it can be mentally substituted by its result without changing the mean-
ing of the code. When you are not sure that it is working correctly, you can
test it by simply calling it and know that if it works in that context, it will
work in any context. Nonpure functions might return different values based
on all kinds of factors and have side effects that might be hard to test and
think about.

Because pure functions are self-sufficient, they are likely to be useful and
relevant in a wider range of situations than nonpure ones. Take the zeroPad
function that we wrote earlier, for example. Had we written printZeroPadded
instead, the function would have been useful only in situations where a print
function had been defined and where we wanted to directly print our padded
number. When defined as a pure function from a number to a string, the
function depends on less context and is more generally applicable.

Of course, zeroPad solves a different problem than print, and no pure
function is going to be able to do what print does, because it requires a side
effect. In many cases, nonpure functions are precisely what you need. In
other cases, a problem can be solved with a pure function, but the nonpure
variant is much more convenient or efficient. Generally, when something
can naturally be expressed as a pure function, write it that way. You’ll thank
yourself later. If not, don’t feel dirty for writing nonpure functions.

Recursion

As mentioned earlier, it is valid for a function to call itself. A function that
calls itself is called recursive. Recursion allows for some interesting function
definitions. Look at this alternate implementation of power:

Functions 37

38

Chapter 2

function power(base, exponent) {
if (exponent == 0)
return 1;
else
return base * power(base, exponent - 1);

This is rather close to the way mathematicians define exponentiation,
and conceptually it looks a lot nicer than the earlier version. It sort of loops,
but there is no while, for, or even a local side effect to be seen. By calling
itself, the function produces the same effect that was produced with a for
loop before.

There is one important problem: In most JavaScript implementations,
this second version is about 10 times slower than the first one. In JavaScript,
running through a simple loop is a lot cheaper than calling a function multi-
ple times. On top of that, using a sufficiently large exponent to this function
might cause the stack to overflow.

The dilemma of speed versus elegance is an interesting one and is not
limited to debates about recursion. In many situations, an elegant, intuitive,
and often short solution can be replaced by a more convoluted but faster
solution.

In the case of the earlier power function, the inelegant version is still suf-
ficiently simple and easy to read. It does not make much sense to replace it
with the recursive version. Often, though, the concepts a program is deal-
ing with get so complex that giving up some efficiency in order to make the
program more straightforward becomes an attractive choice.

The basic rule, which has been repeated by many programmers and with
which I wholeheartedly agree, is to not worry about efficiency until your pro-
gram is provably too slow. When it is, find out which parts are taking up the
most time, and start exchanging elegance for efficiency in those parts.

Of course, the previous rule doesn’t mean one should start ignoring
performance altogether. In many cases, like the power function, not much
simplicity is gained by the “elegant” approach. In other cases, an experi-
enced programmer can see right away that a simple approach is never going
to be fast enough.

The reason I am making a big deal out of this is that surprisingly many
programmers focus fanatically on efficiency, even in the smallest details. The
result is bigger, more complicated, and often less correct programs, which
take longer to write than their more straightforward equivalents and often
run only marginally faster.

Recursion is not always just a less-efficient alternative to looping. Some
problems are much easier to solve with recursion than with loops. Most
often these are problems that require exploring or processing several
“branches,” each of which might branch out again into more branches.

Consider this puzzle: By starting from the number 1 and repeatedly ei-
ther adding 5 or multiplying by 3, an infinite amount of new numbers can

be produced. How would you write a function that, given a number, tries to
find a sequence of additions and multiplications that produce that number?
For example, the number 13 could be reached by first multiplying 1 by 3
and then adding 5 twice. The number 15 cannot be reached at all.
Here is the solution:

function findSequence(goal) {
function find(start, history) {
if (start == goal)
return history;
else if (start > goal)
return null;
else
return find(start + 5, "(" + history + " + 5)") ||
find(start = 3, "(" + history + " * 3)");
}

return find(1, "1");

}

findSequence(24);
— (((1 % 3) +5) * 3)

Note that it doesn’t necessarily find the shortest sequence of operations—
it is satisfied when it finds any sequence at all.

How does it work? The inner find function, by calling itself in two dif-
ferent ways, explores both the possibility of adding 5 to the current number
and of multiplying it by 3. When it finds the number, it returns the history
string, which is used to record all the operators that were performed to get
to this number. It also checks whether the current number is bigger than
goal. If it is, we should stop exploring this branch, since it is not going to
give us our number.

The use of the || operator in the example can be read as “return the so-
lution found by adding 5 to start, and if that fails, return the solution found
by multiplying start by 3.” Equivalent (but more wordy) code would look
like this:

else {
var found = find(start + 5, "(" + history + " + 5)");
if (found == null)
found = find(start = 3, "(" + history + " * 3)");
return found;

}

Functions 39

DATASTRUCTURES: OBJECTS AND
ARRAYS

In this chapter, we will solve a programming problem
that involves extracting data from text. In the process,
we learn about object values and arrays and how to use
them.

The Problem: Aunt Emily’s Cats

Consider the following situation: Your crazy Aunt Emily, who is rumored to
have more than 50 cats living with her (you never managed to count them),
regularly sends you emails to keep you up-to-date on her exploits. They usu-
ally look like this:

Dear nephew,

Your mother told me you have taken up skydiving. Is this true?
You watch yourself, young man! Remember what happened to my
husband? And that was only from the second floor!

Anyway, things are very exciting here. I have spent all week trying
to get the attention of Mr. Drake, the nice gentleman who moved
in next door, but I think he is afraid of cats. Or allergic to them?

42

Chapter 3

I'am going to try putting Fat Igor on his shoulder next time I see
him, very curious what will happen.

Also, the scam I told you about is going better than expected. I
have already gotten back five “payments,” and only one complaint.
It is starting to make me feel a bit bad though. And you are right
that it is probably illegal in some way.

[etc., etc.]

Much love,
Aunt Emily

died 27,/04,/2006: Black Leclére

born 05/04/2006 (mother Lady Penelope): Red Lion, Doctor
Hobbles the 3rd, Little Iroquois

To humor the old dear, you would like to keep track of the genealogy
of her cats, so you can add things like “P.S. I hope Doctor Hobbles the 2nd
enjoyed his birthday this Saturday!” or “How is old Lady Penelope doing?
She’s five years old now, isn’t she?”—preferably without accidentally asking
about dead cats. You are in the possession of a large quantity of old emails
from your aunt, and fortunately she is very consistent in always putting infor-
mation about the cats’ births and deaths at the end of her emails in precisely
the same format.

You are, of course, lazy and hardly inclined to go through all those
emails by hand. But we are, coincidentally, just in need of an example prob-
lem. Let’s try to work out a program that does the work for us. For a start, we
will write a program that gives us a list of cats that are still alive after the most
recent email.

(Before you ask, at the start of the correspondence, Aunt Emily had only
a single cat: Spot. She was still rather conventional in those days.)

It usually pays to have some kind of clue what one’s program is going to
do before starting to type. Here’s a plan:

1. Start with a set of cat names that has only “Spot” in it.

2. Go over every email in our archive, in chronological order.
3. Look for paragraphs that start with “born” or “died.”
4

Add the names from paragraphs that start with “born” to our set of
names.

5. Remove the names from paragraphs that start with “died” from our set.
Taking the names from a paragraph goes like this:

1. Find the colon in the paragraph.
Take the part after this colon.

Split this part into separate names by looking for commas.

It may require some suspension of disbelief to accept that Aunt Emily
always uses this exact format, and that she never forgets or misspells a name,
but that is just how your aunt is.

Basic Data Structures

Before we can write this program, we will need to go over a few new lan-
guage features.

Properties

Some JavaScript values have other values associated with them. These asso-
ciations are called properties. Every string, for example, has a property called
length, which refers to an integer, the amount of characters in that string.

Properties can be accessed in two ways, either with brackets or using dot
notation:

var text = "purple haze";
text["length"];

— 11

text.length;

— 11

The second way is a shorthand for the first, and it works only when the
name of the property is a valid variable name—when it doesn’t have any
spaces or symbols in it and does not start with a digit character.

Trying to read a property from the values null and undefined will cause
an error. Numbers and Booleans do have properties, but none of them is
interesting or useful enough to be discussed here.

Object Valves

In most value types, if they have properties at all, they are fixed, and you are
not allowed to change them. (A string’s length always stays the same, for ex-
ample.) However, there is one type of value, objects, where properties can be
freely added, removed, and changed. The main role of objects, in fact, is to
be a collection of properties.

An object can be written like this:

var cat = {color: "gray", name: "Spot", size: 46};
cat.size = 47;

cat.size;

— 47

delete cat.size;

cat.size;

— undefined

Data Structures: Objects and Arrays 43

44

Chapter 3

Like variables, each property attached to an object is labeled by a name.
Property names can be any strings, though, not just those that are valid vari-
able names. The first statement creates an object in which the property
"color" refers to the string "gray", the property "name" to the string "Spot", and
the property "size" to the number 46. The second statement gives the prop-
erty named size a new value, which is done in the same way as modifying a
variable.

Trying to read a nonexistent property gives the value undefined. The key-
word delete is used to cut off properties.

If a property that does not yet exist is set with the = operator, it is added
to the object, as in the following example:

var empty = {};
empty.notReally = 1000;
enpty;

— {notReally: 1000}

Properties whose names are not valid variable names cannot be accessed
with the dot notation, but only using brackets. When creating an object,
these have to be quoted, unless they are numbers:

var thing = {"gabba gabba": "hey", 5: 10};
thing["5"];

— 10

thing[2 + 3];

— 10

delete thing["gabba gabba"];

The part between the brackets can be any expression. It is converted to
a string to determine the property name it refers to. Thus, you can also use
variables to name properties:

var propertyName = "length";
var text = "coco";
text[propertyName];

— 4

The operator in can be used to test whether an object has a certain prop-
erty. It produces a Boolean.

var chineseBox = {};
chineseBox.content = chineseBox;
"content" in chineseBox;

— true

"content" in chineseBox.content;
— true

Objects as Sets

The solution for the cat problem talks about a set of names. A set is a collec-
tion of values in which no value occurs more than once. If names are strings,
can you think of a way to use an object to represent a set of names?

The idea, of course, would be to use the names as property names. To
add a name to the set, we set the property in the object to some value (any
value). Removing a name from the set is done by deleting the property. The
in operator can be used to determine whether a certain name is part of the
set. (There are a few subtle problems with using in like this, which we will
discuss in Chapter 6. For now, it works well enough.)

Here we create a set containing only "Spot", add "White Fang" to it, delete
"Spot" again, and finally, test whether "Asoka" is in it:

var set = {"Spot": true};
set["White Fang"] = true;
delete set["Spot"];
"Asoka" in set;

— false

Mutability

Object values can apparently change. The types of values discussed in Chap-
ter 1 are all immutable—it is impossible to change an existing value of those
types. You can combine them and derive new values from them, but when
you take a specific string value, the text inside it cannot change. With ob-
jects, on the other hand, the content of a value can be modified, by changing
its properties.

When we have two numbers, 120 and 120, they can, whether they refer to
the same physical bits or not, be considered the precise same number. With
objects, there is a difference between having two references to the same ob-
ject and having two different objects that contain the same properties. Con-
sider the following code:

var objectl = {value: 10};
var object2 = objecti;
var object3 = {value: 10};

object1 == object2;
— true
objectl == object3;
— false

objecti.value = 15;
object2.value;

— 15
object3.value;

— 10

Data Structures: Objects and Arrays 45

46

Chapter 3

objectl and object2 are two variables grasping the same value. There is
only one actual object, which is why changing object1 also changes the value
of object2. The variable object3 points to another object, which initially con-
tains the same properties as object1 but lives a separate life.

JavaScript’s == operator, when comparing objects, will return true only if
both values given to it are the precise same value. Comparing different ob-
ject with identical contents will give false. This is useful in some situations
but unpractical in others, where you have to write separate functions to com-
pare objects by content.

Objects as Collections: Arrays

Object values can play a lot of different roles. Behaving like a set is only one
of those. We will see a few other roles in this chapter, and Chapter 6 shows
another important way of using objects.

The plan for the cat problem—in fact, let’s call it an algorithm, not a
plan—talks about going over all the emails in an archive. What kind of value
could represent such an archive?

It should contain a number of emails. An email can simply be a string,
for our purposes. We need to collect multiple strings into a single value.
Well, collections are what objects are used for. As a first draft, one could
make an object like this:

var mailArchive = {"the first email": "Dear nephew, ...",
"the second email": "..."
/% and so on ... */};

But that makes it hard to go over the emails from start to end—how
does the program guess the name of these properties? This can be solved
by more predictable property names:

var mailArchive = {0: "Dear nephew, ... (mail number 1)",
1: "(mail number 2)",
2: "(mail number 3)"};

for (var current = 0; current in mailArchive; current++)
print("Processing email #", current, ": ", mailArchive[current]);

Luck has it that there is a special kind of objects specifically for this kind
of use. They are called arrays, and they provide some conveniences, such as a
length property that tells us how many values the array holds.

New arrays can be created using brackets ([and]):

var mailArchive = ["mail one", "mail two", "mail three"];

for (var current = 0; current < mailArchive.length; current++)
print("Processing email #", current, ": ", mailArchive[current]);

In this example, the numbers of the elements are not specified explic-
itly any more. The first one automatically gets the number 0, the second the
number 1, and so on.

Why start at 0? People tend to start counting from 1. As unintuitive as
it seems, numbering the elements in a collection from 0 is how things have
traditionally been done in most programming languages. Just go with it for
now—it will grow on you.

Starting at element 0 also means that in a collection with X elements,
the last element can be found at position X - 1. This is why the for loop
in the example checks for current < mailArchive.length. There is no element
at position mailArchive.length, so as soon as current has that value, we stop
looping.

As an exercise, let’s write a function range, which takes one argument—a
positive number—and returns an array containing all numbers from 0 up to
and including the given number.

An empty array can be created by simply typing []. Just like with objects,
we can add elements to arrays by simply assigning to its properties. Since the
element properties are numbers, we have to use [and], rather than the dot,
to refer to them. (Note that the length property of the array will automati-
cally get updated when elements are added or removed—it always holds the
highest index that contains an element, plus one.)

function range(upto) {
var result = [];
for (var i = 0; i <= upto; i++)
result[i] = i;
return result;
}
range(4);
— [0, 1, 2, 3, 4]

Instead of naming the loop variable counter or current, as I have been
doing so far, it is here called simply i. Using single letters—usually i, j, and
k—for loop variables is a widely spread habit among programmers. It has
its origin mostly in laziness: We’d rather type one character than seven, and
names like counter and current do not really clarify the meaning of the vari-
able much.

If a program uses too many meaningless single-letter variables, it can
become very confusing. In my own programs, I try to only do this in a few
common cases. Small loops are one of these cases. If the loop contains an-
other loop and if that one also uses a variable named i, the inner loop will
modify the variable that the outer loop is using, and everything will break.
One could use j for the inner loop, but in general, when the body of a loop
is big, you should come up with meaningful name for your counter variable.

Data Structures: Objects and Arrays 47

Methods

Both string and array objects contain, in addition to the length property, a
number of properties that refer to function values.

var doh = "Doh";
typeof doh.toUpperCase;
— "function"
doh.toUpperCase();

— "DOH"

Every string has a toUpperCase property. When called, it will return a copy
of the string, in which all letters have been converted to uppercase. There is
also tolLowerCase. You can guess what that does.

Notice that, even though the call to toUpperCase does not pass any argu-
ments, the function does somehow have access to the string "Doh", the value
of which is a property. How this works precisely is described in Chapter 6.

Properties that contain functions are generally called methods, as in
“toUpperCase is a method of a string object.” This example demonstrates
some methods of array objects:

var mack = [];
mack.push("Mack");
mack.push("the");
mack.push("Knife");
mack;

— ["Mack", "the", "Knife"]
mack.join(" ");

— "Mack the Knife"
mack.pop();

— "Knife"

mack;

— ["Mack", "the"]

The method push, which is associated with arrays, can be used to insert
values at the end of the array. It could have been used in the range function,
replacing result[i] = i with result.push(i). Then there is pop, the inverse of
push: It takes out and returns the last value in the array. join builds a single
big string from an array of strings. The parameter it is given is pasted be-
tween the values in the array.

Solving the Problem of Aunt Emily’s Cats

Coming back to those cats, we now know that an array would be a good way
to store the archive of emails. If we assume that we have an array of email
strings in the variable ARCHIVE, going over all the emails is simple now:

48 Chapter 3

for (var i = 0; 1 < ARCHIVE.length; i++) {
var email = ARCHIVE[i];
// Do something with this email...

}

We have also decided on a way to represent the set of cats that are alive.
The next problem, then, is to find the paragraphs in an email that start with
“born” or “died.”

Separating Paragraphs

The first question that comes up is what exactly a paragraph is. In this case,
the string value itself can’t help us much: JavaScript’s concept of text does
not go any deeper than the “sequence of characters” idea, so we must define
paragraphs in those terms.

In Chapter 1, we saw that there is such a thing as a newline character.
These are what people typically use to split paragraphs. We consider a para-
graph, then, to be part of an email that starts at a newline character or at the
start of the content and that ends at the next newline character or at the end
of the content.

And we don’t even have to write the algorithm for splitting a string into
paragraphs ourselves. Strings conveniently have a method named split,
which is (almost) the opposite of the join method of arrays. It splits a string
into an array, using the string given as its argument to determine in which
places to cut. For example:

var words = "Cities of the Interior";
words.split(" ");
— ["Cities", "of", "the", "Interior"]

Thus, cutting on newlines (email.split("\n")), can be used to split an
email into paragraphs.

Finding Relevant Paragraphs

Paragraphs that do not start with either “born” or “died” can be ignored by
the program. How do we test whether a string starts with a certain word?
The method charAt can be used to get a specific character from a string.
x.charAt(0) gives the first character, 1 is the second one, and so on. Thus,
one way to check whether a string starts with “born” is as follows:

var paragraph = "born 15-11-2003 (mother Spot): White Fang";
paragraph.charAt(0) == "b" && paragraph.charAt(1) == "o" &&

paragraph.charAt(2) == "r" 8& paragraph.charAt(3) == "n";
— true

Data Structures: Objects and Arrays 49

50

Chapter 3

But that gets a bit clumsy—imagine checking for a word of 10 char-
acters. There is something to be learned here, though: When a line gets
ridiculously long, it can be spread over multiple lines. The result can be
made easier to read by indenting the second line to show that it belongs to-
gether with the one above it.

Strings also have a method called slice. This copies out a piece of the
string, starting from the character at the position given by the first argument
and ending before (not including) the character at the position given by the
second one. This method allows the check to be written in a shorter way:

paragraph.slice(0, 4) == "born";
— true

We then wrap this approach in a function called startswith, which takes
two arguments, both strings. It returns true when the first argument starts
with the characters in the second argument, and false otherwise.

function startsWith(string, pattern) {
return string.slice(0, pattern.length) == pattern;

}

startsWith("rotation", "rot");
— true

What happens when charAt or slice are used to take a piece of a string
that does not exist? Will the startsWith function still work when the pattern is
longer than the string it is matched against?

"Pip".charAt(250);

N
"Nop".slice(1, 10);
s op”

charAt will return "" when there is no character at the given position,
and slice will simply leave out the part of the new string that does not exist.

So yes, that means our version of startsWith works when, for example,
startsWith("Idiots", "Most honored colleagues") is called. If pattern is longer
than string, the call to slice will always return a string that is shorter than
pattern (because string does not have enough characters). Because of that,
the comparison with == will return false, which is correct.

It helps to always take a moment to consider abnormal (but valid) inputs
for a program. These are usually called corner cases, and it is very common
for programs that work perfectly on all the “regular” inputs to screw up on
corner cases.

Extracting Cat Names

The only part of the cat problem that is still unsolved is the extraction of
names from a paragraph. The algorithm, as shown before, was this:

1. Find the colon in the paragraph.
Take the part after this colon.

Split this part into separate names by looking for commas.

This has to happen both for paragraphs that start with “died” and para-
graphs that start with “born.” It would be a good idea to put it into a func-
tion so that the two pieces of code that handle these different kinds of para-
graphs can both use it.

Strings have an index0f method that can be used to find the (first) posi-
tion of a character or substring within that string. Also, when slice is given
only one argument, it will return the part of the string from the given posi-
tion all the way to the end.

Thus, we can extract the names of the cats like this:

function catNames(paragraph) {
var colon = paragraph'indexof(u:..);
return paragraph.slice(colon + 2).split(", ");

}

catNames("born 20/09/2004 (mother Yellow Bess): Doctor Hobbles the 2nd, Noog");
— ["Doctor Hobbles the 2nd", "Noog"]

The informal description of the algorithm ignored the fact that there
are spaces after the colon and the commas. The + 2 used when slicing the
string is needed to leave out the colon itself and the space after it. The argu-
ment to split contains both a comma and a space, because that is what the
names are really separated by, rather than just a comma.

This function does not do any checking for problems. We assume, here,
that the input is always correct.

The Full Algorithm

All that remains now is putting the pieces together. One way to do that looks
like this:

var livingCats = {"Spot": true};

for (var mail = 0; mail < ARCHIVE.length; mail++) {
var paragraphs = ARCHIVE[mail].split("\n");
for (var i = 0; 1 < paragraphs.length; i++) {
var paragraph = paragraphs[i];
if (startsWith(paragraph, "born")) {
var names = catNames(paragraph);
for (var name = 0; name < names.length; name++)

Data Structures: Objects and Arrays 51

52

Chapter 3

livingCats[names[name]] = true;
}
else if (startsWith(paragraph, "died")) {
var names = catNames(paragraph);
for (var name = 0; name < names.length; name++)
delete livingCats[names[name]];

That is quite a dense chunk of code. We’ll look into making it pret-
tier in a moment. But first let’s look at our results. We know how to check
whether a specific cat survives:

if ("Spot" in livingCats)
print("Spot lives!");
else
print("Good old Spot, may she rest in peace.");

But how do we list all the cats that are alive? The in keyword has a some-
what different meaning when it is used together with for:

for (var cat in livingCats)
print(cat);

A'loop like that will go over the names of the properties in an object,
which allows us to enumerate all the names in our set.

Cleaning Up the Code

Some pieces of code can look like an impenetrable jungle. The example
solution to the cat problem suffers from this. One way to make some light
shine through it is to just add some strategic blank lines. This makes it look
better but doesn’t really solve the problem.

What is needed here is to break up the code. We already wrote two help-
er functions, startsWith and catNames, which both take care of a small, under-
standable part of the problem. Let’s continue doing this.

function addToSet(set, values) {
for (var i = 0; i < values.length; i++)
set[values[i]] = true;

function removeFromSet(set, values) {
for (var i = 0; 1 < values.length; i++)
delete set[values[i]];

These two functions take care of the adding and removing of names
from the set. That already cuts out the two most inner loops from the
solution:

var livingCats = {Spot: true};

for (var mail = 0; mail < ARCHIVE.length; mail++) {
var paragraphs = ARCHIVE[mail].split("\n");
for (var i = 0; i < paragraphs.length; i++) {
var paragraph = paragraphs[i];
if (startsWith(paragraph, "born"))
addToSet(livingCats, catNames(paragraph));
else if (startsWith(paragraph, "died"))
removeFromSet(livingCats, catNames(paragraph));

Quite an improvement, if I may say so myself.

Why do addToSet and removeFromSet take the set as an argument? They
could use the variable livingCats directly, if they wanted to. This way, they
are not completely tied to our current problem. If addToSet directly changed
livingCats, it would have to be called addCatsToCatSet, or something similar.
The way it is now, it is a more generally useful tool.

Even if we are never going to use these functions for anything else, which
is quite probable, it is useful to write them like this. Because they are “self-
sufficient,” they can be read and understood on their own, without needing
to know about some external variable called 1livingCats.

The functions are not pure: They change the object passed as their set
argument. This makes them slightly trickier than real pure functions, but
they are still a lot less confusing than functions that run amok and change
any value or variable they please.

We continue breaking the algorithm into pieces:

function findLivingCats() {
var livingCats = {"Spot": true};

function handleParagraph(paragraph) {
if (startsWith(paragraph, "born"))
addToSet(livingCats, catNames(paragraph));
else if (startsWith(paragraph, "died"))
removeFromSet(livingCats, catNames(paragraph));

for (var mail = 0; mail < ARCHIVE.length; mail++) {
var paragraphs = ARCHIVE[mail].split("\n");
for (var i = 0; i < paragraphs.length; i++)
handleParagraph(paragraphs[i]);

Data Structures: Objects and Arrays 53

54

Chapter 3

return livingCats;

}

The whole algorithm is now encapsulated by a function. This means that
it does not leave a mess after it runs: livingCats is a local variable in the func-
tion, instead of a top-level one, so it exists only while the function runs. The
code that needs this set can call findLivingCats and use the value it returns.

It seemed to me that making handleParagraph a separate function also
cleared things up. But this one is so closely tied to the cat algorithm that it
is meaningless in any other situation. On top of that, it needs access to the
livingCats variable. Thus, it is a perfect candidate to be a function-inside-a-
function. When it lives inside findLivingCats, it is clear that it is relevant there
only, and it has access to the variables of its parent function.

This solution is actually bigger than the previous one. Still, it is tidier, and
I hope you’ll agree that it is easier to read.

var howMany = 0;
for (var cat in findLivingCats())
howMany++;
print("There are currently ", howMany, " cats alive.");

Date Representation

The program still ignores a lot of the information that is contained in the
emails. There are birth dates, dates of death, and the names of mothers in
there.

We’ll start with the dates. What would be a good way to store a date? We
could make an object with three properties, year, month, and day, and store
numbers in them.

var when = {year: 1980, month: 2, day: 1};

But JavaScript already provides a kind of object for this purpose. Such
an object can be created by using the keyword new:

var when = new Date(1980, 1, 1);

Just like the notation with braces and semicolons we have already seen,
new is a way to create object values. Instead of specifying all the property
names and values, a function is used to build up the object. This makes it
possible to define a kind of standard procedure for creating objects. Func-
tions like this are called constructors, and in Chapter 6 we will see how to write
them ourselves.

The Date constructor can be used in different ways:

// Produces a date object for the current time.
new Date();

// February (!) 1st, 1980

new Date(1980, 1, 1);

// March 30th, 2007, 30 seconds past 8:20
new Date(2007, 2, 30, 8, 20, 30);

As you can see, these objects can store a time of day as well as a date.
When not given any arguments, an object representing the current time and
date is created. Arguments can be given to ask for a specific date and time.
The order of the arguments is year, month, day, hour, minute, second, milli-
seconds. These last four are optional—they default to 0 when not specified.

The month numbers these objects use go from 0 to 11, which can be
confusing, especially since day numbers do start from 1.

Date objects can be inspected with a number of get methods:

var today = new Date();

print("Year: ", today.getFullYear(), ", month: ",
today.getMonth(), ", day: ", today.getDate());

print("Hour: ", today.getHours(), ", minutes: ",
today.getMinutes(), ", seconds: ", today.getSeconds());

print("Day of week: ", today.getDay());

All of these, except for getDay, also have a set... variant that can be used
to change the value of the date object.

Inside the object, a date is represented by the amount of milliseconds it
is away from January 1, 1970. You can imagine this is quite a large number.

var today = new Date();
today.getTime();
— 1266587282246

A very useful thing to do with dates is to compare them:

var wende = new Date(1989, 10, 9);
var gulflWarOne = new Date(1990, 6, 2);
wende < gulfWarOne;

— true

wende == wende;

— true

// but be careful...

wende == new Date(1989, 10, 9);

— false

Comparing dates with <, >, <=, and »>= does exactly what you would ex-
pect. When a date object is compared to itself with ==, the result is true, which
is also good. But when == is used to compare a date object to a different,
equal date object, we get false. Argh!

As mentioned earlier, == will return false when comparing two different
objects, even if they contain the same properties. This is a bit clumsy and

Data Structures: Objects and Arrays 55

56

Chapter 3

error prone here, since one would expect >= and == to behave in a more or
less similar way. Testing whether two dates are equal can be done like this:

var wendel = new Date(1989, 10, 9),

wende2 = new Date(1989, 10, 9);
wendel.getTime() == wende2.getTime();
— true

In addition to a date and time, Date objects also contain information
about a time zone. When itis 1 p.m. in Amsterdam, it can, depending on
the time of year, be 12 p.m. (noon) in London, and 7 a.m. in New York.
Such times can only be compared when you take their time zones into ac-
count. The getTimezoneOffset function of a Date can be used to find out how
many minutes it differs from Greenwich mean time (GMT). In Berlin, we get
the following:

new Date().getTimezoneOffset();
— -60

Date Extraction

The date part is always in the exact same place of a paragraph. How conve-
nient.

"born 02/04/2001 (mother Clementine): Bugeye, Wolverine"
"died 27/04/2006: Black Leclére"

We can write a function extractDate that, given such a paragraph, returns
a date object:

function extractDate(paragraph) {
function numberAt(start, length) {
return Number(paragraph.slice(start, start + length));
}

return new Date(numberAt(11, 4), numberAt(8, 2) - 1, numberAt(5, 2));

}

It would work without the calls to Number, but as mentioned in Chapter 1,
I prefer not to use strings as if they are numbers. The inner function was
introduced to prevent having to repeat the Number and slice part three times.

Note the - 1 for the month number. Like most people, Aunt Emily
counts her months from 1, so we have to adjust the value before giving it
to the Date constructor. (The day number does not have this problem, since
Date objects count days in the usual human way.)

In Chapter 8 we will see a more practical and robust way of extracting
information from strings.

Gathering More Information

Storing cats will work differently from now on. Instead of just putting the
value true into the set, we store an object with information about the cat.
When a cat dies, we do not remove it from the set; we just add a property
death to the object to store the date on which the creature died.

This means our addToSet and removeFromSet functions have become use-
less. Something similar is needed, but it must also store birth dates and,
later, the mother’s name.

function catRecord(name, birthdate, mother) {
return {name: name, birth: birthdate, mother: mother};

}

function addCats(set, names, birthdate, mother) {
for (var i = 0; 1 < names.length; i++)
set[names[i]] = catRecord(names[i], birthdate, mother);
}
function deadCats(set, names, deathdate) {
for (var i = 0; i < names.length; it++)
set[names[i]].death = deathdate;

catRecord is a separate function for creating these storage objects. It
might be useful in other situations, such as creating the object for Spot.
Record is a term often used for objects like this, which are used to group a
limited number of values.

So, let’s try to extract the names of the mother cats from the paragraphs

like “born 15/11/2003 (mother Spot)™

function extractMother(paragraph) {
var start = paragraph.indexOf("(mother ") + "(mother ".length;
var end = paragraph.index0f(")");
return paragraph.slice(start, end);

}

extractMother("born 15/11/2003 (mother Spot): White Fang");
s "Spot”

Notice how the start position has to be adjusted for the length of
"(mother ", because index0f returns the position of the start of the pattern,
not its end.

The new, extended cat algorithm looks like this:

function findCats() {
var cats = {"Spot": catRecord("Spot", new Date(1997, 2, 5), "unknown")};

Data Structures: Objects and Arrays

57

function handleParagraph(paragraph) {
if (startsWith(paragraph, "born"))
addCats(cats, catNames(paragraph), extractDate(paragraph),
extractMother(paragraph));
else if (startsWith(paragraph, "died"))
deadCats(cats, catNames(paragraph), extractDate(paragraph));

for (var mail = 0; mail < ARCHIVE.length; mail++) {
var paragraphs = ARCHIVE[mail].split("\n");
for (var i = 0; i < paragraphs.length; i++)
handleParagraph(paragraphs[i]);
}

return cats;

}

For each new cat that is born, we add a record to the cats object. When
it dies, this is noted in the record. Thus, the return value of findCats is an
object, with each property of that object naming a cat and holding a record
with information about that cat.

Data Presentation

Having that extra data allows us to finally have a clue about the cats Aunt
Emily talks about. A function like this could be useful:

function formatDate(date) {
return date.getDate() + "/" + (date.getMonth() + 1) + "/" +
date.getFullYear();

function catInfo(data, name) {
var cat = data[name];
if (cat == undefined)
return "No cat by the name of " + name +

is known.";

var message = name + ", born " + formatDate(cat.birth) +
" from mother " + cat.mother;
if ("death" in cat)
message += ", died " + formatDate(cat.death);

return message + .

}

// For example...
catInfo(catData, "Fat Igor");
— "Fat Igor, born 1/6/2004 from mother Miss Bushtail."

58 Chapter 3

The first return statement in catInfo is used as an escape hatch. If there
is no data about the given cat, the rest of the function is meaningless, so we
immediately return a value, which prevents the rest of the code from run-
ning.

In the past, some programmers considered functions that contain multi-
ple return statements sinful. The idea was that this made it hard to see which
code was executed and which code was not. Other techniques, which will
be discussed in Chapter 4, have made the reasons behind this idea more or
less obsolete, but you might still occasionally come across someone who will
criticize the use of “shortcut” return statements.

Next, we write a function oldestCat, which, given an object containing
cats as its argument, returns the name of the oldest living cat:

function oldestCat(data) {
var oldest = null;

for (var name in data) {
var cat = data[name];
if (!("death" in cat) &% (oldest == null || oldest.birth > cat.birth))
oldest = cat;

if (oldest == null)
return null;

else
return oldest.name;

The condition in the if statement might seem a little intimidating. It
can be read as “store the current cat in the variable oldest only if it is not
dead, and oldest is either null or a cat that was born after the current cat.”

Some More Theory

Now that you are aware of the existence of arrays and objects, I can clarify a
few issues that were glossed over before.

The arguments Object

Whenever a function is called, a special “magic” variable named arguments is
added to the environment in which the function body runs. This variable
refers to an object that resembles an array. It has a property o for the first
argument, 1 for the second, and so on, for every argument the function was
given. It also has a length property.

However, the arguments object is not a real array—it does not have meth-
ods like push, and it does not automatically update its length property when

Data Structures: Obijects and Arrays 59

60

Chapter 3

you add something to it. This is an unfortunate heritage of the haphazard
way in which the language has grown.

function argumentCounter() {

return "You gave me " + arguments.length + " arguments."”;
}
argumentCounter("Straw man", "Tautology", "Ad hominem");
— "You gave me 3 arguments."

Some functions can take any number of arguments, like print does.
These typically loop over the values in the arguments object to do something
with them. Others can take optional arguments that, when not given by the
caller, get some sensible default value.

function add(number, howmuch) {
if (arguments.length < 2)
howmuch = 1;
return number + howmuch;

}

add(6);
— 7
add(6, 4);
— 10

We could also extend the range function we made earlier to take a sec-
ond, optional argument. If only one argument is given, it behaves as ear-
lier and produces a range from 0 to the given number. If two arguments
are given, the first indicates the start of the range, and the second indicates
the end.

function range(start, end) {

if (arguments.length < 2) {
end = start;
start = 0;

}

var result = [];

for (var i = start; i <= end; i++)
result.push(i);

return result;

range(4);

— [0, 1, 2, 3, 4]
range(2, 4);

— [2, 3, 4]

This optional argument works a bit differently than the one in the pre-
vious example. When it is not given, the first argument takes the role of end,
and start becomes o.

Tying Up a Loose End

You may remember this line of code from the introduction:

print(sum(range(1, 10)));

We have defined the range operator now. All we need to make this line
run is a sum function. This function takes an array of numbers and returns
their sum. We can easily write that at this point.

function sum(numbers) {
var total = 0;
for (var i = 0; i < numbers.length; i++)
total += numbers[i];
return total;

}

sum(range(1, 10));
— 55

The Math Object

The previous chapter showed the functions Math.max and Math.min. With what
you know now, you will notice that these are really the properties max and min
of the object stored under the name Math. This is another role that objects
can play: a warehouse holding a number of related values.

There are quite a lot of values inside Math—enough that if they had all
been placed directly into the global environment, they would “pollute” it.
The more names that have been taken, the more likely one is to accidentally
overwrite the value of some variable. For example, it is not a far shot to want
to name something max in one of our programs.

Most languages will stop you, or at least warn you, when you are defining
a variable with a name that is already taken. JavaScript does neither, so be
careful.

In any case, one can find a whole outfit of mathematical functions and
constants inside Math. All the trigonometric functions are there—Math.cos,
sin, tan, acos, asin, atan. m and ¢ are there, written in all capital letters (Math.PI
and Math.E), which is, for historical reasons, a common way to indicate some-
thing is a constant value. Math.pow is a good replacement for the power func-
tions we have been writing—it also accepts negative and fractional expo-
nents. Math.sqrt takes square roots. Math.max and Math.min can give the max-
imum or minimum of two values. Math.round, Math.floor, and Math.ceil will

Data Structures: Objects and Arrays 61

62

Chapter 3

round numbers to the closest whole number, the whole number below it,
and the one above it, respectively.

Enumerable Properties

Maybe you already thought of a way to find out what is available in the Math
object:

for (var name in Math)
print(name);

But alas, nothing appears. Similarly, consider this loop over the proper-
ties of an array:

for (var name in ["Huey", "Dewey", "Louie"])
print(name);

You will only see 0, 1, and 2, not length, push, or join, which are definitely
also in there. It seems some properties of objects are hidden from in loops,
or, as this is officially called, not enumerable. There is a good reason for this:
All objects have a few methods (for example, toString) that convert the ob-
ject into some kind of relevant string, and you do not want to see those when
you are, for example, looking for the cats that you stored in the object.

All properties your programs add to objects are visible. There is no way
to make them hidden, which is unfortunate because, as we will see in Chap-
ter 6, it is often useful to be able to add methods to objects without having
them show up in our for/in loops.

ERROR HANDLING

In most of the example programs so far, I either noted
that they expected their input to be valid or ignored
the possibility of problematic input altogether. There
are situations in which we can get away with this, such
as when a program is only for our own use or when

we can be positively certain that there will be no un-
expected input. In serious programs, however, some
kind of disaster plan is usually needed.

Types of Problems

The problematic situations that a program can encounter can roughly be
divided into two categories: programmer mistakes and run-time problems.
If someone forgets to pass a required argument to a function, that is a pro-
grammer mistake. On the other hand, if a program asks the user to enter a
name and it gets back an empty string, that is something the programmer
cannot prevent.

64

Programmer Mistakes

The strategy for dealing with programmer mistakes is usually to have the
program fail as quickly as possible, preferably in a way that makes it clear
what went wrong. If this happens during programming, you can immediately
fix the problem. If it happens when a user is using the program, the user
should at least be able to tell you something went wrong.

One of the worst things about JavaScript is that it rarely complains. For-
getting an argument is fine; it’ll just be given the value undefined. Then using
this argument in some numeric computation is also fine; the result will just
be NaN. In this way, a mistake often manifests itself only after passing through
several functions, or even just results in bogus output.

On the other hand, trying to read a property from an undefined value, or
using a function that does not exists, will cause an error to be signaled. Our
language is not entirely unhelpful.

Thus, when spotting an error-prone situation, one can choose to write
some code that explicitly checks the inputs for validity and blows up the pro-
gram if they are not valid. (We will learn how to blow programs up later in
the chapter.) Unfortunately, checking everything will cause the size of your
programs to quadruple and will remove any trace of elegance they might
have shown. Thus, checking input is always a judgment call—you have to
identify the mistakes that are likely to occur and that are likely to have sub-
tle, complicated effects (rather than just causing an error right away).

Most other languages are nicer in this regard—they will signal an error
when you try to do something that doesn’t make sense, and a lot of them
even do type checking, where they validate that each operation is performed
only on the type of value it operates on, before they even start running the
program.

Run-Time Errors

Not all problems can be prevented by the programmer, unfortunately. If
your program reads any input at all, or depends on other systems, there
is a chance that the input is invalid, or the other systems are broken or
unreachable.

Simple programs can afford to just give up when such a problem occurs,
but “real” applications are often expected to somehow handle the problem
and continue. For example, when asking the user to input a number, we
should check the input and, if it is not a number, ask again or tell the user
to get lost, but definitely not crash.

Handling Errors

Chapter 4

Unexpected input, or some other problematic circumstance, often leads
to functions not being able to do what they are supposed to do. Take, for
example, this function, between, which extracts the part of a string between
two substrings:

function between(string, start, end) {
var startAt = string.indexOf(start) + start.length;
var endAt = string.indexOf(end, startAt);
return string.slice(startAt, endAt);

}

between("Louis 'Pops' Armstrong", "'", "'");
— "Pops"

When start or end is not found in the input, what should this function
do? It cannot return what it is supposed to return, because the question it
was asked doesn’t make sense.

Returning a Special Valve

When a function encounters a problem that it cannot solve itself, one pos-
sible reaction is to return a value that it could not normally return. Since
between, in normal operation, will return a string, we could specify it to re-
turn undefined (or false, or even 26, but let’s not be weirder than we have to
be) on bad input.

function between(string, start, end) {
var startAt = string.indexOf(start);
if (startAt == -1)
return undefined;
startAt += start.length;
var endAt = string.indexOf(end, startAt);
if (endAt == -1)
return undefined;

return string.slice(startAt, endAt);

You can see that error checking does not generally make functions pret-
tier. But now code that calls between can do something like this:

var input = prompt("Tell me something", "");

var parenthesized = between(input, "(", ")");
if (parenthesized != undefined)
print("You parenthesized '", parenthesized, "'.");

In many cases, mostly when errors are likely and the caller should be ex-
plicitly checking for them, returning a special value is a perfectly fine way
to indicate an error. It does, however, have its downsides. First, what if the
function can already return every possible kind of value? For example, con-
sider this function that gets the last element from an array:

Error Handling 65

66

Chapter 4

function lastElement(array) {
if (array.length > 0)
return array[array.length - 1];
else
return undefined;

lastElement([1, 2, undefined]);
— undefined

So, did the array have a last element? Looking at the value lastElement
returns, it is impossible to say.

The second issue with returning special values is that it can sometimes
lead to a whole lot of clutter. If a piece of code calls between 10 times, it has
to check 10 times whether undefined was returned. Also, if a function calls
between but does not have a strategy to recover from a failure, it will have to
check the return value of between, and if it is undefined, this function can then
return undefined or some other special value to its caller, which in turn also
checks for this value.

Exceptions

When, for some reason, a function cannot return normally, what we ac-
tually want is to just stop doing what we are doing and immediately jump
back to a place that knows how to handle the problem. That is what excep-
tion handling—a mechanism present in a lot of modern languages, including
JavaScript—does.

The mechanism works like this: It is possible for code to raise (or throw)
an exception, which is a value. Raising an exception somewhat resembles a
super-charged return from a function—it does not just jump out of the cur-
rent function but also out of its callers, all the way up to the top-level call
that started the current execution. This is called unwinding the stack. You may
remember the stack of function calls that was mentioned in Chapter 2. An
exception zooms down this stack, throwing away all the call contexts it en-
counters.

If they always zoomed right down to the base of the stack, exceptions
would not be of much use; they would just provide a novel way to blow up
your program. Fortunately, it is possible to set obstacles for exceptions along
the stack. These catch the exception as it is zooming down and can do some-
thing with it, after which the program continues running at the point where
the exception was caught.

Here’s an example:

function lastElement(array) {
if (array.length > 0)
return array[array.length - 1];

else
throw "Cannot take the last element of an empty array.";

function lastElementPlusTen(array) {
return lastElement(array) + 10;

}

try {
print(lastElementPlusTen([]));

}

catch (error) {
print("Something went wrong: ", error);

}

throw is the keyword that is used to raise an exception. The keyword try
sets up an obstacle for exceptions: When the code in the block after it raises
an exception, the catch block will be executed. The variable named in paren-
theses after the word catch will hold the exception value when this block exe-
cutes.

Note that the function lastElementPlusTen completely ignores the possibil-
ity that lastElement might go wrong. This is the big advantage of exceptions—
error-handling code is necessary only at the point where the error occurs
and at the point where it is handled. The functions in between can forget all
about it.

Well, almost . . .

Cleaning Up After Exceptions

Consider the following situation: A function processThing, wants to make sure
that, during its executing, the top-level variable currentThing holds the thing
that is being processed. After it finishes processing, it restores this variable to
its old value.

var currentThing = null;

function processThing(thing) {
var prevThing = currentThing;
currentThing = thing;
/* do complicated processing... */
currentThing = prevThing;

}

What if the complicated processing raises an exception? In that case,
the call to processThing will be thrown off the stack by the exception, and
currentThing will never be reset to its old value.

Error Handling 67

68

Chapter 4

try statements can also be followed by a finally keyword, which means
“no matter what happens, run this code after trying to run the code in the
try block.” If a function has to clean something up, the cleanup code should
usually be put into a finally block:

function processThing(thing) {
var prevThing = currentThing;
currentThing = thing;

try {
/* do complicated processing... */
}
finally {
currentThing = prevThing;
}

}

Now, whether the complicated processing returns normally or throws an
exception, currentThing is always set back to its old value.

Error Objects

Alot of errors in programs cause the JavaScript environment to raise an
exception. For example, this program will print something like Caught:
Sasquatch is not defined:

try {
print(Sasquatch);

}

catch (error) {
print("Caught:

}

+ error.message);

A special type of objects is raised for problems like this. These always
have a message property containing a description of the problem. You can
raise similar objects using the new keyword and the Error constructor, giving
the message as argument:

throw new Error("Wolf!");

Unhandled Exceptions

When an exception makes it all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means differs
between the different environments. In browsers, sometimes a description
of the error is written to some kind of log (reachable in the menu under
a name like “JavaScript console” or “error console”); sometimes a window
pops up describing the error.

For programmer mistakes or problems that the program cannot possibly
handle, just letting the error go through is often okay. An unhandled excep-
tion is a reasonable way to signal a broken program, and many JavaScript
environments (such as the “debugging” tools included in modern browsers)
allow you to inspect these exceptions to see which function calls were on the
stack when they occurred, which can be very helpful when trying to find the
problem.

Selective Catching

When explicitly handling an exception using catch, one has to be careful not
to catch too much. For example, say we have this program:

for (55) {
try {
alert(inputNumbexr() + 5);
break;
}
catch (e) {
alert("You did not input a number. Try again.");
}
}

The for(;;) construct creates a loop that doesn’t terminate on its own.
inputNumber is a hypothetical function that asks for a number and raises an
exception when invalid input is given. As soon as valid input is given, the try
block executes to completion, and the loop will end.

But what if inputNumber raises some other exception? The program will
assume that the user is providing invalid input and will loop forever. Thus, it
would be wise to verify that the exception raised is indeed caused by invalid
input. One way to do this is to raise a special, unique object, like this:

var InvalidInputError = new Error("Invalid numeric input");

function inputNumber() {
var input = Number(prompt("Give me a number", ""));
if (isNaN(input))
throw InvalidInputError;
return input;

}

Now we can write our try/catch construct like this:

try {
alert(inputNumber() + 5);
break;

}

Error Handling 09

70

catch (e) {
if (e != InvalidInputError)
throw e;
alert("You did not input a number. Try again.");

}

We check whether the exception raised is the one we are interested in
and rethrow it if it is not so that we handle only the problem we’re supposed
to be handling; we let other kinds of problems go on, either to be caught at
another place or to terminate the program if unhandled.

Automated Testing

Chapter 4

Because JavaScript programs aren’t checked very thoroughly before execu-
tion and because manually testing every if branch in a big program can take
alot of time, mistakes can sit lurking in the depths of programs, even when
they appear to work fine.

For some pieces of code—those that work without too much interaction
with their environment—it is very straightforward to write automated tests.
These are programs that test programs. To test the between function we saw
in this chapter, you could, for example, write something like this:

function testBetween() {
function assert(name, x) {
if (!x)
throw "Assertion failed: " + name;

assert("identical delimiters", between("a |b| c", "|", "|") == "b");
assert("whole string", between("[[n]]", "[[", "]]") == "n");
assert("reversed", between("Ix[", "[", "]") == undefined);
assert("missing end", between(" -->d ", "-->", "<--") == undefined);

/* and so on x/

Now, whenever you change between, you can run testBetween to verify that
it still works as intended. Of course, tests for such a simple function feel a bit
pointless, but you’ll usually be testing bigger, more complex components,
where it is not so easy to just “see” that they work.

Writing tests is a lot of work, and keeping them up-to-date when you
change your functions is even more work. Thus, whether having a suite of
tests is worthwhile is something that has to be decided case by case. Typi-
cally, once a piece of code gets sufficiently complex or has many different
people working on it, a point is reached where writing, running, and updat-
ing the tests becomes less work than testing manually.

There are various pieces of software to make writing and running tests
easier. Search the Web for JavaScript test framework to read about them.

FUNCTIONAL PROGRAMMING

As programs get bigger, they also become more com-
plex and harder to understand. Even the cleverest
among us are mere human beings, and a moderate
amount of chaos tends to already confuse us. And
once confusion sets in, it all goes downhill. Working
on something you do not really understand is a bit like
cutting random wires on those time-activated bombs
they tend to have in movies. If you are lucky, you might
get the right one—especially when you’re the hero

of the movie and strike a suitably dramatic pose—but
there is always the possibility of blowing everything up.

Abstraction

Thus, the programmer is always looking for ways to keep the complexity of
his programs as low as possible. An important way to do this is to try to make
code more abstract. When writing a program, it is easy to get sidetracked into
small details. You come across some little issue and deal with it, and then

72

Chapter 5

you proceed to the next little problem, and so on. This makes the code read
like a grandmother’s tale.

Yes, dear, to make pea soup you will need split peas, the dry kind.
And you have to soak them at least for a night, or you will have

to cook them for hours and hours. I remember one time, when
my dull son tried to make pea soup. Would you believe he hadn’t
soaked the peas? We almost broke our teeth, all of us. Anyway,
when you have soaked the peas—and you’ll want about a cup of
them per person—pay attention because they will expand a bit
while they are soaking. If you aren’t careful, they will spill out of
the pan. Use plenty of water to soak them in. But as I said, use
about a cup of them, when they are dry, and after they are soaked,
you cook them in four cups of water per cup of dry peas. Let it
simmer for two hours, which means you cover it and keep it barely
cooking, and then add some diced onions, sliced celery stalk, and
maybe a carrot or two and some ham. Let it all cook for a few min-
utes more, and it is ready to eat.

Another way to write this recipe:

Per person: 1 cup dried split peas, half a chopped onion, half a
carrot, a celery stalk, optionally ham. Soak peas overnight, simmer
them for 2 hours in 4 cups of water (per person), add vegetables
and ham, and cook for 10 more minutes.

This is shorter, but if you don’t know how to soak peas, you’ll surely
screw up and put them in too little water. But how to soak peas can be looked
up, and that is the trick. If you assume a certain basic knowledge in the audi-
ence, you can talk in a language that deals with bigger concepts and express
things in a much shorter and clearer way. This, more or less, is what abstrac-
tion is.

How is this far-fetched recipe story relevant to programming? Well, obvi-
ously, the recipe is the program. Furthermore, the basic knowledge that the
cook is supposed to have corresponds to the functions and other constructs
that are available to the programmer.

If you remember the introduction to this book, constructs such as while
make it easier to build loops, and in Chapter 3 we wrote some simple func-
tions to make other functions shorter and more straightforward. Such tools—
some of them made available by the language itself; others built by the pro-
grammer—are used to reduce the amount of uninteresting details in the rest
of the program and thus make that program easier to work with.

Functional programming, the subject of this chapter, creates abstraction
through clever ways of combining functions. A programmer armed with a
repertoire of fundamental functions and, more importantly, the knowledge
of how to use them, is much more effective than one who starts writing every
program from scratch. Unfortunately, a standard JavaScript environment
comes with deplorably few essential functions, and we have to write them
ourselves or make use of somebody else’s code (more on that in Chapter 7).

There are other popular approaches to abstraction, most notably object-
oriented programming, which is the subject of Chapter 6.

Higher-Order Functions

One ugly detail that, if you have any good taste at all, must be starting to
bother you is the endlessly repeated for loop going over an array: for (var
i = 0; i < something.length; i++).... Can this be abstracted?

The problem is that, whereas most functions just take some values, com-
bine them, and return something, these for loops contain a piece of code
that they must execute. It is easy to write a function that goes over an array
and prints out every element:

function printArray(array) {
for (var i = 0; i < array.length; i++)
print(array[i]);

But what if we want to do something else than print? Since “doing some-
thing” can be represented as a function and since functions are also values,
we can pass our action as a function value:

function forEach(array, action) {
for (var i = 0; i < array.length; i++)
action(array[i]);

forEach(["Wampeter", "Foma", "Granfalloon"], print);

And by making use of an anonymous function, something just like a for
loop can be written with fewer useless details:

function sum(numbers) {
var total = 0;
forEach(numbers, function (number) {
total += number;
D;
return total;

}

Note that the variable total is visible inside the anonymous function
because of the lexical scoping rules. Also note that this version is hardly
shorter than the for loop and requires a rather clunky }); at its end—the
brace closes the body of the anonymous function, the parenthesis closes the
function call to forEach, and the semicolon is needed because this call is a
statement.

You do get a variable bound to the current element in the array, number,
so there is no need to use numbers[i] anymore. And when this array is cre-
ated by evaluating some expression, there is no need to store it in a variable,
because it can be passed to forEach directly.

The cat-finding code in Chapter 3 contains a piece like this:

Functional Programming 73

74

Chapter 5

var paragraphs = mailArchive[mail].split("\n");
for (var i = 0; i < paragraphs.length; i++)
handleParagraph(paragraphs[i]);

And this can now be written as follows:

forEach(mailArchive[mail].split("\n"), handleParagraph);

On the whole, using more abstract (or higher-level) constructs results in
more information and less noise: The code in sum says, “For each number in
numbers, add that number to the total,” instead of “there is this variable that
starts at zero, and it counts upward to the length of the array called num-
bers, and for every value of this variable we look up the corresponding ele-
ment in the array and add this to the total. . . .”

What forEach does is take an algorithm, in this case “going over an ar-
ray,” and abstract it. The “gaps” in the algorithm—in this case, what to do
for each of these elements—are filled by functions, which are passed to the
algorithm function as arguments.

Functions that operate on other functions are called higher-order func-
tions. By manipulating functions, they can talk about actions on a new level.
The makeAdder function from Chapter 2, which took a number and created
a function that added that number to its argument, is also a higher-order
function. Instead of taking a function value as an argument, it produces a
new function.

Higher-order functions can be used to generalize many algorithms that
regular functions cannot easily describe. When you have a repertoire of
these functions at your disposal, it can help you think about your code in a
clearer way: Instead of a messy set of variables and loops, you can decom-
pose algorithms into a combination of a few fundamental algorithms, which
are invoked by name and do not have to be typed out again and again. Be-
ing able to write what we want to do instead of how we do it means we are
working at a higher level of abstraction. In practice, this means shorter,
clearer, and more pleasant code.

Modifying Functions

Another useful type of higher-order function modifies the function value it is
given:

function negate(func) {
return function(x) {
return !func(x);
b
}
var isNotNaN = negate(isNaN);
isNotNaN(NaN);
— false

vww . allitebooks.cond

http://www.allitebooks.org

The function returned by negate feeds the argument it is given to the
original function func and then negates the result.

But what if the function you want to negate takes more than one argu-
ment? You can get access to any arguments passed to a function with the
arguments pseudo-array, but how do you call a function when you do not
know how many arguments you have?

Functions have a method called apply, which is used for situations like
this. It takes two arguments. The role of the first argument will be discussed
in Chapter 6—for now we’ll just pass null. The second argument is an array
containing the arguments to which a function must be applied.

function negate(func) {
return function() {
return !func.apply(null, arguments);
};
}

The reduce Function

The sum function is really a variant of an algorithm that is usually called reduce
or fold:

function reduce(combine, base, array) {
forEach(array, function (element) {
base = combine(base, element);

b;

return base;

function add(a, b) {
return a + b;

function sum(numbers) {
return reduce(add, 0, numbers);

reduce combines an array into a single value by repeatedly using a func-
tion that combines an element of the array with a base value. This is exactly
what sum did, so it can be made shorter by using reduce . . . except that in
JavaScript, addition is an operator and not a function, so we had to put it
into a function first.

The reason reduce takes the function as its first argument instead of its
last, as in forEach, is partly that this is tradition—other languages do it like
that—and partly that this allows us to use a trick (partial application) that is
discussed later in the chapter. It does mean that, when calling reduce, writ-
ing the reducing function as an anonymous function looks a bit weirder,

Functional Programming 75

76

Chapter 5

because now the other arguments follow after the function, and the resem-
blance to a normal for block is lost entirely.

As another example use of reduce, let’s write a function that takes an ar-
ray of numbers as its argument and returns the amount of zeroes that occur
mn it

function countZeroes(array) {
function counter(total, element) {
return total + (element === 0 ? 1 : 0);
}

return reduce(counter, 0, array);

}

The weird part, with the question mark and the colon, uses a new op-
erator. In Chapter 1 we have seen unary and binary operators. This one
is ternary—it acts on three values. Its effect resembles that of if/else, ex-
cept that, where if conditionally executes statements, this one conditionally
chooses expressions. The first part, before the question mark, is the con-
dition. If this condition is true, the expression after the question mark is
chosen, 1 in this case. If it is false, the part after the colon, 0 in this case, is
chosen.

Use of this operator can make some pieces of code much shorter. When
the expressions inside it get very big or when you have to make more deci-
sions inside the conditional parts, just using plain if and else tends to be
more readable.

We could also have defined yet another algorithm function, count, and
express countZeroes in terms of that:

function count(test, array) {
var counted = 0;
forEach(array, function(element) {
if (test(element)) counted++;
b;
return counted;

}

function countZeroes(array) {
function isZero(x) {return x === 0;}
return count(isZero, array);

}

Mapping Arrays

Another generally useful “fundamental algorithm” related to arrays is called
map. It goes over an array, applying a function to every element, just like
forEach. But instead of discarding the values returned by the function, it
builds up a new array from these values.

function map(func, array) {
var result = [];
forEach(array, function (element) {
result.push(func(element));
b;
return result;

}

map(Math.round, [0.01, 2, 9.89, Math.PI]);
— [0, 2, 10, 3]

Note that the first argument is called func, not function, which is because
function is a keyword and thus not a valid variable name.

The Sad Story of the Recluse

There once was, living in the deep mountain forests of the Western Nether-
lands, a recluse. Most of the time, he just wandered around his mountain,
talking to trees and laughing with birds. But now and then, when the pour-
ing rain trapped him in his little hut and the howling wind made him feel
unbearably small, the recluse felt an urge to write something. He wanted to
pour some thoughts out onto paper, where they could maybe grow bigger
than he himself was.

After failing miserably at poetry, fiction, and philosophy, the recluse
finally decided to write a technical book. In his youth, he had done some
computer programming, and he figured that if he could just write a good
book about that, fame and recognition would follow.

So he wrote. At first he wrote on fragments of tree bark, but that soon
became a little too hard-core for him. So, he went down to the nearest vil-
lage and bought himself a laptop computer. After a few chapters, he realized
he wanted to put the book in HTML format in order to put it on his website.

HTML

Are you familiar with HTML? It is the method used to format pages on the
Web, and we will be using it a few times in this book, so it would be nice
if you know how it works, at least generally. If you are a good student, you
could go search the Web for a good introduction to HTML now and come
back here when you have read it. Most of you probably are lousy students, so
I will just give a short explanation right here and hope that is enough.
HTML stands for HyperText Markup Language. An HTML document is
all text. Because it must be able to express the structure of this text, such as
information about which text is a heading, which text should be purple, and
so on, a few characters have a special meaning, somewhat like backslashes in
JavaScript strings. The “less-than” and “greater-than” characters are used to
create tags. A tag gives extra information about the text in the document. It
can stand on its own, for example to mark the place where a picture should

Functional Programming 77

78

Chapter 5

appear in the page, or it can contain text and other tags, for example when
it marks the start and end of a paragraph.

Some tags are compulsory. For example, a whole HTML document must
always be wrapped between <html> and </html>. Here is an example of an
HTML document:

<html>
<head>
<title>A quote</title>
</head>
<body>
<h1>A quote</h1>
<blockquote>
<p>The connection between the language in which we
think/program and the problems and solutions we can imagine
is very close. For this reason restricting language
features with the intent of eliminating programmer errors is
at best dangerous.</p>
<p>-- Bjarne Stroustrup</p>
</blockquote>
<p>Also, here is a picture of an ostrich:</p>

</body>
</html>

Elements that contain text or other tags are first opened with <tagname>
and afterward finished with </tagname>. The html element always contains two
children: head and body. The first contains information about the document;
the second contains the actual document.

Most tag names are cryptic abbreviations. h1 stands for “heading 1,”
heading used at the top level of a document. There are also h2 to hé for suc-
cessively more minor headings. p means “paragraph,” and img stands for “im-
age.” The img element does not contain any text or other tags, but it does
have some extra information, src="img/ostrich.png", which is called an at-
tribule. In this case, it contains information about the image file that should
be shown here.

Because < and > have a special meaning in HTML documents, they can-
not be written directly in the text of the document. If you want to say 5 < 10
in an HTML document, you have to write 5 81t; 10, where 1t stands for “less
than.” > is used for >. Because these codes also give the ampersand char-
acter a special meaning, a plain & is written as &.

Now, those are only the bare basics of HTML, but they should be enough
to make it through this chapter—and later chapters that deal with HTML
documents—without getting entirely confused.

The Recluse’s Text File

Picking up the story again, the recluse wanted to have his book in HTML
format. At first he just wrote all the tags directly into his manuscript, but typ-
ing all those less-than and greater-than signs made his fingers hurt, and he
constantly forgot to write ∓ when he needed an &. It cramped his style.
The solution that he came up with was this: He would write the book
as plain text, following some simple rules about the way paragraphs were
separated and the way headings looked. Then, he would write a program to
convert this text into precisely the HTML that he wanted.
The rules are these:

Paragraphs are separated by blank lines.

2. A paragraph that starts with a % symbol is a header. The more % sym-
bols, the smaller the header.

3. Inside paragraphs, pieces of text can be emphasized by putting them
between asterisks.

4. Footnotes are written between braces.

After he had struggled painfully with his book for six months, the recluse
had finished only a few paragraphs. At this point his hut was struck by light-
ning, which killed him and forever put his writing ambitions to rest. From
the charred remains of his laptop, I managed to recover the following file:

% The Book of Programming
%% The Two Aspects

Below the surface of the machine, the program moves. Without effort,
it expands and contracts. In great harmony, electrons scatter and
regroup. The forms on the monitor are but ripples on the water. The
essence stays invisibly below.

When the creators built the machine, they put in the processor and the
memory. From these arise the two aspects of the program.

The aspect of the processor is the active substance. It is called
Control. The aspect of the memory is the passive substance. It is
called Data.

Data is made of merely bits, yet it takes complex forms. Control
consists only of simple instructions, yet it performs difficult
tasks. From the small and trivial, the large and complex arise.

The program source is Data. Control arises from it. The Control
proceeds to create new Data. The one is born from the other, the
other is useless without the one. This is the harmonious cycle of
Data and Control.

Functional Programming 79

80

Chapter 5

Of themselves, Data and Control are without structure. The programmers
of old molded their programs out of this raw substance. Over time,

the amorphous Data has crystallized into data types, and the chaotic
Control was wrung into control structures and functions.

%% Short Sayings

When a student asked Fu-Tzu about the nature of the cycle of Data and
Control, Fu-Tzu replied 'Think of a compiler, compiling itself.'

A student asked, 'The programmers of old used only simple machines and
no programming languages, yet they made beautiful programs. Why do we
use complicated machines and programming languages?' Fu-Tzu replied
‘The builders of old used only sticks and clay, yet they made
beautiful huts.'

A hermit spent 10 years writing a program. 'My program can compute
the motion of the stars on a 286-computer running MS DOS,' he proudly
announced. ‘Nobody owns a 286-computer or uses MS DOS anymore,'
Fu-Tzu responded.

Fu-Tzu had written a small program that was full of global state and
dubious shortcuts. Reading it, a student asked 'You warned us against
these techniques, yet I find them in your program. How can this be?'
Fu-Tzu said, 'There is no need to fetch a water hose when the house is
not on fire.'{This is not to be read as an encouragement of sloppy
programming, but rather as a warning against neurotic adherence to
rules of thumb.}

%% Wisdom

A student was complaining about digital numbers. 'When I take the root
of two and then square it again, the result is already inaccurate!'
Overhearing him, Fu-Tzu laughed. 'Here is a sheet of paper. Write down
the precise value of the square root of two for me.'

Fu-Tzu said, 'When you cut against the grain of the wood, much strength
is needed. When you program against the grain of a problem, much code
is needed.'

Tzu-1i and Tzu-ssu were boasting about the size of their latest
programs. 'Two-hundred thousand lines,' said Tzu-1i, 'not counting
comments!' Tzu-ssu responded, 'Psah, mine is almost a *million# lines
already.' Fu-Tzu said, 'My best program has five hundred lines.'
Hearing this, Tzu-1li and Tzu-ssu were enlightened.

A student had been sitting motionless behind his computer for hours,
frowning darkly. He was trying to write a beautiful solution to a
difficult problem but could not find the right approach. Fu-Tzu hit

him on the back of his head and shouted, '*Type something!x' The student
started writing an ugly solution. After he had finished, he suddenly
understood the beautiful solution.

%% Progression

A beginning programmer writes his programs like an ant builds her
hill, one piece at a time, without thought for the bigger structure.
His programs will be like loose sand. They may stand for a while, but
growing too big they fall apart{Referring to the danger of internal
inconsistency and duplicated structure in unorganized code.}.

Realizing this problem, the programmer will start to spend a lot of
time thinking about structure. His programs will be rigidly
structured, like rock sculptures. They are solid, but when they must
change, violence must be done to them{Referring to the fact that
structure tends to put restrictions on the evolution of a program.}.

The master programmer knows when to apply structure and when to leave
things in their simple form. His programs are like clay, solid yet
malleable.

To honor the memory of our good recluse, I would like to finish his
HTML-generating program for him. A good approach to this problem goes
like this:

Split the file into paragraphs by cutting it at every empty line.

2. Remove the % characters from header paragraphs and mark them as
headers.

3. Process the text of the paragraphs themselves, splitting them into nor-
mal parts, emphasized parts, and footnotes.

4. Move all the footnotes to the bottom of the document, leaving numbers
in their place.

Wrap each piece into the correct HTML tags.

Combine everything into a single HTML document.

This approach does not allow footnotes inside emphasized text, or vice
versa. This is kind of arbitrary but helps keep the example code simple. If, at

the end of the chapter, you feel like an extra challenge, you can try to revise
the program to support “nested” markup.

Functional Programming 81

82

Chapter 5

Finding Paragraphs

Step 1 of the algorithm is trivial. A blank line is what you get when you have
two newlines in a row, and if you remember the split method that strings
have, which we saw in Chapter 3, you will realize that this will do the trick:

var paragraphs = RECLUSEFILE.split("\n\n");
paragraph.length;
— 22

To separate header paragraphs from normal ones, this function can be
used:

function processParagraph(paragraph) {
var header = 0;
while (paragraph.charAt(header) == "%")
header++;
if (header > 0)
return {type: "h" + header, content: paragraph.slice(header + 1)};
else

return {type: "p", content: paragraph};
}

processParagraph(paragraphs[0]);
— {type: "h1", content: "The Book of Programming"}

This function creates an object, whose type property indicates the kind
of HTML tag this paragraph must be wrapped in and whose content property
contains the actual text in the paragraph.

We could now try the map function we wrote earlier to conveniently con-
vert all the paragraphs in the document:

map (processParagraph, RECLUSEFILE.split("\n\n"));
— [{type: "h1", content: "The Book of Programming"}, /x etc /]

Emphasis and Footnotes
We are getting ahead of ourselves, though; we forgot step 3 of the algorithm:

Process the text of the paragraphs themselves, splitting them into
normal parts, emphasized parts, and footnotes.

This can be decomposed into the following:

1. If the paragraph starts with an asterisk, take off the emphasized part and
store it.

2. If the paragraph starts with an opening brace, take off the footnote and
store it.

3. Otherwise, take off the part until the first emphasized part or footnote,
or until the end of the string, and store it as normal text.

4. If there is anything left in the paragraph, start at step 1 again.

To implement this, we can write something like the following function.
It uses the concat method on arrays, which creates a new array that concate-
nates the argument it is given with the array on which it is called. Also re-
member that index0f returns -1 when it doesn’t find its substring.

function splitParagraph(text) {
function split(pos) {
if (pos == text.length) {
return [];
}
else if (text.charAt(pos) == "s") {
var end = findClosing("*", pos + 1),
frag = {type: "emphasized", content: text.slice(pos + 1, end)};
return [frag].concat(split(end + 1));
}
else if (text.charAt(pos) == "{") {
var end = findClosing("}", pos + 1),
frag = {type: "footnote", content: text.slice(pos + 1, end)};
return [frag].concat(split(end + 1));
}
else {
var end = findOpeningOrEnd(pos),
frag = {type: "normal", content: text.slice(pos, end)};
return [frag].concat(split(end));
}
}

function findClosing(character, from) {
var end = text.indexOf(character, from);
if (end == -1) throw new Error("Missing closing '
else return end;

}

+ character + "'");

function findOpeningOrEnd(from) {
function indexOrEnd(character) {
var index = text.indexOf(character, from);
return index == -1 ? text.length : index;
}
return Math.min(indexOrEnd("*"), indexOrEnd("{")));

}

return split(0);

Functional Programming 83

84

Chapter 5

Take a moment to see how this works. The split function is given a po-
sition in the string from which to start and creates an array of fragment ob-
jects for the rest of the string. It does that by looking at the character at the
given position, creating a single fragment if possible, and then calling itself
again to handle the part of the string after that fragment. If the position
given is the end of the string, it can just return an empty array.

The two other internal functions are used to find the end of a fragment.
findClosing looks for a character that closes the fragment, raising an error
when it can’t find it, and findOpeningOrEnd sees whether it can find a character
that starts a “special” fragment, returning the end of the string when it can’t
find any.

This function is written in a particular style—it uses recursion rather
than loops and never modifies any values or variable bindings. This is a style
of programming that tends to produce nicely succinct programs that are
easy to reason about. In some other programming languages, those called
Junctional languages, this is how typical programs look. However, JavaScript
is not very well suited for this style (recursion is slow and might overflow the
stack, and calling concat like this is wasteful, because it creates a whole new
array every time), so we have to compromise. This replacement for the split
function in the example is more typical JavaScript code and will be more
efficient:

function split() {
var pos = 0, fragments = [];
while (pos < text.length) {
if (text.charAt(pos) == "x") {
var end = findClosing("s", pos + 1);
fragments.push({type: "emphasized", content: text.slice(pos + 1, end)});
pos = end + 1;
}
else if (text.charAt(pos) == "{") {
var end = findClosing("}", pos + 1);
fragments.push({type: "footnote", content: text.slice(pos + 1, end)});
pos = end + 1;
}
else {
var end = findOpeningOrEnd(pos);
fragments.push({type: "normal", content: text.slice(pos, end)});
pos = end;
}
}

return fragments;

}

Basically, the recursive calls have been replaced by a while loop, and the
fragment array is no longer built by concatenating subparts, but explicitly
modified by pushing in new elements. Because the fragments value and the
pos variable are now being modified, it is a little harder to track the way data

flows—it no longer goes in just one direction (being created and then used)
as in the first version of the function.

We can now wire processParagraph to also split the text inside the para-
graphs before it returns them (only the return lines were changed):

function processParagraph(paragraph) {

var header = 0;

while (paragraph.charAt(header) == "%")
header++;

if (header > 0)
return {type: "h" + header, content: splitParagraph(paragraph.slice(header
+ 1))}

else
return {type:

p", content: splitParagraph(paragraph)};

Moving the Footnotes

Mapping processParagraph over the array of paragraphs gives us an array of
paragraph objects, which in turn contain arrays of fragment objects. The
next thing to do is to take out the footnotes, which we want to show at the
bottom of the page, and put references to them in their place. Something
like this:

function extractFootnotes(paragraphs) {
var footnotes = [];
var currentNote = 0;

function replaceFootnote(fragment) {
if (fragment.type == "footnote") {
currentNote++;
footnotes.push(fragment);
fragment.number = currentNote;
return {type: "reference", number: currentNote};
}
else {
return fragment;
}
}

forEach(paragraphs, function(paragraph) {
paragraph.content = map(replaceFootnote, paragraph.content);

};

return footnotes;

Functional Programming 85

86

Chapter 5

The replaceFootnote function is called on every fragment. When it gets a
fragment that should stay where it is, it just returns it, but when it gets a foot-
note, it stores this footnote in the footnotes array and returns a reference to
itinstead. In the process, every footnote and reference are also numbered.

Note that this function modifies the paragraph objects in the array it is
passed.

Generating HTML

That gives us enough tools to extract the information we need from the file.
All that is left now is generating the correct HTML.

A lot of people think that concatenating strings is a great way to produce
HTML. When they need a link to, for example, a site where you can play the
game of Go, they will write the following:

var url = "http://www.gokgs.com/";
var text = "Play Go!";
var linkText = "" + text + "";

(a is the tag used to create links in HTML documents.) Not only is this
clumsy, but when the string text happens to include an angular bracket or
an ampersand, it is also wrong—an angular bracket would be interpreted
as the start of a tag, which usually prevents the text after it from being dis-
played by the browser.

The trick with HTML generation is to treat your document as a data
structure instead of a flat piece of text. JavaScript’s objects provide a very
easy way to model this:

var linkObject = {name: "a",
attributes: {href: "http://www.gokgs.com/"},
content: ["Play Go!"]};

Each HTML element contains a name property, giving the name of the
tag it represents. When it has attributes, it also contains an attributes prop-
erty, which contains an object in which the attributes are stored. When it
has content, there is a content property, containing an array of other ele-
ments contained in this element. Strings play the role of pieces of text in
our HTML document, so the array ["Play Go!"] means that this link has only
one element inside it, which is a simple piece of text.

Typing in these objects directly is clumsy, but we don’t have to do that.
We provide a shortcut function to do this for us:

function tag(name, content, attributes) {
return {name: name, attributes: attributes, content: content};

}

Note that, since we allow the attributes and content of an element to be
undefined if they are not applicable, the second and third arguments to this
function can be left off when they are not needed.

tag is still rather primitive, so we write shortcuts for common types of
elements, such as links, or the outer structure of a simple document:

function link(target, text) {
return tag("a", [text], {href: target});

}

function htmlDoc(title, bodyContent) {
return tag("html", [tag("head", [tag("title", [title])]),
tag("body", bodyContent)]);

When we have created a document as a set of objects, it will have to be
reduced to a string. Building this string from such data structures is very
straightforward. The hardest part is transforming the special characters in
the text of our document:

function escapeHTML(text) {
var replacements = [[/&/g, "8amp;"], [/"/g, "8quot;"],
[/</g, "81t;"]1, [/>/g, "8gt;"1]1;
forEach(replacements, function(replace) {
text = text.replace(replace[0], replace[1]);
D;

return text;

}

The replace method of strings creates a new string in which all occur-
rences of the pattern in the first argument are replaced by the second argu-
ment, so "Borobudur".replace(/x/g, "k") gives "Bokobuduk". Don’t worry about
the pattern syntax here—we’ll get to that in Chapter 8. The escapeHTML func-
tion puts the different replacements that have to be made into an array so
that it can loop over them and apply them to the argument one by one.

Double quotes are also replaced, because we will also be using this func-
tion for the text inside the attributes of HTML tags. Those will be surround-
ed by double quotes and thus must not have any double quotes inside of
them.

Calling replace four times means the computer has to go over the whole
string four times to check and replace its content. This is not very efficient.
If we cared enough, we could write a more complex version of this function,
something that resembles the splitParagraph function we saw earlier, to go
over it only once. For now, we are too lazy for this. Chapter 8, again, shows a
much better way to do this.

The next helper function takes an attribute object and turns it into
a string, for example {src: "picture.png", alt: "The Picture"} becomes
" src=\"picture.png\" alt=\"The Picture\".

Functional Programming 87

83

Chapter 5

function renderAttributes(attributes) {
if (attributes == null) return ""

var result = [];
for (var name in attributes)

result.push(" " + name + "=\"" + escapeHTML(attributes[name]) + "\"");
return result.join("");

}

To turn an HTML element object into a string, we can use a recursive
inner function like this:

function renderHTML(element) {
var pieces = [];

function render(element) {
// Text node
if (typeof element == "string") {
pieces.push(escapeHTML(element));
}
// Empty tag
else if (!element.content || element.content.length == 0) {
pieces.push("<" + element.name +
renderAttributes(element.attributes) + ">");
}
// Tag with content
else {
pieces.push("<" + element.name +
renderAttributes(element.attributes) + ">");
forEach(element.content, render);
pieces.push("</" + element.name + ">");

}
}

render(element);
return pieces.join("");

}

Why am I using arrays to accumulate strings and then calling join on
them, instead of just starting with an empty string and adding content with
the += operator?

It turns out that creating new strings, especially big strings, is quite a
bit of work for the computer. Remember that JavaScript string values never
change. If you concatenate something to them, a new string is created, and
the old ones stay intact. If we build up a big string by concatenating lots of
little strings, new strings have to be created at every step, only to be thrown
away when the next piece is concatenated to them. If, on the other hand, we

store all the little strings in an array and then join them, only one big string
has to be created.
Trying out our HTML-generating system, it seems to work:

renderHTML(1ink("http://www.nedroid.com", "Drawings!"));
— "Drawings!"

Now, I should probably warn you that this program is not quite finished.
Some HTML tags have to be closed, even if they do not contain content.
Our generator doesn’t know about such tags and thus could output invalid
HTML if such tags are specified without a content array. In this chapter, we
put content inside of each tag that needs a closing tag, so this shortcoming
doesn’t cause problems.

Converting the Recluse’s Book

Armed with our HTML generator, we can render the book. We’ll start with a
function renderfFragment that takes a fragment (normal text, emphasized text,
or footnote reference) and converts it to an HTML object:

function renderFragment(fragment) {
if (fragment.type == "reference")
return tag("sup", [link("#footnote" + number, String(number))]);
else if (fragment.type == "emphasised")
return tag("em", [fragment.content]);
else if (fragment.type == "normal")
return fragment.content;

A sup tag will show its content as “superscript,” which means it will be
smaller and aligned a little higher than normal text. The target of the link
will be something like "#footnote1". Links that contain a # character refer to
“anchors” within a page, and in this case we will use them to have the foot-
note link take the reader to the bottom of the page, where the footnotes live.

The tag to render emphasized fragments with is em. Note how the sec-
ond argument to the tag function must be wrapped in [and]—the content
of an element is specified to be an array of other elements, even if there is
only one of them.

Rending a whole paragraph is very easy now. Remember that we already
determined the HTML tag the paragraphs should be wrapped in and put
that in their type property.

function renderParagraph(paragraph) {
return tag(paragraph.type, map(renderFragment, paragraph.content));

}

We are almost finished. The only thing that we do not have a rendering
function for yet are the footnotes. To make the "#footnote1" links work, an

Functional Programming 89

90

anchor must be included with every footnote. In HTML, anchors are created
with the a tag, just like links. To make it an anchor instead of a link, the tag
gets a name attribute, rather than of an href attribute.

function renderFootnote(footnote) {
var anchor = tag("a", [], {name: "footnote" + footnote.number});

var number = "[" + footnote.number + "] ";
return tag("p", [tag("small", [anchor, number, footnote.content])]);

}

Now footnotes come out as paragraphs that start with the (hidden, used
only for linking) anchor, followed by the number of the note, for example
“[1]7, followed by the text of the footnote.

Finally, then, here is the function that, when given a file in the correct
format and a document title, returns an HTML document:

function renderFile(file, title) {
var paragraphs = map(processParagraph, file.split("\n\n"));
var footnotes = map(renderFootnote, extractFootnotes(paragraphs));
var body = map(renderParagraph, paragraphs).concat(footnotes);
return renderHTML(htmlDoc(title, body));

}

Calling renderFile(RECLUSEFILE, "The Book of Programming")); will now give
us a big HTML document, which contains a nicely formatted version of the
recluse’s book.

Other Functional Tricks

Chapter 5

Before moving on to the next chapter, I would like to show you a few more
functional techniques that can, once you’ve gotten used to them, make your
programs more succinct.

Operator Functions

When using higher-order functions, it is often annoying that operators are

not functions in JavaScript. For example, we had to define the add function
earlier in this chapter. Writing these out every time we need them is a pain.
One way to get around that is to create an object like this:

var op = {

"+": function(a, b){return a + b;},
"==": function(a, b){return a == b;},
==": function(a, b){return a === b;},
"I": function(a){return !a;}

/% and so on x/

b

So, we can write reduce(op["+"], 0, [1, 2, 3, 4, 5]) to sum an array.

Partial Application

But what if we need a function where one of the operator’s arguments is
already given? For example, say we need a function that compares its ar-
gument to 0 or adds 1 to its argument. We would still need to write a new
function. For cases like that, something called partial application is useful. We
want to take a function X and one or more arguments and then create a new
function that calls X with both the original arguments and any newly passed
ones.

For example, partial(op["*"], 5) should return a new function that mul-
tiplies its argument by five. We can define partial by making creative use of
the apply method of a function:

function partial(func) {
var knownArgs = arguments;
return function() {
var realArgs = [];
for (var i = 1; i < knownArgs.length; i++)
realArgs.push(knownArgs[i]);
for (var i = 0; i < arguments.length; i++)
realArgs.push(arguments[i]);
return func.apply(null, realArgs);
};
}

The building of the argument array could have been much more ele-
gant if arguments held a real array (knownArgs.slice(1).concat(arguments)), but
alas, they are pseudo-arrays on which the concat method does not work. To
work around this, we copy them “manually.” The first loop starts at 1, be-
cause the first element to the outer function is the function to wrap, not one
of the arguments that must be passed to it.

The variable knownArgs is necessary because, inside the inner function,
the arguments variable refers to the inner function’s arguments, not the argu-
ments of partial.

Now, a function that tests whether its argument is ten can be written as
partial(op["=="], 10). All elements in an array can be incremented like this:

map(partial(op["+"], 1), [0, 2, 4, 6, 8, 10]);
— [1, 3,5, 7, 9, 11]

The reason map takes its function argument before its array argument is
that it is often useful to partially apply map by giving it a function. This “lifts”
the function from operating on a single value to operating on an array of
values. For example, if you have an array of arrays of numbers, and you want
to square them all, you do this:

Functional Programming 91

92

Chapter 5

function square(x) {return x * x;}

map(partial(map, square), [[10], [0, 1], [3]]);
— [[100], [0, 1], [9]]

Furthermore, the sum function can now simply be written like this:

var sum = partial(reduce, op["+"], 0);

Composition

One last trick that can be useful when juggling function values is function
composition. At the start of this chapter I showed a function negate, which ap-
plies the Boolean not operator to the result of calling a function:

function negate(func) {
return function() {
return !func.apply(null, arguments);
1
}

This is a special case of a general pattern: Call function A, and then ap-
ply function B to the result. Compositions is a common concept in mathe-
matics. It can be expressed as a higher-order function like this:

function compose(f1, f2) {
return function() {
return f1(f2.apply(null, arguments));
b
}

Here’s an example:

var isNotNaN = compose(op["!"], isNaN);
isNotNaN(5);
— true

Here we defined a new function without using the function keyword at
all. Because such definitions are typically shorter, they are great when you
want to create a simple function to give to, for example map or reduce.

Functions defined like this tend to be a little slower, because they add
more indirect function calls. Most of the time, this is not an issue, since most
code will be executed less than once a second, and a few extra microseconds
spent won’t be noticed. But for functions that you end up calling thousands
of times per second, you should consider just writing the function out di-
rectly.

OBJECT-ORIENTED PROGRAMMING

In the early 1990s, a thing called object-oriented program-
ming swept through the software industry. It defined

a whole new paradigm for writing programs. A bunch
of ideas that had been simmering in research labs, and
obscure experimental programming languages for a
decade were finally picked up by the mainstream.
Books were being written, courses were being given,
and a whole culture sprang up. We had found the right
way to wrile programs.

As it usually goes with new fashions, the effectiveness of this new style of
programming was greatly exaggerated. It turns out that programming was
still hard, even with objects. In fact, some of the rigidly object-oriented ideas
that were adopted (and enforced) by languages like Java probably do more
harm than good.

Regardless, the central techniques to come out of object-oriented pro-
gramming are very effective and worth learning. In this chapter, we will dis-
cuss these ideas, along with JavaScript’s (rather eccentric) take on them.

94

Obijects

Chapter 6

As the name suggests, object-oriented programming is related to objects. So
far, we have used objects as loose aggregations of values, adding and alter-
ing their properties whenever we saw fit. In an object-oriented approach,
objects are viewed as little worlds of their own, and the outside world may
touch them only through a limited and well-defined interface, which consists
of a number of specific methods and properties.

The Date and Error objects we have seen also work like this. Instead of
providing regular functions for working with the objects, they provide a way
to create such objects, using the new keyword, and a number of methods and
properties that provide the rest of the interface.

Defining Methods

One way to give an object methods is to simply attach function values to it, as
in the following code:

var rabbit = {};

rabbit.speak = function(line) {
print("The rabbit says '", line, "'");

};

rabbit.speak("I'm alive.");

In most cases, the method will also need to know who it should act on.
For example, if there are different rabbits, the speak method must indicate
which rabbit is speaking. For this purpose, there is a special variable called
this. When the function is called as a method (meaning it is looked up as a
property and immediately called, as in object.method()), this will point to the
relevant object.

function speak(line) {
print("The ", this.adjective,

}

var whiteRabbit = {adjective: "white", speak: speak};

var fatRabbit = {adjective: "fat", speak: speak};

rabbit says '", line, "'");

whiteRabbit.speak("Oh my ears and whiskers, how late it's getting!");
fatRabbit.speak("I could sure use a carrot right now.");

The previous code uses the this variable to insert the type of rabbit that
is speaking into the output text. It will print the following:

The white rabbit says 'Oh my ears and whiskers, how late it's getting!'
The fat rabbit says 'I could sure use a carrot right now.'

I can now clarify the mysterious first argument to the apply method, for
which we always used null in Chapter 5. This argument can be used to spec-
ify the object that the function must be applied to. (For nonmethod func-
tions, this is irrelevant, which is the reason for the null.) We could also call
speak on the fat rabbit like this:

speak.apply(fatRabbit, ["Yum."]);

Functions also have a call method, which is similar to apply, but you can
give the arguments for the function separately instead of as an array:

speak.call(fatRabbit, "Burp.");

For functions with more than one argument, using call and apply looks
like this:

function run(from, to) {
print("The ", this.adjective, " rabbit runs from ", from, " to ", to, ".");
}
run.apply(whiteRabbit, ["A", "B"]);
run.call(fatRabbit, "the cupboard", "the fridge");

Constructors

The new keyword provides a convenient way of creating new objects. When
a function is called with the operator new in front of it, its this variable will
point at a new object, which it will automatically return (unless it explicitly
returns something else using return). Functions used to create new objects
like this are called constructors. Here is a constructor for rabbits:

function Rabbit(adjective) {
this.adjective = adjective;
this.speak = function(line) {
print("The ", this.adjective,
};
}

rabbit says '", line, "'");

var killerRabbit = new Rabbit("killer");
killerRabbit.speak("GRAAAAAAAAAH!");

It is convention to start the names of constructors with a capital letter.
This makes it easy to distinguish them from other functions. The language
does not enforce this, but it is good practice to follow it.

Object-Oriented Programming 95

96

Chapter 6

Building from Prototype

Why is the new keyword even necessary? After all, we could have simply writ-
ten this:

function makeRabbit(adjective) {
return {
adjective: adjective,
speak: function(line) {/xetc*/}
};
}

var blackRabbit = makeRabbit("black");

But that is not entirely the same. new does a few things behind the
scenes. For one thing, our killerRabbit has a property called constructor,
which points at the Rabbit function that created it. blackRabbit also has
such a property, but it points at the Object function.

Where did this constructor property come from? It is part of the proto-
type of a rabbit. Prototypes are a powerful, if somewhat confusing, part of
the way JavaScript objects work. Every object is based on a prototype, which
gives it a set of inherent properties. The simple objects we have used so far
are based on the most basic prototype, which is associated with the Object
constructor, and are thus shared by all objects. (Typing {}, by the way, is
equivalent to typing new Object().)

toString is a method that is part of the Object prototype. This means that
all simple objects have a toString method, which converts them to a string.
In fact, every object has a toString method, since even if an object has an-
other prototype, that prototype is itself an object, which will (directly or indi-
rectly) be based on the Object prototype.

Constructors and Prototypes

Our rabbit objects are based on the prototype associated with the Rabbit
constructor. You can use a constructor’s prototype property to access this
prototype.

Every function you define automatically gets a prototype property,
which holds an object—the prototype of the function. This prototype gets
a constructor property, which points back at the function to which it belongs.
Because the rabbit prototype is itself an object, it is based on the Object pro-
totype and shares its toString method. Thus, any rabbit created with the
Rabbit constructor has this method.

Even though objects seem to share the properties of their prototype,
this sharing is one-way. The properties of the prototype influence the object
based on it, and changes to these objects never affect the prototype.

The precise rules are these: When looking up the value of a property,
JavaScript first looks at the properties that the object #self has. If there is a
property that has the name we are looking for, that is the value we get. If
there is no such property, it continues searching the prototype of the object,
and then the prototype of the prototype, and so on. If no property is found,
the value undefined is given. On the other hand, when setting the value of a
property, JavaScript never goes to the prototype but always sets the property
in the object itself. This means you can “override” properties in your own
objects to give them more specific, appropriate values than the generic ones
it takes from its prototype. The following code demonstrates this technique:

Rabbit.prototype.teeth = "small";
killexRabbit.teeth;

— "small"

killerRabbit.teeth = "long, sharp, and bloody";
killexrRabbit.teeth;

— "long, sharp, and bloody"
Rabbit.prototype.teeth;

— "small"

The following diagram sketches the situation after this code has run.
The Rabbit and Object prototypes lie behind killerRabbit as a kind of back-
drop, where properties that are not found in the object itself can be looked

up.

Rabbit
prototype
KillerRabbit Object
teeth:"long" prototype
adjective:killer"
teeth:"small"
speak:<function>

toString:<function>

This does mean that the prototype can be used at any time to add new
properties and methods to all objects based on it. For example, it might be-
come necessary for our rabbits to dance.

Rabbit.prototype.dance = function() {
print("The ", this.adjective, " rabbit dances a jig.");

};

Object-Oriented Programming 97

98

Chapter 6

And, as you might have guessed, the prototypical rabbit is the perfect
place for those values that all rabbits have in common, such as the speak
method. Here is a new approach to the Rabbit constructor:

function Rabbit(adjective) {
this.adjective = adjective;

}
Rabbit.prototype.speak = function(line) {
print("The ", this.adjective, " rabbit says '", line, "'");
};
Prototype Pollution

The fact that all objects have a prototype and receive some properties from
this prototype can be tricky. It means that using an object to store a set of
things, such as the cats from Chapter 3, can go wrong. If, for example, we
wondered whether there is a cat called "constructor", we would have checked
it like this:

var noCatsAtAll = {};
if ("constructor" in noCatsAtAll)
print("Yes, there definitely is a cat called 'constructor'.");

This is problematic. A related issue is that it can often be useful to ex-
tend the prototypes of standard constructors such as Object and Array with
new useful functions. For example, we could give all objects a method called
properties, which returns an array with the names of the (nonhidden) prop-
erties that the object has:

Object.prototype.properties = function() {
var result = [];
for (var property in this)
result.push(property);
return result;

};

var test = {x: 10, y: 3};
test.properties();

— ["x", "y", "properties"]

And that immediately shows the problem. Now that the Object prototype
has a property called properties, looping over the properties of any object,
using for and in, will also give us that shared property, which is generally not
what we want. We are interested only in the properties that the object itself
has.

Fortunately, there is a way to find out whether a property belongs to the
object itself or to one of its prototypes. Unfortunately, it does make looping

over the properties of an object a bit clumsier. Every object has a method
called hasOwnProperty, which tells us whether the object has a property with a
given name. Using this, we could rewrite our properties method like this:

Object.prototype.properties = function() {
var result = [];
for (var property in this) {
if (this.hasOwnProperty(property))
result.push(property);
}

return result;

};

var test = {"Fat Igor": true, "Fireball": true};
test.properties();
— ["Fat Igor", "Fireball"]

And of course, we can abstract that into a higher-order function. Note
that the action function is called with both the name of the property and the
value it has in the object.

function forEachIn(object, action) {
for (var property in object) {
if (object.hasOwnProperty(property))
action(property, object[property]);

But, what if we find a cat named hasOwnProperty? (You never know.) It
will be stored in the object, and the next time we want to go over the collec-
tion of cats, calling object.hasOwnProperty will fail, because that property no
longer points at a function value. This can be solved by doing something
even uglier:

function forEachIn(object, action) {
for (var property in object) {
if (Object.prototype.hasOwnProperty.call(object, property))
action(property, object[property]);

Here, instead of using the method found in the object itself, we get the
method from the Object prototype and then use call to apply it to the right
object. Unless someone actually messes with the method in Object.prototype
(don’t ever do that), this should work correctly.

Object-Oriented Programming 99

100

Chapter 6

Objects as Dictionaries

hasOwnProperty can also be used in those situations where we have been us-
ing the in operator to see whether an object has a specific property. There
is one more catch, however. We saw in Chapter 3 that some properties, such
as toString, are “hidden” and do not show up when going over properties
with for/in. It turns out that browsers in the Gecko family (Firefox, most
importantly) give every object a hidden property named _ proto__, which
points to the prototype of that object. hasOwnProperty will return true for this
one, even though the program did not explicitly add it. Having access to
the prototype of an object can be very convenient, but making it a prop-
erty like that was not a very good idea. Still, Firefox is a widely used browser,
so when you write a program for the Web, you have to be careful with this.
There is a method propertyIsEnumerable, which does mostly the same thing as
hasOwnProperty, but also returns false for hidden properties. This allows us to
filter out strange things like _ proto_ .

var object = {foo: "bar"};
Object.prototype.propertyIsEnumerable.call(object, "foo");
— true

Nice and simple, no? This is one of the not-so-well-designed aspects of
JavaScript. Objects play both the role of “values with methods,” for which
prototypes are great, and “sets of properties,” for which prototypes only get
in the way.

Writing the previous expression every time you need to check whether a
property is present in an object is awkward. We could put it into a function,
but an even better approach is to write a constructor and a prototype specifi-
cally for situations like this, where we want to approach an object as just a set
of properties. Because you can use it to look things up by name, we will call
this type Dictionary.

The Dictionary constructor can be called without arguments, in which
case it creates an empty dictionary, or with an object that provides the initial
content. It exposes four methods: store to add a value under a given key;
lookup to retrieve a value; contains to test whether a key is present; and each,

a higher-order function, to iterate over the dictionary’s contents.

function Dictionary(startValues) {
this.values = startValues || {};

}

Dictionary.prototype.store = function(name, value) {
this.values[name] = value;

};

Dictionary.prototype.lookup = function(name) {
return this.values[name];

};

Dictionary.prototype.contains = function(name) {
return Object.prototype.propertyIsEnumerable.call(this.values, name);
};
Dictionary.prototype.each = function(action) {
forEachIn(this.values, action);

};

Here’s a small piece of code to test the new type:

var colors = new Dictionary({Grover: "blue",
Elmo: "red",
Bert: "yellow"});

colors.contains("Grover");

— true

colors.contains("constructor");

— false

colors.store("Ernie", "orange");
colors.each(function(name, color) {
print(name, " is ", color);

b;

Now the whole mess related to approaching objects as plain sets of prop-
erties has been “encapsulated” in a convenient interface: one constructor
and four methods. Note that the values property of a Dictionary object is
not part of this interface; it is an internal detail, and when you are using
Dictionary objects, you do not need to directly use it.

Specifying an Interface

Whenever you write an interface, it is a good idea to add a comment with
a quick sketch of what it does and how it should be used. This way, when
someone, possibly yourself three months after you wrote it, wants to work
with the interface, they can quickly see how to use it and do not have to
study the whole program.

Most of the time, when you are designing an interface, you will soon find
some limitations and problems in whatever you came up with and change it.
To prevent wasting your time, it is advisable to document your interfaces
only after they have been used in a few real situations and proven themselves
to be practical. Of course, this might make it tempting to forget about doc-
umentation altogether. Personally, I treat writing documentation as a “fin-
ishing touch” to add to a system. When it feels ready, it is time to write some-
thing about it and to see whether it sounds as good in English (or whatever
language) as it does in JavaScript (or whatever programming language).

Object-Oriented Programming 101

102

The distinction between the external interface of an object and its in-
ternal details is important for two reasons. First, having a small, clearly de-
scribed interface makes an object easier to use. You only have to keep the
interface in mind, and you do not have to worry about the rest unless you
are changing the object itself.

Second, it often turns out to be necessary or practical to change some-
thing about the internal implementation of an object type (usually called a
class in other programming languages) to make it more efficient, for exam-
ple, or to fix a mistake. When outside code is accessing every single property
and detail in the object, you cannot change any of them without also updat-
ing a lot of other code. If outside code uses only a small interface, you can
do what you want, as long as you do not change the interface.

Some people go very far with this. They will, for example, never include
properties in the interface of an object, only methods—if their object type
has a length, it will be accessible with the getLength method, not the length
property. This way, if they ever want to change their object in such a way that
it no longer has a length property, for example because it now has some in-
ternal array whose length it must return, they can update the function with-
out changing the interface.

My own take is that in most cases this is not worth it. Adding a getLength
method that contains only return this.length; mostly just adds meaningless
code, and, in most situations, I consider meaningless code a bigger problem
than the risk of having to occasionally change the interface to my objects.

Building an Ecosystem Simulation

Chapter 6

In this chapter, we are going to build a virtual terrarium, a tank with insects
moving around in it. We will build objects that model the terrarium and the
creatures inside it, and we will write methods for those objects to “animate”

the creatures and allow them (turn by turn) to live their lives.

Defining the Terrarivm

We take a rather simple approach and make the terrarium a two-dimensional
grid. On this grid there are a number of bugs. When the terrarium is ac-
tivated, all the bugs get a chance to take an action, such as moving, which
changes the state of the terrarium.

Thus, we chop both time and space into units with a fixed size—squares
for space; “turns” for time. This usually makes things easier to model in a
program. Of course, it has the drawback of being inaccurate. Fortunately,
this terrarium-simulator is not required to be accurate in any way, and we
can safely cut corners.

A terrarium can be defined with a “plan,” which is an array of strings.
We could have used a single string, but the array structure nicely reflects the
two-dimensional structure of the data.

var thePlan =
[2isi s

" ¢ #) #H",
" #",
" HHHH ",
i ## #",
" #H # #",
" i # ",
“H #",
L) #",
"o # 0 HHE #"
"w# #",
S] 5

The # characters are used to represent the walls of the terrarium (and
the ornamental rocks lying in it), the o characters represent bugs, and the
spaces are, as you might have guessed, empty space.

Such a plan array can be used to create a terrarium object. This object
keeps track of the shape and content of the terrarium and lets the bugs in-
side move. It has two methods: toString, which converts the terrarium back
to a string similar to the plan it was based on so that you can see what is go-
ing on inside it, and step, which allows all the bugs in the terrarium to move
one step, if they so desire.

Points in Space

The points on the grid will be represented by very simple objects, based on a
constructor named Point, which takes two arguments, the x- and y-coordinates
of the point, and produces an object with x and y properties. The prototype
of this constructor has a single method called add, which takes another point
as an argument and returns a new point whose x and y are the sum of the x
and y of the two given points.

function Point(x, y) {
this.x = x;
this.y = y;
}
Point.prototype.add = function(other) {
return new Point(this.x + other.x, this.y + other.y);

b

Apart from the constructor and the method, the x and y properties are
also part of the interface of this type of objects: Code that uses point objects
may freely retrieve and modify x and y.

Object-Oriented Programming 103

104

Chapter 6

Representing the Grid

When writing objects to implement a certain program, it is not always very
clear which functionality goes where. Some things are best written as meth-
ods of your objects, other things are better expressed as separate functions,
and some things are best implemented by adding a new type of object. To
keep things clear and organized, it is important to keep the amount of meth-
ods and responsibilities that an object type has as small as possible. When an
object does too much, it becomes a mess and a source of confusion.

I said earlier that the terrarium object will be responsible for storing its
contents and for letting the bugs inside it move. Note that it lets them move;
it doesn’t make them move. The bugs themselves will also be objects, and
these objects are responsible for deciding what they want to do. The terrar-
ium merely provides the infrastructure that asks them what to do, and if they
decide to move, it makes sure this happens.

Storing the grid on which the content of the terrarium is kept can get
quite complex. It has to define some kind of representation, ways to access
this representation, a way to initialize the grid from a “plan” array, a way to
write the content of the grid to a string for the toString method, and the
movement of the bugs on the grid. It would be nice if part of this could be
moved into another object so that the terrarium object itself doesn’t get too
big and complex.

Whenever you find yourself about to mix data representation and
problem-specific code in one data type, don’t. Things will be much clearer
when the two are kept separate. In this case, we need to represent a grid of
values, so I wrote a Grid type, which supports the operations that the terrar-
ium will need.

To store the values on the grid, there are two options. One can use an
array of row arrays and use two lookups to get to a specific point, like this:

var grid = [["0,0", "1,0", "2,0"],
[“0,1", "1’1“, "2,1"]];
grid[1][2];

— "2,1"

Or, the values can all be put into a single array. In this case, the element
at x,y can be found by getting the element at position x + y * width in the
array, where width is the width of the grid.

var gl’id - ["0,0“, "1,0", "2,0“,
"0,1“’ "1,1") II2,1I|];
grid[2 + 1 * 3];

— "2,1"

I chose the second representation, because it makes it much easier to
initialize the array. new Array(x) produces a new array of length x, filled with
undefined values.

This code defines the Grid object, with some basic methods:

function Grid(width, height) {
this.width = width;
this.height = height;
this.cells = new Array(width * height);
}
Grid.prototype.valueAt = function(point) {
return this.cells[point.y = this.width + point.x];
};
Grid.prototype.setValueAt = function(point, value) {
this.cells[point.y * this.width + point.x] = value;
b
Grid.prototype.isInside = function(point) {
return point.x >= 0 && point.y >= 0 &&
point.x < this.width && point.y < this.height;
};
Grid.prototype.moveValue = function(from, to) {
this.setValueAt(to, this.valueAt(from));
this.setValueAt(from, undefined);

};

We will also need to go over all the elements of the grid to find the bugs
we need to move or to convert the whole thing to a string. To make this
easy, we can use a higher-order function that takes an action as its argument.
We add the method each to the prototype of Grid, which takes an action func-
tion of two arguments. It calls this function for every point on the grid, giv-
ing it the point object for that point as its first argument and giving it the
value that is on the grid at that point as its second argument.

This higher-order function abstracts a two-dimensional loop into a sin-
gle method call:

Grid.prototype.each = function(action) {
for (var y = 0; y < this.height; y++) {
for (var x = 0; x < this.width; x++) {
var point = new Point(x, y);
action(point, this.valueAt(point));
}
}
};

The double for loop traverses the grid row by row, starting from the top,
and then square by square in each row, starting from the left. Doing it in this
order is useful, because it will make it easier to write a method that converts
the grid to a string—the elements have to appear in the same order in such
a string.

Object-Oriented Programming 105

106

Chapter 6

A Bug’s Programming Interface

Before we can start to write a Terrarium constructor, we will have to get a bit
more specific about these “bug objects” that will be living inside it. Earlier, I
mentioned that the terrarium will ask the bugs what action they want to take.
This will work as follows: Each bug object has an act method that, when
called, returns an action. An action is an object with a type property, which
names the type of action the bug wants to take, for example "move". For most
actions, the action also contains extra information, such as the direction the
bug wants to go.

Bugs are terribly myopic, and thus they can only see the squares directly
around them on the grid. But these they can use to base their action on.
When the act method is called, it is given an object with information about
the surroundings of the bug in question. For each of the eight directions, it
contains a property. The property indicating what is above the bug is called
n for north, the one indicating what is above and to the left is called ne for
northeast, and so on. To look up the direction these names refer to, the fol-
lowing dictionary object is useful:

var directions = new Dictionary(

{"n": new Point(0, -1),
"ne": new Point(1, -1),
"e": new Point(1, 0),
"se": new Point(1, 1),
"s": new Point(0, 1),
"sw": new Point(-1, 1),
"w": new Point(-1, 0),
"nw": new Point(-1, -1)});

When a bug decides to move, it indicates in which direction it wants to
go by giving the resulting action object a direction property that names one
of these directions. We can make a simple, stupid bug that always just goes
south, “toward the light,” like this:

function StupidBug() {};
StupidBug.prototype.act = function(surroundings) {
return {type: "move", direction: "s"};

};

The Terrarivm Object

Now we can start on the Terrarium object type. Here’s its constructor, which
takes a plan (an array of strings) as an argument and initializes its grid:

var wall = {};

function elementFromCharacter(character) {

if (character == " ")
return undefined;

else if (character == "#")
return wall;
else if (character == "o")

return new StupidBug();

function Terrarium(plan) {
var grid = new Grid(plan[o].length, plan.length);
for (var y = 0; y < plan.length; y++) {
var line = plan[y];
for (var x = 0; x < line.length; x++) {
grid.setValueAt(new Point(x, y), elementFromCharacter(line.charAt(x)));
}
}
this.grid = grid;
}

The wall variable holds an object that is used to mark the location of
walls on the grid. Like a real wall, it doesn’t do much; it just sits there and
takes up space. The elementFromCharacter function converts a character that is
read from the plan into an actual value to store in the grid.

The most straightforward method of a terrarium object is toString, which
transforms a terrarium into a string. To make this easier, we mark both the
wall and the prototype of the StupidBug with a property character, which holds
the character that represents them.

wall.character = "#";

StupidBug.prototype.character = "o";

function characterFromtlement(element) {
if (element == undefined)
return " "
else
return element.character;

Now we can use the each method of the Grid object to build up a string.
But to make the result readable, it would be nice to have a newline at the
end of every row. The x-coordinate of the positions on the grid can be used
to determine when the end of a line is reached.

Terrarium.prototype.toString = function() {
var characters = [];
var endOflLine = this.grid.width - 1;

Object-Oriented Programming 107

108

Chapter 6

this.grid.each(function(point, value) {
characters.push(characterFromElement(value));
if (point.x == endOfLine)
characters.push("\n");
b;
return characters.join("");

};

When you try this by creating a new terrarium based on the plan shown
before and then calling toString on it, you’ll get a string very similar to the
plan you put in.

this and Its Scope

When writing a method like toString shown earlier, which makes use of lo-
cally defined functions, you will likely need to access the this variable from
an inner function at some point. This will unfortunately not work. Calling
a function always results in a new this being defined inside that function,
even when it is not used as a method. Thus, any this variable outside of the
function will not be visible.

Sometimes it is straightforward to work around this by storing the in-
formation you need in a variable, like end0fLine, which és visible in the inner
function. If you need access to the whole this object, you can store thatin a
variable too. The name self (or that) is often used for such a variable.

But such pointless extra variables can look messy. Another good solu-
tion is to use a function similar to partial from Chapter 5. Instead of adding
arguments to a function, this one adds a this object, using it as the first argu-
ment to the function’s apply method:

function bind(func, object) {
return function(){
return func.apply(object, arguments);

b
}
var x = [];
var pushX = bind(testArray.push, testArray);
pushX("A");
pushX("B");
X;
— [, 8]

This way, you can bind an inner function to this, and it will have the
same this as the outer function.

In the expression bind(testArray.push, testArray), the name testArray still
occurs twice. Some people prefer this, more succinct approach to method
binding:

function method(object, name) {
return function() {
object[name].apply(object, arguments);
};
}
var pushX = method(x, "push");

Animating Life
We will need bind (or method) when implementing the step method of a ter-
rarium. This method has to go over all the bugs on the grid, ask them for an
action, and execute the given action. You might be tempted to use each on
the grid and just handle the bugs we come across. But if you do this, when
a bug moves south or east, we will come across it again in the same turn and
allow it to move again.

Instead, we first gather all the bugs into an array and then process them.
This method gathers bugs, or other things that have an act method, and
stores them in objects that also contain their current position:

Terrarium.prototype.listActingCreatures = function() {
var found = [];
this.grid.each(function(point, value) {
if (value != undefined && value.act)
found.push({object: value, point: point});
1;
return found;

b

When asking a bug to act, we must pass it an object with information
about its current surroundings. This object will use the direction names we
saw earlier ("n", "ne", and so on) as property names. Each property holds a
string of one character, as returned by characterFromElement, indicating what
the bug can see in that direction.

For this, we’ll write a method listSurroundings and add it to the Terrarium
prototype. It takes one argument, the point at which the bug is currently
standing, and returns an object with information about the surroundings
of that point. When the point is at the edge of the grid, # is shown for the
directions that would bring the bug outside of the grid, so the bug will not
try to move there.

To go over all the possible directions, we’ll just use the each method of
the directions dictionary that we defined before. This will give us the “direc-
tion point” objects for those directions (things like Point(0, 1)), which we
can add to the center we were passed in order to get the coordinates we are
interested in.

Object-Oriented Programming 109

Terrarium.prototype.listSurroundings = function(center) {
var result = {};
var grid = this.grid;
directions.each(function(name, direction) {
var place = center.add(direction);
if (grid.isInside(place))
result[name] = characterFromElement(grid.valueAt(place));
else
result[name] = "#";
D;
return result;

};

The two methods defined previously are not part of the external inter-
face of a Terrarium object; they are internal details. Some languages provide
ways to explicitly declare certain methods and properties “private” and sig-
nal an error when you try to use them from outside the object. JavaScript
does not, so you will have to rely on comments to describe the interface to
an object. Sometimes it can be useful to use some kind of naming scheme to
distinguish between external and internal properties, for example by prefix-
ing all internal ones with an underscore (_). This will make accidental uses
of properties that are not part of an object’s interface easier to spot.

Next is one more internal helper method, the one that will ask a bug for
an action and carry it out. It takes a creature and the point at which the crea-
ture is sitting as arguments. For now, it only knows about the "move" action:

Terrarium.prototype.processCreature = function(creature, point) {
var action = creature.act(this.listSurroundings(point));

if (action.type == "move" 8& directions.contains(action.direction)) {
var to = point.add(directions.lookup(action.direction));
if (this.grid.isInside(to) && this.grid.valueAt(to) == undefined)

this.grid.moveValue(point, to);

}

else {
throw new Error("Unsupported action:

}

};

+ action.type);

Note that it checks whether the chosen direction is inside the grid and
empty and ignores it otherwise. This way, the bugs can ask for any action
they like—the action will be carried out only if it is actually possible. This
acts as a layer of insulation between the bugs and the terrarium and allows
us to be less precise when writing the bugs’ act methods—for example, the
StupidBug just always tries to move south, regardless of any walls that might
stand in its way.

110 Chapter 6

These three internal methods then finally allow us to write the step
method, which gives all bugs a chance to do something (all elements with
an act method—we could also give the wall object one if we so desired and
make the walls walk).

Terrarium.prototype.step = function() {
forEach(this.listActingCreatures(), bind(this.processCreature, this));

b

It Moves

Let us make a terrarium and see whether anything happens:

var terrarium = new Terrarium(thePlan);
terrarium.step();
print(terrarium);

If you look closely, you’ll notice all the circles are one line below where
they started. Here’s a before/after view:

FHHEHHHEEEHHE S S

0 H # # # it
0
T ## i
#Hi# # # ## # ## # # it #
it #Hit # # #Hith it # #
HitH # ## it #
I 521 #H A #
H# 0 ##
#o # 0 #HHE # # # 0 i #
##o0 # 0

FHHEHHHHE A S

Wait, how come the previous calls print(terrarium) and ends up dis-
playing the output of our toString method? print turns its arguments to
strings using the String function. Objects are turned to strings by calling
their toString method, so giving your own object types a meaningful toString
is a good way to make them readable when printed out.

Point.prototype.toString = function() {

return "(" + this.x + "," + this.y + ")";

};

Object-Oriented Programming m

More Life Forms

So, we have a terrarium object in which something is happening. But who
wants a terrarium with just one kind of bug, and a stupid bug at that? It
would be nice if we could add different kinds of bugs. Fortunately, all we
have to do is make the elementFromCharacter function more general. Right
now, it contains three cases that are typed in directly, or hard-coded:

function elementFromCharacter(character) {

if (character == " ")
return undefined;

else if (character == "#")
return wall;

else if (character == "o")

return new StupidBug();

The first two cases we can leave intact, but the last one is way too spe-
cific. A better approach would be to store the characters and the corre-
sponding bug constructors in a dictionary and look for them there:

var creatureTypes = new Dictionary();

creatureTypes.register = function(constructor, character) {
constructor.prototype.character = character;
this.store(character, constructor);

};
function elementFromCharacter(character) {
if (character == " ")
return undefined;
else if (character == "#")

return wall;
else if (creatureTypes.contains(character))

return new (creatureTypes.lookup(character))();
else

throw new Error("Unknown character:

+ character);

Note how the register method, which registers a character type, is added
to creatureTypes—this is a dictionary object, but there is no reason why it
shouldn’t support an additional method. This method stores the construc-
tor in the dictionary and makes sure its prototype.character points back at the
character so that we can print it.

elementFromCharacter now looks up the character it’s given in creatureTypes
and raises an exception when it comes across an unknown character.

Here is a new bug type and the call to register its character in
creatureTypes:

112 Chapter 6

function BouncingBug() {
this.direction = "ne";

}

BouncingBug.prototype.act = function(surroundings) {
if (surroundings[this.direction] != " ")

this.direction = (this.direction == "ne" ? "sw" : "ne");

return {type: "move", direction: this.direction};

};

creatureTypes.register(BouncingBug, "%");

Can you figure out what it does?

The act method checks whether the space ahead (where “ahead” is
determined by this.direction) is empty. If it is not, the bug turns around,
moving diagonally in the other direction until it hits an obstacle there.

Next up is a bug type called DrunkBug that tries to move in a random di-
rection every turn, never mind whether there is a wall there.

To produce “randomness,” we can use the function Math.random. Com-
puters are deterministic machines: They always react in the same way to the
input they receive. Thus, they cannot produce truly random values. How-
ever, utilities like Math.random are able to produce a series of numbers that
look random, even though they are in fact the result of some complicated
deterministic computation. The function returns a number between 0 and 1
(0 inclusive, 1 exclusive). To get a whole number instead, we can use a func-
tion like this:

function randomInteger(below) {
return Math.floor(Math.random() * below);

}

Calling randomInteger(2) will return o or 1. The multiplication “scales”
up the range of the random number, and calling Math.floor makes sure it
becomes a whole number.

To pick a random direction, we will need an array of direction names.
We could of course just type ["n", "ne", ...], but that duplicates informa-
tion, and duplicated information makes us nervous. We could also use the
each method in directions to build the array, which is better already.

But there is clearly a generality to be discovered here. Getting a list of
the property names in a dictionary sounds like a useful tool to have, so we

add it to the Dictionary prototype.

Dictionary.prototype.names = function() {
var names = [];
this.each(function(name, value) {names.push(name);});
return names;

b

Object-Oriented Programming 113

114

Chapter 6

directions.names();

— ["n", "ne", "e", "se", "s", "sw", "w", "nw"]

Here, then, is a way to take a random element from an array:

function randomElement(array) {
if (array.length == 0)
throw new Error("The array is empty.");
return array[Math.floor(Math.random() * array.length)];
}

randomElement (["heads", "tails"]);
—

The result is shown as ???, because we cannot be sure in advance what
the result of that expression will be. In 50% of the cases, it will be "heads"; in
the other 50%, it will be "tails".

And here’s the bug itself:

function DrunkBug() {};
DrunkBug.prototype.act = function(surroundings) {

return {type: "move", direction: randomElement(directions.names())};
};

creatureTypes.register(DrunkBug, "~");

You can test this by adding some % and ~ characters to the plan array,
and running a terrarium for a few steps. Notice the bouncing bugs bouncing
off the drunk ones? Pure drama.

Polymorphism

We now have several kinds of objects that have an act method and a character
property. Because they share these traits, the terrarium can treat them the
same way. Thus, we can have all kinds of bugs, without changing anything
about the terrarium code. This technique is called polymorphism, and it is ar-
guably the most powerful aspect of object-oriented programming.

The basic idea of polymorphism is that when a piece of code is written
to work with objects that have a certain interface, any kind of object that
happens to support this interface can be plugged into the code, and it will
just work. We already saw simple examples of this, like the toString method
on objects. All objects that have a meaningful toString method can be given
to print, as well as other functions that need to convert values to strings,
since they all provide the agreed-on method for that purpose.

Similarly, forEach works on both real arrays and the pseudo-arrays found
in the arguments variable, because all it needs is a length property and proper-
ties called o, 1, and so on, for the elements of the array.

A More Lifelike Simulation

To make life in the terrarium more interesting, we will add to it the con-
cepts of food and reproduction. Each living thing in the terrarium gets a
new property, energy, which is reduced by performing actions and increased
by eating things. When it has enough energy, a thing can reproduce, gener-
ating a new creature of the same kind. To keep things reasonably simple, the
creatures in our terrarium reproduce asexually, all by themselves.

If there are only bugs, wasting energy by moving around and eating each
other, a terrarium will soon succumb to the forces of entropy, run out of
energy, and become a lifeless wasteland. To prevent this from happening
(too quickly, at least), we add lichen to the terrarium. Lichen do not move;
they just use photosynthesis to gather energy and reproduce.

To make this work, we’ll need a terrarium with a different processCreature
method. We could just replace the method of the Terrarium prototype, but
we have become very attached to the simulation of the bouncing and drunk
bugs, and we would hate to break our old terrarium.

A solution is to create a new constructor, LifelLikeTerrarium, whose
prototype is based on the Terrarium prototype but which has a different
processCreature method.

Inheritance

There are a few ways to do this. We could go over the properties of
Terrarium.prototype and add them one by one to LifelLikeTerrarium.prototype.
This is easy to do, and in some cases it is the best solution, but in this case
there is a cleaner way. If we make the old prototype object the prototype of
the new prototype object (you may have to reread that a few times), it will
automatically have all its properties.

Unfortunately, JavaScript does not have a straightforward way to create
an object whose prototype is a certain other object. It is possible to write a
function that does this, though, by using the following trick:

function clone(object) {
function OneShotConstructor(){}
OneShotConstructor.prototype = object;
return new OneShotConstructor();

}

This function uses an empty one-shot constructor, whose prototype is
the given object. When using new on this constructor, it will create a new ob-
ject based on the argument object.

function LifelikeTerrarium(plan) {
Terrarium.call(this, plan);
}
LifeLikeTerrarium.prototype = clone(Terrarium.prototype);
LifelLikeTerrarium.prototype.constructor = LifelLikeTerrarium;

Object-Oriented Programming 115

116

Chapter 6

The new constructor doesn’t need to do anything different from the old
one, so it just calls the old one on the this object. We also have to restore the
constructor property in the new prototype, or it would claim its constructor
is Terrarium (which, of course, is relevant only if we were to make use of this
property, which we don’t).

It is now possible to replace some of the methods of the LifeLikeTerrarium
object or add new ones. We have based a new object type on an old one,
which saved us the work of rewriting all the methods that are the same in
Terrarium and LifelikeTerrarium. This technique is called inheritance. The new
type inherits the properties of the old type. In most cases, this means the
new type will still support the interface of the old type, though it might also
support a few methods that the old type does not have. This way, objects of
the new type can be (polymorphically) used in all the places where objects
of the old type could be used.

In most programming languages with explicit support for object-
oriented programming, inheritance is a very straightforward thing. In Java-
Script, the language doesn’t really specify a simple way to do it. Because of
this, JavaScript programmers have invented many different approaches to
inheritance, but none of them is quite perfect. Fortunately, such a broad
range of approaches allows a programmer to choose the most suitable one
for the problem at hand and allows certain tricks that would be utterly im-
possible in other languages.

At the end of this chapter, we will see a few other ways to implement
inheritance and the issues they have.

Keeping Track of Energy

The new processCreature method is a lot more complicated than the old
one—instead of one type of action, it supports five different types. It uses
some helper methods so that it doesn’t become a huge monster of a method:

LifeLikeTerrarium.prototype.processCreature = function(creature, point) {
var energy, action, self = this;
function dir() {
if (!directions.contains(action.direction)) return null;
var target = point.add(directions.lookup(action.direction));
if (!self.grid.isInside(target)) return null;
return target;

}

action = creature.act(this.listSurroundings(point));

if (action.type == "move"

energy = this.creatureMove(creature, point, dir());
else if (action.type == "eat")

energy = this.creaturekat(creature, dir());
else if (action.type == "photosynthesize")

energy = -1;

else if (action.type == "reproduce")
energy = this.creatureReproduce(creature, dir());
else if (action.type == "wait")
energy = 0.2;
else
throw new Error("Unsupported action:

+ action.type);

creature.energy -= energy;
if (creature.energy <= 0)
this.grid.setValueAt(point, undefined);
};

The local dir function (using the self variable to access this) is used to
extract a direction from an action, doing some error checking on it. If it
finds something invalid, it returns null. The helper functions will be writ-
ten to check their argument so that actions with invalid directions are simply
ignored.

Each helper returns the amount of energy spent by this action or a neg-
ative number when energy is gained. The code at the end of the function
updates the creature’s energy score and removes the creature from the grid
when it runs out of energy.

The action-specific helpers are relatively straightforward:

LifeLikeTerrarium.prototype.creatureMove = function(creature, from, to) {
if (to != null || this.grid.valueAt(to) == undefined) {
this.grid.moveValue(from, to);
from.x = to.x; from.y = to.y;
}
return 1;

};

As before, this checks whether the chosen direction is valid, and not ob-
structed, and then moves. The one awkward part is that this has to update
the from object, because otherwise the code in processCreature that removes
dead creatures won’t know where to find this creature anymore.

Eating is not hard either. It locates the meal that the creature has cho-
sen, checks whether there is actually anything there, and checks whether this
anything has energy (so that creatures don’t go around eating walls), and
then it removes the meal from the grid, giving its energy to the creature.

LifelLikeTerrarium.prototype.creaturekat = function(creature, source) {
var energy = 1;
if (source != null) {
var meal = this.grid.valueAt(source);
if (meal != undefined &3 meal.energy) {
this.grid.setValueAt(source, undefined);
energy -= meal.energy;

}

Object-Oriented Programming 117

118

Chapter 6

}

return energy;

b

Finally, to reproduce, we again check whether the chosen spot is valid
and empty (a creature has to choose a spot to putits child). If itis, a new
creature of the same type as the parent is created. The amount of energy the
parent will lose for reproducing is twice the amount of energy the new crea-
ture gets (childbearing is not easy). If the parent does not have that much
energy, the child is not put onto the grid.

LifeLikeTerrarium.prototype.creatureReproduce = function(creature, target) {
var energy = 1;
if (target != null 83 this.grid.valueAt(target) == undefined) {
var species = characterFromElement(creature);
var baby = elementFromCharacter(species);
energy = baby.energy * 2;
if (creature.energy >= energy)
this.grid.setValueAt(target, baby);
}

return energy;

};

Adding Plant Life

We now have the “framework” needed to simulate these more lifelike crea-
tures. We could put the creatures from the old terrarium into it, but they
would just die after a few turns. So, let’s make some new ones. First we’ll
make the lichen, which are rather simple. We will use the character * to rep-
resent them.

This again uses the randomElement function introduced when we wrote the
drunk bug. It also defines a findDirections function, which is used to enu-
merate the directions in which a certain type of character is being seen by
the creature.

function findDirections(surroundings, wanted) {
var found = [];
directions.each(function(name) {
if (surroundings[name] == wanted)
found. push(name);
b;
return found;

}

function Lichen() {
this.energy = 5;

}

Lichen.prototype.act = function(surroundings) {
var emptySpace = findDirections(surroundings, " ");
if (this.energy >= 13 &3 emptySpace.length > 0)
return {type: "reproduce", direction: randomtlement(emptySpace)};
else if (this.energy < 20)
return {type: "photosynthesize"};
else
return {type: "wait"};
};

creatureTypes.register(Lichen, "x");

Lichen do not grow bigger than 20 energy, or they would get huge when
they are surrounded by other lichen and have no room to reproduce.

The Herbivore

Next up is the LichenEater. It starts with an energy of 10, and its behavior can

be described like this:

* When it has an energy of 30 or more and there is room near it, it repro-
duces.

* Otherwise, if there are lichen nearby, it eats a random one.

* Otherwise, if there is space to move, it moves into a random nearby
empty square.

e Otherwise, it waits.

We’ll use the ¢ character (Pac-Man) for this creature:

function LichenEater() {
this.energy = 10;

}

LichenEater.prototype.act = function(surroundings) {
var emptySpace = findDirections(surroundings, " ");
var lichen = findDirections(surroundings, "«");

if (this.energy >= 30 8& emptySpace.length > 0)
return {type: "reproduce", direction: randomElement(emptySpace)};
else if (lichen.length > 0)
return {type: "eat", direction: randomElement(lichen)};
else if (emptySpace.length > 0)
return {type: "move", direction: randomElement(emptySpace)};
else
return {type: "wait"};
};

creatureTypes.register(LichenEater, "c");

Object-Oriented Programming 119

Bringing It to Life

And that gives us enough elements to try our new terrarium. Imagine a
moody, dark cave, with lichen growing on the walls and lichen-eating bugs
scuttling around on the floor. That’s what this code is trying to express:

var moodyCave =
["HHHHHHHH]

"4 HtHHHE"
"4 *okk kit
"#o xfHbxx Kk C k"
"# K%k C itk *#",
"# C Hboxx "
"# b *#",
"t #x *#"
"tk Hxx c k",
"tkokk Hitxx C k"
"ok xokk bRk K",

"SRR]

var terrarium = new LifelLikeTerrarium(moodyCave);
for (var i = 0; 1 < 10; i++) {
for (var i = 0; i < 20; i++)
terrarium.step();
print(terrarium);

}

The following output shows a typical run of such a terrarium, with steps
of 20 turns between the pictures:

FHHEHHHEEEHHEEHHEEHE S

o okkkkkk C HEHHHHE # C Ckxkx SHEHEHE
o kxkkkk C c wkxitl # Cxkkkk sxckxitl
o sekitibrork [« wokkftlt # C bk sokokok it
*% % #H wokxft #C % % # C wxxdt
CC o*¥x ##Hc et # C C H# cOrxx#
C #HC wxft # C C HE kxkxd
c # *xC s # C C #C ekl
HkkkC * xokokft Hx cc # * kkkokokokdt
hkokkokokok Htkkkk skt HxC ¢ HE C ok krrkrrd

hkokkokkok HiHEexkokk skt H#xx cC ##H c keeordti
HHHEHHHHEHERHHH AR SRR

120 Chapter 6

THHEHHHHEEHHHE S S

ccc o#x CHHtH#H # Fokok i
C * c H# # *okskok #it
* cHff # #H# *%
cc % #iccc ## * ##
#c #t c ccH # C ## c#
d C cHt cccH# # ##
cc cc ## #
C cH # c# c
#H# c cc ## ##
Hith C C HH## # Hit# c Hi#

THHEHHHHEEHHHE S S

FHHEHHHHEH A S

*k HtHH # T
*k #H # #H#
#it *k HH # # ##t
* ## ## ##
c #i c## #Hit
#i# ## #it
#
c# c ## #
#i
Hit c H#HH# Hit# Hit#

THHEHHHEH A S

Most of the time, the lichen quickly overgrow a large part of the terrar-
ium, after which the abundance of food makes the eaters so numerous that
they wipe out all (or nearly all) the lichen and thus themselves. Ah, tragedies
of nature.

Artificial Stupidity

Having the inhabitants of our terrarium go extinct after a few minutes is
kind of depressing. To deal with this, we could teach our lichen-eaters about
long-term sustainable farming. By making them eat only if they see at least
two lichen nearby, no matter how hungry they are, they will never extermi-
nate the lichen. This can be done by changing their act method to eat only
when lichen.length is at least 2.

Running the previous moodyCave terrarium with this change, we still usu-
ally see the lichen-eaters still go extinct after a while, because, in a time of
starvation, they crawl aimlessly back and forth through empty space, instead
of finding the lichen that is sitting just a few squares away from them.

Object-Oriented Programming 17

122

Another potential improvement is to reduce the randomness of these
creatures’ movement. By always picking a random direction, it will often
move back and forth without getting anywhere. By remembering the last
direction it went, and preferring that direction, the eater will waste less time
and find food faster. Here is the updated implementation:

function CleverLichenkater() {
this.energy = 10;
this.direction = "ne";

}

CleverLichenEater.prototype.act = function(surroundings) {
var emptySpace = findDirections(surroundings, " ");

var lichen = findDirections(surroundings, "");

if (surroundings[this.direction] != " ")
this.direction = randomElement(emptySpace);

if (this.energy >= 30 &3 emptySpace.length > 0)
return {type: "reproduce", direction: randomElement(emptySpace)};
else if (lichen.length > 1)
return {type: "eat", direction: randomElement(lichen)};
else if (emptySpace.length > 0)
return {type: "move", direction: this.direction};
else
return {type: "wait"};
};

creatureTypes.register(CleverLichenEater, "c");

When used in the simulation, this new animal survives the moody cave
a bit longer than its simple-minded cousin. If you give it a big enough world
to live in, so that abundance and scarcity occur in parts of the environment,
rather than everywhere at once, the ecosystem even seems to stay stable.

Prototypal Inheritance

Chapter 6

The whole terrarium detour should have given you some insight into the
way objects are used in real programs. The rest of the chapter is devoted to
a more in-depth look at inheritance and the problems related to inheritance
in JavaScript.

First, let’s go over some theory. Students of object-oriented program-
ming can often be heard having lengthy, subtle discussions about correct
and incorrect uses of inheritance. It is important to bear in mind that in-
heritance, in the end, is just a trick that allows lazy programmers—and here
I mean to use the word lazy in the most positive way possible—to write less
code. Thus, the question of whether inheritance is being used correctly
boils down to the question of whether the resulting code works properly

and avoids useless repetition. Still, the principles used by these students pro-
vide a good way to start thinking about inheritance.

Inheritance is the creation of a new type of objects, the subtype, based on
an existing type, the supertype. The subtype starts with all the properties and
methods of the supertype (it inherits them) and then modifies a few of these
or adds new ones. Inheritance is best used when the thing modeled by the
subtype can be said to be an object of the supertype.

Thus, a Piano type could be a subtype of an Instrument type, because a pi-
ano isan instrument. Since a piano has a whole array of keys, one might be
tempted to make Piano a subtype of Array, but a piano is no array, and imple-
menting it like that is bound to lead to all kinds of silliness. For example,

a piano also has pedals. Why would piano[0] give me the first key, and not
the first pedal? The situation is, in fact, that a piano has keys, so it would be
better to give it a property keys and possibly another property pedals, both
holding arrays.

It is possible for a subtype to be the supertype of yet another subtype.
Some problems are best solved by building a complex family tree of types.
You have to take care not to get too inheritance-happy, though. Inheritance
has its own way of tangling code together, and overusing it usually produces
a tightly connected mess that can be hard to modify.

Type-Definition Utilities

The workings of the new keyword and the prototype property of constructors
suggest a certain way of defining types, which we’ve been using so far. For
simple objects, such as the terrarium creatures, this way works rather well.
Unfortunately, when a program starts to make serious use of inheritance,
this approach to objects quickly becomes clumsy. Adding some functions to
take care of common operations can make things a little smoother. Many
people define, for example, inherit and method methods on objects.

Object.prototype.inherit = function(baseConstructor) {
this.prototype = clone(baseConstructor.prototype);
this.prototype.constructor = this;

};

Object.prototype.method = function(name, func) {
this.prototype[name] = func;

};

Having these, we can write code like this:

function StrangeArray(){}

StrangeArray.inherit(Array);

StrangeArray.method("push", function(value) {
Array.prototype.push.call(this, value);
Array.prototype.push.call(this, value);

};

Object-Oriented Programming 123

124

Chapter 6

var strange = new StrangeArray();
strange.push(4);
— [4, 4]

If you search the Web for the words JavaScript and inheritance, you will
come across scores of different variations on this, some of them quite a lot
more complex and clever than this code.

Note how the push method written here uses the push method from the
prototype of its parent type. This is something that is done often when us-
ing inheritance—a method in the subtype internally uses a method of the
supertype but extends it somehow.

Prototypes as Types

The biggest problem with this basic approach is the duality between con-
structors and prototypes. Constructors take a very central role; they are the
things that give an object type its name, and when you need to get at a proto-
type, you have to go to the constructor and take its prototype property.

Not only does this lead to a lot of typing ("prototype" is nine letters, after
all), itis also confusing. We had to write an empty, useless constructor for
StrangeArray in the previous example. Quite a few times, I have found my-
self accidentally adding methods to a constructor instead of its prototype or
trying to call Array.slice when I really meant Array.prototype.slice. In a way,
the prototype itself is the most important aspect of an object type, and the
constructor is just an extension of that, a special kind of method.

With a few simple helper methods added to Object.prototype, it is pos-
sible to create an alternative approach to objects and inheritance. In this
approach, a type is represented by its prototype, and we will use capitalized
variables to store these prototypes. When it needs to do any “constructing”
work, this is done by a method called construct. We add a method called
create to the Object prototype, which is used in place of the new keyword. It
clones the object and calls its construct method, if there is such a method,
giving it the arguments that were passed to create.

Object.prototype.create = function() {
var object = clone(this);
if (object.construct != undefined)
object.construct.apply(object, arguments);
return object;

};

Inheritance can be done by cloning a prototype object and adding or
replacing some of its properties. We also provide a convenient shorthand for
this, an extend method, which clones the object it is applied to and adds to
this clone the properties in the object that it is given as an argument.

Object.prototype.extend = function(properties) {
var result = clone(this);

forEachIn(properties, function(name, value) {
result[name] = value;

};

return result;

};

In a situation where it is not safe to mess with the Object prototype, these
can, of course, be implemented as regular (nonmethod) functions.

A World of Objects

Here’s an example. If you are old enough, you may at one time have played
a “text adventure” game, where you move through a virtual world by typing
commands and getting textual descriptions of the things around you and
the actions you perform. Now those were games!

We could write the prototype for an item in such a game, the things the
game world is built out of, like this:

var Item = {
construct: function(name) {
this.name = name;
})
inspect: function() {
print("it is ", this.name, ".");
b
kick: function() {
print("klunk!");
})
take: function() {
print("you cannot lift ", this.name, ".");
}
};

var lantern = Item.create("the brass lantern");
lantern.kick();

You can then inherit from it like this:

var DetailedItem = Item.extend({
construct: function(name, details) {
Ttem.construct.call(this, name);
this.details = details;
})
inspect: function() {
print("you see ", this.name, ", ". this.details, ".");
}
D;

Object-Oriented Programming 125

126

Chapter 6

var giantSloth =
DetailedItem.create("the giant sloth",
"it is quietly hanging from a tree, munching leaves");
giantSloth.inspect();

Leaving out the compulsory prototype part makes tasks such as calling
Item.construct from DetailedItem’s constructor slightly simpler. Note that
it would be a bad idea to just do this.name = name in DetailedItem.construct.
This duplicates a line. Sure, duplicating the line is shorter than calling the
Item.construct function, but if we end up adding something to this construc-
tor later, we have to add it in two places.

Most of the time, a subtype’s constructor should start by calling the con-
structor of the supertype. This way, it starts with a valid object of the super-
type, which it can then extend. In this new approach to prototypes, types
that need no constructor can leave it out. They will automatically inherit the
constructor of their supertype. This can be seen in the follwing subtype:

var SmallItem = Item.extend({
kick: function() {
print(this.name, " flies across the room.");
b
take: function() {
// (imagine some code that moves the item to your pocket here)
print("you take ", this.name, ".");
}
D;

var pencil = SmallItem.create("the red pencil");
pencil.take();

Even though SmallItem does not define its own constructor, creating it
with a name argument works, because it inherited the constructor from the
Item prototype.

The instanceof Operator

JavaScript has an operator called instanceof, which can be used to determine
whether an object is based on a certain prototype. You give it the object on
the left side and a constructor on the right side, and it returns a Boolean,
true if the constructor’s prototype property is the direct or indirect prototype
of the object and false otherwise. For example, [] instanceof Array will pro-
duce true.

When you are not using regular constructors, using this operator be-
comes rather clumsy—it expects a constructor function as its second argu-
ment, but we only have prototypes. A trick similar to the clone function can
be used to get around it: We use a “fake constructor” and apply instanceof
to 1t.

Object.prototype.isA = function(prototype) {
function DummyConstructor() {}
DummyConstructor.prototype = prototype;
return this instanceof DummyConstructor;

b

pencil.isA(Item);

— true
pencil.isA(DetailedItem);
— false

Mixing Types

Next, we want to make a small item that has a detailed description. It

seems like this item would have to inherit both from DetailedItem and from
SmallItem. JavaScript does not allow an object to have multiple prototypes,
and even if it did, the problem would not be quite that easy to solve. For ex-
ample, if SmallItem would, for some reason, also define an inspect method,
which inspect method should the new prototype use?

Deriving an object type from more than one parent type is called multi-
ple inheritance. Some languages chicken out and forbid it altogether; others
define complicated schemes to make it work in a well-defined way. It is possi-
ble to implement a decent multiple-inheritance framework in JavaScript. In
fact, there are multiple good approaches to this—but they all are too com-
plex to be discussed here. Instead, I will show a very simple approach that
suffices in most cases.

A mix-in is a specific kind of prototype that can be “mixed into” other
prototypes. Smallltem can be seen as such a prototype. By copying its kick and
take methods into another prototype, we mix smallness into this prototype.

function mixInto(object, mixIn) {
forEachIn(mixIn, function(name, value) {
object[name] = value;
b;
};

var SmallDetailedItem = clone(DetailedItem);
mixInto(SmallDetailedItem, Smallltem);

var deadMouse = SmallDetailedItem.create("Fred the mouse", "he is dead");
deadMouse. inspect();
deadMouse.kick();

This will print the following:

you see Fred the mouse. he is dead.
Fred the mouse flies across the room.

Object-Oriented Programming 127

128

Chapter 6

Remember that forEachIn goes over the object’s own properties only, so it
will copy kick and take but not the constructor that SmallItem inherited from
Item.

Mixing prototypes gets more complex when the mix-in has a constructor
or when some of its methods “clash” with methods in the prototype that it is
mixed into. Sometimes, it is workable to do a “manual mix-in.” Say we have
a prototype Monster, which has its own constructor, and we want to mix that
with DetailedItem:

var Monster = Item.extend({
construct: function(name, dangerous) {
Item.construct.call(this, name);
this.dangerous = dangerous;
})
kick: function() {
if (this.dangerous)
print(this.name, " bites your head off.");
else
print(this.name, " squeaks and runs away.");
}
1;

var DetailedMonster = DetailedItem.extend({
construct: function(name, description, dangerous) {
DetailedItem.construct.call(this, name, description);
Monster.construct.call(this, name, dangerous);
b

kick: Monster.kick

b

var giantSloth = DetailedMonster.create(
"the giant sloth",
"it is quietly hanging from a tree, munching leaves",
true);

giantSloth.kick();

But note that this causes Item constructor to be called twice when creat-
ing a DetailedMonster—once through the DetailedItem constructor and once
through the Monster constructor. In this case, there is not much harm done,
but there are situations where this would cause problems.

Don’t let those complications discourage you from making use of inheri-
tance. Multiple inheritance, though extremely useful in some situations, can
be safely ignored most of the time. This is why languages like Java get away
with forbidding it. And if, at some point, you find that you really need mul-
tiple inheritance, you can search the Web, do some research, and figure out
an approach that works for your situation.

MODULARITY

Imagine a program consisting of, say, 100 different
functions. By most standards, that’s a small program.
If we end up changing the list of arguments passed to
one of those functions, which other functions do we
have to modify? If we change some of the code, how
do we find out whether any of the other functions have
become obsolete? If we need one of the functions for
another program, how many of the other functions
also have to be added to that other program, because
they are used by the function we need?

If there is no organization at all to your program, finding the answer
to any of these questions means going through all of the functions. There
are of course tools that can help us here, such as the Unix utility grep, but,
especially in the case where you need to reuse some functionality in another
project, you are still going to need a lot of manual code shuffling.

To make such interdependence of code easier to keep track of, experi-
enced programmers try to divide their programs into modules, each with its
own task, and minimize the amount of “coupling” between these modules—
the amount of detail the modules have to “know” about each other.

130

Modules

Chapter 7

A module can be any collection of functions and values that, together, fulfill
some specialized role. Many languages have a built-in way to define modules,
but—once again—]JavaScript leaves us in the cold. Like with the object inter-
faces we saw in Chapter 6, modules have to exist purely in the minds of the
programmers (and, ideally, in their comments and documentation).

Object interfaces and modules are in fact related concepts. A module
should expose an interface just like an object does. In fact, a module can
consist of just a single object (and its interface). The Dictionary object we
created in the previous chapter is an example of an object that would make
a good module.

A module does not have to stand on its own. Often, when building a
module, functionality from other modules is useful. The Dictionary object,
for example, uses the forEachIn function, which should probably be part of
some utility module. Such dependencies should be noted, so that when you
change a module, you know which modules depend on it and should also be
updated.

An Example

In Chapter 6, while developing a terrarium, we used a number of functions
described in Chapter 5. Chapter 6 also defined a few new concepts that had
nothing in particular to do with terraria, such as clone and the Dictionary
type. All these things were haphazardly added to the environment. This is
one way to split this program into modules:

* A module Utilities, which contains things such as forEach, map, reduce,
forEachIn, and clone, and which depends on nothing

® Dictionary, containing the dictionary type and depending on Utilities

¢ And finally the Terrarium module, which depends on both of the previ-
ous modules

A module that depends on another module will work only when this other
module is also loaded. Itis a good idea to try to avoid circles in dependen-
cies (A depending on B, with B depending on A). Not only do circular de-
pendencies create a practical problem (if module A and B depend on each
other, which one should be loaded first?), they also make the relation be-
tween the modules less straightforward and can result in a tangle of modules
that are just as hard to track as a nonmodularized program.

Modules as Files

One obvious way to separate modules is by putting every module in a differ-
ent file. This makes it clear which code belongs to which module. I should
note, though, that when you are building a website and you have a lot of
small module files, you should probably combine all those files into a big file

before deploying them to the Web, because loading lots of small files tends
to make a website slow.

Browsers load JavaScript files when they find a <script> tag with an src
attribute in the HTML of the web page. The extension .js is usually used for
files containing JavaScript code. For example, you could have a file map.js,
containing this version of map:

function map(func, array) {
var len = array.length, result = new Array(len);
for (var i = 0; i < len; i++)
result[i] = func(array[i]);
return result;

}

If you have this file available on your web server under /js/map.js, you’d
put a line like this into your HTML document to make the function avail-
able on the page:

<script src="/js/map.js" type="text/javascript"></script>

Now any other scripts loaded on the page will be able to use the map
function. For a proper discussion about the way JavaScript programs are
used in web pages, see Chapter 9.

A script tag like this can also be used without the src attribute but with a
JavaScript program enclosed between the opening and closing tags. Here’s
an example:

<script type="text/javascript">alert("Hi!");</script>

The Shape of a Module

Since the language does not prescribe a way to write modules, we will have to
come up some techniques of our own. For modules that consist of only a few
functions or objects (or just one), there’s not much to think about—you just
write those functions or objects as usual and call it a module.

For bigger modules or modules that contain some “internal” elements—
variables that are used by the module’s code but not part of its interface—
there are reasons to do things differently.

In JavaScript, “top-level” variables all live together in a single space.
When a lot of code is loaded into an environment, it becomes hard to keep
track of which variable names are used, which makes it very easy to acci-
dentally use a name that was already used for something else. This will, of
course, break the code that used the original value. The proliferation of
top-level variables is called namespace pollution, and it can be a rather severe
problem in JavaScript. The language will not warn you when you redefine an
existing variable; things will just break.

Modularity 131

For this reason, bigger modules should try to use as few top-level vari-
able names as possible and not put their internal variables into the top-level
environment.

Functions as Local Namespaces

We have a very simple module for translating between month names and
their numbers (as used by Date, where January is 0). It uses an internal vari-
able names:

var names = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];

function getMonthName(number) {return names[number];}
function getMonthNumber(name) {

for (var number = 0; number < names.length; number++) {

if (names[number] == name) return number;

}

}

getMonthNumber ("February");
— 1

The standard trick for hiding names from the rest of the world is to use a
function as a local module namespace. The whole module is written inside a
function, and the interface of the module is explicitly put into the top-level
environment. It does that by setting properties in the window object, which is
an object whose properties represent the top-level variables. Thus, adding
properties to the object causes variables to be defined.

function buildMonthNameModule() {
var names = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];

function getMonthName(number) {return names[number];}
function getMonthNumber(name) {

for (var number = 0; number < names.length; number++) {

if (names[number] == name) return number;

}

}

window.getMonthName = getMonthName;
window.getMonthNumber = getMonthNumber;

}
buildMonthNameModule();

This way, the module’s functions and variables can all see each other,
but “outsiders” can only see the interface.

132 Chapter 7

We can make this a little more elegant by using a helper function,
provide, which can be given an object containing an object that describes
the interface, with property names indicating the variable names and with
property values indicating the values those variables should get. provide will
set these variables in the global scope:

function provide(values) {
forEachIn(values, function(name, value) {
window[name] = value;
D;
}

To shorten the code a little more, we can write the local-scope function
as an anonymous function and call it directly:

(function() {
var names = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];
provide({
getMonthName: function(number) {return names[number];},
getMonthNumber: function(name) {
for (var number = 0; number < names.length; number++) {
if (names[number] == name) return number;
}
}
D;
HO;

I wouldn’t recommend writing modules like this right from the start.
While you are still working on a piece of code, it is easier to just use the sim-
ple approach we have used so far and put everything in the top-level envi-
ronment. That way, you can inspect the module’s internal values in your
browser and test them. Once a module is more or less finished, it is not diffi-
cult to wrap it in a function.

Module Objects

Some modules export so many variables that it is a bad idea to put them all
into the top-level environment. These have to be handled differently. You
can do what the standard Math object does and represent the module as a
single object whose properties are the functions and values it exports. Here’s
an example:

var HTML = {
tag: function(name, content, properties) {
return {name: name, properties: properties, content: content};

}s

Modularity 133

134

link: function(target, text) {
return HTML.tag("a", [text], {href: target});
}
/* ... many, many more HTML-producing functions ... */

};

Note that such an object is analogous to the “interface objects” we passed
to provide earlier. In fact, it can also be passed to that function, which will
have the effect of “importing” the module into the global namespace. This
can occasionally be useful when you are using a module a lot and don’t want
to retype the object name all the time. (But of course, you have to watch out
for name collisions.)

Internal variables in a module object can be made normal properties of
the object, or you can use the function trick described earlier and have the
scope function return the module object instead of setting global variables:

var days = (function() {
var names = ["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"];
return {
getDayName: function(number) {return names[number];},
getDayNumber: function(name) {
for (var number = 0; number < names.length; number++) {
if (names[number] == name) return number;
}
}
};
HO;

days.getDayNumber ("Wednesday");

— 3

Interface Design

Chapter 7

Designing an interface for a module or an object type is one of the subtler
aspects of programming. Any nontrivial functionality can be exposed in dif-
ferent ways. Finding a way that works well is something of an art.

The best way to learn the value of good interface design is, unfortu-
nately, to use bad interfaces. Once you get fed up with them, you’ll figure
out a way to improve them and learn a lot in the process. Try not to assume
that a lousy interface is “just the way it is.” Fix it, or wrap it in a new interface
that is better (we will see an example of this in Chapter 10).

Predictability

If programmers can predict the way your interface works, they (or you) won’t
need to look things up while working. Thus, try to follow conventions (such

vww . allitebooks.cond

http://www.allitebooks.org

as using camelCase normal names and Capitalized constructor names) as
much as possible. When there is another module or part of the standard
JavaScript functionality that does something similar to what you are imple-
menting, it might be a good idea to make your interface resemble the ex-
isting interface. That way, people who know the existing interface will feel
right at home.

Composability

In your interfaces, try to use the simplest data structures that work and make
functions do a single, clear thing—if possible, they should be pure functions
(see Chapter 2).

For example, it is not uncommon for modules to provide their own
array-like collection objects, with their own interface for extracting elements
from such an object, and return those from functions that return collections
of things. Such objects cannot be passed to map or forEach. This is a case of
bad composability, since the module cannot be easily composed with algo-
rithms operating on arrays.

Another example would be a module for spellchecking text, which we
might need when we want to write a text editor. The spellchecker could be
made to operate directly on whichever complicated data structures the ed-
itor uses and directly call internal functions in the editor to have the user
choose between spelling suggestions. If we do that, the module cannot be
used with any other programs. On the other hand, if we define the spell-
checking interface so that you can pass it a simple string and it will return
the position in the string where it found a possible misspelling, along with
an array of suggested corrections, then we have an interface that could also
be composed with other systems.

Layered Interfaces

When designing an interface for a complex piece of functionality (say, send-
ing email), you often run into something of a dilemma. On the one hand,
you do not want to overload the user of your interface with details. They
shouldn’t have to study your interface for 20 minutes before they can send
an email. On the other hand, you do not want to hide all the details either—
when people need to do complicated things with your module, that should
also be possible.

Often the solution is to provide two interfaces: a detailed “low-level”
one for advanced use and a simple “high-level” one for straightforward sit-
uations. The second one can usually be built very easily using the tools pro-
vided by the first one. In the email module, the high-level interface could
just be a function that takes a message, a sender address, and a receiver ad-
dress, and sends the email. The low-level interface allows full control over
email headers, attachments, sending HTML mail, and so on.

Modularity 135

136

Chapter 7

Argument Objects

There are functions that require a lot of arguments. Sometimes this means
they are just badly designed, and the problem can be remedied by splitting
them into a few more focused functions. But in other cases, the function
really needs all those arguments. Typically, some of the arguments have a
sensible default value.

For example, the following function can be used to find the position of
avalue in an array, with extra optional arguments that allow you to search
just part of the array (start and end) and to use a custom function as a re-
placement for == when comparing elements (compare).

function positionOf(element, array, compare, start, end) {
if (start == null) start = o;
if (end == null) end = array.length;
for (; start < end; start++) {
var current = array[start];
if (compare ? compare(element, current) : element == current) return start;
}
}

positionof(2, [1, 2, 3, 4, 3, 2, 1], null, 3, 6);

— 5

Remember that == null return true both if the value is null and if it is
undefined. This is used to check whether start and end were passed and to
give them a useful default value if they weren’t.

In the example call shown after the function, the disadvantage of having
so many optional arguments becomes clear. We have to pass null to “skip”
an argument, and when you read the call, you have to actually count along
with the arguments to understand which value has which role. We can im-
prove this by wrapping the optional arguments in an object:

// optional arguments in args: {compare, start, end}
function positionOf(element, array, args) {
args = args || {};
var start = (args.start == null ? 0 : args.start),
end = (args.end == null) ? array.length : args.end,
compare = args.compare;
for (; start < end; start++) {
var current = array[start];
if (compare ? compare(element, current) : element == current) return start;
}
}

positionOf(2, [1, 2, 3, 4, 3, 2, 1], {start: 3, end: 6});

— 5

The call becomes more readable like this. However, it has become harder
to figure out which arguments are supported. This is why I have put the
comment before the function, listing the optional arguments.

Libraries

A module or group of modules intended to be used in more than one pro-
gram is usually called a library. For common, well-defined problems, you can
usually find libraries online, often released under some license that allows
you to use them in your projects for free (make sure you check, though).

Some languages have a well-organized collection of quality libraries, ei-
ther bundled with the language itself or available in a central place on the
Web. JavaScript has no such thing yet, so you will just have to use a search
engine to look around. And of course, there is also a lot of junk online, so
treat libraries from unknown sources with caution—they might be broken,
and they might even contain malicious code.

There are currently a number of different popular libraries providing
a “fundamental” set of tools, each with its own focus. These usually contain
equivalents of most of the general utilities we use in this book. Once you get
serious about JavaScript programming, it pays to read the documentation for
a few of the major ones and see which one you like best. (As a starting point,
search the Web for jQuery, YUI, Prototype, and Ext]S.)

The fact that a basic toolkit is almost indispensable for any nontrivial
JavaScript programs, combined with the fact that there are so many differ-
ent toolkits, causes a bit of a dilemma for library writers. You either have to
make your library depend on one of the toolkits or write the basic tools your-
self and include them with the library. The first option makes the library
hard to use for people who are using a different toolkit, and the second
option adds a lot of nonessential code to the library. This is probably the
reason why a lot of libraries can still only be found as, for example, “jQuery
plug-ins” or “YUI components,” not plain-vanilla JavaScript libraries.

Modularity 137

REGULAR EXPRESSIONS

At various points in the previous chapters, we had to
look for patterns in string values. In Chapter 3 we ex-
tracted date values from strings by writing out the pre-
cise positions at which the numbers that were part of
the date could be found. Later, in Chapter 5, we saw
some particularly ugly pieces of code for finding cer-
tain types of characters in a string, for example the
characters that had to be escaped in HTML output.

Regular expressions are a language for describing patterns in string data.
They form a small, separate language, which is embedded inside JavaScript
(as well as various other programming languages). This language is very suc-
cinct, though not very readable—big regular expressions tend to look like
cartoon characters cursing. Regardless, they are a powerful tool and can
really simplify string-processing programs.

Syntax

In the same way that strings are written between quotes, regular expression
patterns are written between slashes (/). The search method of strings works

140

Chapter 8

like index0f—it returns the position at which it finds its argument—but takes
a regular expression instead of a string:

"doubledare".search(/le/);

— 4

Since a slash normally indicates the end of the regular expression,
slashes inside the expression have to be escaped with backslashes (but
quotes do not). For example, here we define a regular expression that
contains only a slash:

var slash = /\//;
"AC/DC".search(slash);

— 2

Patterns specified by a regular expressions can do a few things that
strings cannot do. For example, they allow some of their elements to
match more than a single character.

Matching Sets of Characters

In Chapter 5, when extracting markup from a document, we needed to find
the first asterisk or opening brace in a string. We could have done that with
a regular expression, like this:

var asteriskOrBrace = /[\{\x]/;

var story = "We noticed the xgiant slothx, hanging from a giant branch.";
story.search(asteriskOrBrace);

— 15

The [and] characters have a special meaning inside a regular expres-
sion. They enclose a list of characters and will match when one of these
characters is found. Most punctuation characters have some special meaning
inside a regular expression, so it is a good idea to always escape them with a
backslash! when you use them to refer to the actual characters.

There are a few characters that actually refer to whole sets of characters
within a regular expression. The dot (.) can be used to mean “any charac-
ter that is not a line-break character.” An escaped d (\d) means “any digit.”
An escaped w (\w) matches any “word” character, meaning alphabetic char-
acters, digits, and the underscore character. An escaped s (\s) matches any
whitespace character (things such as tabs, newlines, and spaces).

var digitSurroundedBySpace = /\s\d\s/;
"1a 2 3d".search(digitSurroundedBySpace);

— 3

! In this case, the backslashes were not really necessary, because the characters occur between [
and], where different rules apply. For now, it is easier to just escape them anyway so you won’t
have to think about it.

You can replace the \d, \w, and s\ characters with capital letters to negate
their meanings. For example, \S matches any character that is not whites-
pace. When using [and], a pattern can be inverted by starting with a * char-
acter:

var notABC = /["ABC]/;
"ABCBACCBBADABC" .search(notABC);
— 10

With what we know now, we can write a regular expression that matches
a date in the format XX/XX/XXXX, where the Xs are digits—we had strings like
that in Chapter 3: born 15/11/2003 (mother Spot): White Fang.

var datePattern = /\d\d\/\d\d\/\d\d\d\d/;
"born 15/11/2003 (mother Spot): White Fang".search(datePattern);

— 5

The mass of backslashes makes the expression relatively hard to read.
It says “digit, digit, slash, digit, digit, slash, digit, digit, digit, digit.” In a mo-
ment, we’ll see how to use a similar expression to actually extract the date
from the string.

Matching Word and String Boundaries

Sometimes you need to make sure a pattern starts at the beginning of a
string or ends at the string’s end. You can use the special characters » and

$ to do this. The » character matches the start of the string, and the $ charac-
ter matches the end:

/a/.test("blah");
— true

/"a$/ .test("blah");
— false

The first regular expression matches any string that contains an a char-
acter, while the second matches only the string "a". Note that regular expres-
sions are objects and have methods. Their test method returns a Boolean
indicating whether the given string matches the expression.

The \b escape character matches a “word boundary,” which can be punc-

tuation, whitespace, or the start or end of a string:

/cat/.test("concatenate");

— true
/\bcat\b/.test("concatenate");
— false

Regular Expressions 141

142

Chapter 8

Repeating Patterns

Itis possible to express the repeating of subpatterns in a regular expression.
Putting an asterisk (*) after an element allows it to be repeated any number
of times, including zero. A plus (+) does the same but requires the pattern to
occur at least one time. A question mark (?) makes an element “optional”—
it can occur zero or one time.

var parenthethicText = /\(.*\)/;
"Its (the sloth's) claws were gigantic!".search(parenthethicText);
— 4

When necessary, you can use braces to specify the number of times an
element may occur. A number between braces ({4}, for example) gives the
exact number of times that element must occur. Two numbers with a com-
ma between them ({3,10}) indicate that the pattern must occur at least as of-
ten as the first number and at most as often as the second one. Analogously,
{2,} means two or more occurrences, while {,4} means four or less.

This is a more flexible pattern for matching dates:

var datePattern = /\d{1,2}\/\d\d?\/\d{4}/;
"born 15/11/2003 (mother Spot): White Fang".search(datePattern);
— 5

The expressions /\d{1,2}/ and /\d\d?/ are two ways to express the same
thing: “one or two digits.”

Grouping Subexpressions

It is often necessary to use special characters like * or + on more than one
character at a time. It is possible to group parts of a regular expression to-
gether with parentheses and then do something with the whole group. For
example:

var cartoonCrying = /boo(hoo+)+/1i;
cartoonCrying.test("Boohoooohoohooo");
— true

The pattern hoo+ will match an h followed by two or more o characters.
(hoo+)+ allows this pattern, as a whole, to be repeated one or more times.

Notice the i at the end of the regular expression. After the closing slash,
“options” may be added to a regular expression. Here, the i means that the
expression is case-insensitive, which allows the lowercase b in the pattern to
match the uppercase B in the string. We’ll see another option, g for “global,”
later on in this chapter.

Choosing Between Alternatives

For more advanced “branching” patterns, you can use a pipe character ()
to allow a pattern to make a choice between several elements. Here’s an
example:

var holyCow = /\b(sacred|holy) (cow|bovine|bull|taurus)\b/i;
holyCow.test("Sacred bovine!");
— true

This will match any string that contains the word sacred or holy, followed
by one of the words cow, bovine, bull, or taurus. Note that the parentheses are
needed here, because otherwise the choice would be between sacred, holy
cow, bovine, and so on.

Matching and Replacing

Often, looking for a pattern is just the first step in extracting something
from a string. In previous chapters, such extraction was done by calling a
string’s index0f and slice methods. Now that we know about regular expres-
sions, we can do better.

The match Method

Strings have a method named match, which takes a regular expression as an
argument. It returns null if the match failed and returns an array of matched
strings if it succeeded. You can see this happen in the following examples:

"No".match(/yes/i);
— null

"... yes".match(/yes/i);
— [Ilyesll]

"Giant Ape".match(/giant (\w+)/i);
— ["Giant Ape", "Ape"]

The first element in the returned array is always the part of the string
that matched the whole pattern. As the third example shows, when there are
parenthesized parts in the pattern, the parts they match are also added to
the array. Often, this makes extracting pieces of a string very easy.

We can now rewrite the extractDate function that we wrote in Chapter 3.
When given a string, this function looks for something that follows the date
format we saw earlier. If it can find such a date, it puts the values into a Date
object. Otherwise, it throws an exception.

Regular Expressions 143

144

Chapter 8

function extractDate(string) {
var found = string.match(/\b(\d\d?)\/(\d\d?)\/(\d{4})\b/);
if (found == null)
throw new Error("No date found in + string + "'.");
return new Date(Number(found[3]), Number(found[2]) - 1, Number(found[1]));
}

This version of the function is no longer than the previous one, and
it actually checks whether the input matches its expectations and shouts
out when it is given nonsensical input. This was a lot harder without regu-
lar expressions—it would have taken a bunch of calls to index0f to find out
whether the numbers had one or two digits and whether the slashes were in
the expected place.

Regular Expressions and the replace Method

The replace method of string values, which we saw in Chapter 5, can be given
a regular expression as its first argument:

"Borobudur"”.replace(/[ou]/g, "a");
— "Barabadar"

Notice the g character after the regular expression. It stands for “global”
and means that every part of the string that matches the pattern should be
replaced. When this g is omitted, only the first o would be replaced—this is a
common mistake.

Sometimes we need to keep parts of the strings we replace. For exam-
ple, say we have a big string containing the names of people, one name per
line, in the format Lastname, Firstname. If we want to swap these names and
remove the comma to get a simple Firstname Lastname format, we can use the
following code:

var names = "Picasso, Pablo\nGauguin, Paul\nVan Gogh, Vincent";
names.replace(/([\w]+), ([\w]+)/g, "$2 $1");
— "Pablo Picasso\nPaul Gauguin\nVincent Van Gogh"

The $1 and $2 in the replacement string refer to the parenthesized parts
in the pattern. $1 is replaced by the text that matched against the first pair of
parentheses, $2 by the second, and so on, up to $9.

If you have more than nine parenthetical parts in your pattern, this tech-
nique will no longer work. However, there is another even more flexible way
to replace pieces of a string using regular expressions. When the second ar-
gument given to the replace method is a function value instead of a string,
this function is called every time a match is found, and the matched text is
replaced by whatever the function returns. The arguments given to the

function are the matched elements, similar to the values found in the ar-
rays returned by match: The first argument is the whole match, and after that
there is an argument for every parenthesized part of the pattern.

Here’s a simple example:

“the cia and fbi".replace(/\b(fbi|cia)\b/g, function(str) {
return str.toUpperCase();

s
— "the CIA and FBI"

And here’s a cuter one:

var stock = "1 lemon, 2 cabbages, and 101 eggs";
function minusOne(match, amount, unit) {
amount = Number(amount) - 1;
if (amount == 1) // only one left, remove the
unit = unit.slice(0, unit.length - 1);
else if (amount == 0)

amount = "no";

s'

return amount +

}
stock.replace(/(\d+) (\w+)/g, minusOne);
— "no lemon, 1 cabbage, and 100 eggs"

+ unit;

This takes a string, finds all occurrences of a number followed by an al-
phanumeric word, and returns a string wherein every such occurrence is
decremented by one.

The (\d+) group ends up as the amount argument to the function, and
the (\w+) group gets bound to unit. The function converts the amount to a
number—which always works, since it matched \d+—and makes some adjust-
ments in case there is only one or zero left.

This trick, passing a function to replace, can also be used to make the
HTML-escaper from Chapter 5 more efficient. You may remember that it
looked like this:

function escapeHTML(text) {
var replacements = [["&", "&"], ["\"", """],
["<", "81t;"], [">", ">"]1;
forEach(replacements, function(replace) {
text = text.replace(replace[0], replace[1]);
D;

return text;

}

We can now write a new version of escapeHTML that does the same thing
but calls replace only once.

Regular Expressions 145

146

Chapter 8

function escapeHTML(text) {
var replacements = {"<": "&1t;", ">": "8gt;",
"&": "&", "\"": """};
return text.replace(/[<>8"]/g, function(character) {
return replacements[character];
b;
}

The replacements object is a quick way to associate each character with its
escaped version. We could have used a Dictionary object from Chapter 6,
since the object is used as to map values onto other values, but a simple ob-
ject is also safe, because we know exactly which values will be used as prop-
erties and don’t need the contains method (which checks whether a name is
present in the object).

Dynamically Creating RegExp Objects

There are cases where you might not know the pattern you need to match
against while you are writing the code. Say we are writing a (very simple-
minded) obscenity filter for a message board, and we only want to allow mes-
sages that do not contain obscene words.

The most efficient way to check a piece of text for a set of words is to
use a regular expression. Since we don’t know in advance which words have
to be in there, we have to create it in the code. For this, you use the RegExp
constructor:

var badWords = ["ape", "monkey", "simian", "gorilla", "evolution"];
var pattern = new RegExp(badWords.join("|"), "i");
function isAcceptable(text) {

return !pattern.test(text);

}

isAcceptable("The quick brown fox...");

— true

isAcceptable("Cut that monkeybusiness out.");
— false

isAcceptable("Mmmm, grapes.");

— false

The first argument to the RegExp constructor is a string containing the
pattern, and the second argument (which may be omitted) can be used to
add case-insensitivity or globalness.

As an aside, we could add \b patterns around the words so that (for ex-
ample) the “grapes” string would not be classified as unacceptable. However,
that change would also make the “monkeybusiness” string acceptable, which
is probably not correct. As you can see, obscenity filters are quite hard to get
right (and usually just annoying).

When building a string to hold a regular expression pattern, you have
to be careful with backslashes: Normally, backslashes are removed when a
string is interpreted, so any backslashes that must end up in the regular ex-
pression itself have to be escaped:

var digits = new RegExp("\\d+");

Parsing an .ini File

Now let’s look at a real problem that calls for regular expressions. Imagine
we are writing a program to automatically harvest information about our
enemies from the Internet. We will not actually write such a program here,
just the part that reads the configuration file. This file looks like this:

searchengine=http://www.google.com/search?q=5%1
spitefulness=9.7

; comments are preceded by a semicolon...

; these are sections, concerning individual enemies
[larry]

fullname=Larry Doe

type=kindergarten bully
website=http://www.geocities.com/CapeCanaveral/11451

[gargamel]

fullname=Gargamel

type=evil sorcerer
outputdir=/home/marijn/enemies/gargamel

The exact rules for this format (which is actually a widely used format,
usually called an .ini file) are as follows:

¢ Blank lines and lines starting with semicolons are ignored.
* Lines wrapped in [and] start a new section.

* Lines containing an alphanumeric identifier followed by an = character
add a setting to the current section.

* Anything else is invalid.

Our task is to convert a string like this into an array of objects, each with
a name and an array of name/value pairs. We’ll need one such object for each
section and one for the section-less settings.

Since the format has to be processed line by line, splitting it up into sep-
arate lines is a good start. So far, we have always used string.split("\n") for
this. Some operating systems, however, use not just a newline character to
separate lines but a carriage return character followed by a newline ("\r\n").

Regular Expressions 147

Given that the split method of strings also allows a regular expression
as its argument, the following function splits a string into an array of lines,
allowing both "\n" and "\r\n" between lines.

function splitlLines(string) {
return string.split(/\r?\n/);

}

That gives us all we need to write our .in: file parsing function:

function parseINI(string) {
var lines = splitlLines(string);
var categories = [];

function newCategory(name) {
var cat = {name: name, fields: []};
categories.push(cat);
return cat;

}

var currentCategory = newCategory("TOP");

forEach(lines, function(line) {
var match;
if (/M\s*(;.%)?$/.test(1line))
return;
else if (match = line.match(/"\[(.*)\]$/))
currentCategory = newCategory(match[1]);
else if (match = line.match(/*(\w+)=(.%)$/))
currentCategory.fields.push({name: match[1], value: match[2]});
else
throw new Error("Line

};

+ line + is invalid.");

return categories;

}

In short, the code goes over every line in the file. It keeps a “current cat-
egory” object, and when it finds a normal directive, it adds it to this object.
When it encounters a line that starts a new category, it replaces the current
category with a new one, to which subsequent directives will get added. Fi-
nally, it returns an array containing all the categories it came across.

Note the recurring use of » and $ to make sure the expression matches
the whole line, not just part of it. Leaving these out is a common mistake,
which results in code that mostly works but behaves strangely for some input.

The expression /"\sx(;.*)?$/ can be used to test for lines that can be
ignored. Do you see how it works? The part between the parentheses will
match comments, and the ? after that will make sure it also matches lines of
whitespace.

148 Chapter 8

The pattern if (match = string.match(...)) is something you’ll commonly
see when using regular expressions. You typically aren’t completely sure that
your expression will match and you do not want your code to try to evaluate
something like null[1], so you need to test whether match returns a non-null
value. To not break the elegant chain of if forms, you can assign this result
to a variable as the test for if and do the matching and the testing in a single
line.

Conclusion

Right now, the most important thing to know about regular expressions is
that they exist and can make your string-mangling code much shorter. In
fact, there is quite a lot more to learn about regular expressions than the
material found in this chapter. Look around on the Internet, if you feel like
it—the syntax used by JavaScript’s regular expressions is called Perl Com-
patible Regular Expressions and is found in a lot of other programming lan-
guages as well.

This syntax is so cryptic that you’ll probably have to go look up the de-
tails the first 10 or so times you need to use it. Persevere, and you will soon
be writing brilliantly complicated, occult-looking expressions.

Regular Expressions 149

WEB PROGRAMMING: ACRASH
COURSE

This chapter contains a quick introduction to the var-
ious elements that make the Web work and the way
they relate to JavaScript. The three chapters after this
one are more practical and show some of the ways
JavaScript can be used to inspect and change a web

page.

The Internet

Basically, the Internet is a computer network spanning most of the world.

A computer network makes it possible for computers to send each other
messages. The techniques underlying networking are very interesting, but
are not the subject of this book. All you have to know is that, typically, one
computer, which we will call the server, is waiting for other computers to start
talking to it. Once another computer, the client, opens communications with
this server, they are able to send each other data. In order for both parties to
understand each other, this data transfer must be guided by some protocol, or
convention for communication.

152

Chapter 9

The Internet is used to carry messages for many different protocols.
There are protocols for chatting, protocols for file sharing, protocols used
by malicious software to control the computer of the poor schmuck who got
infected, and so on. The protocol that is of interest to us is the one used by
the World Wide Web. It is called HTTP, which stands for HyperText Trans-
fer Protocol, and is used to retrieve web pages and the files associated with
them.

In HTTP communication, the server is the computer on which the web
page is stored. The client is the computer that asks the server for a page so
that it can display it. Asking for a page like this is called an HTTP request.

URLs

Web pages and other resources that are accessible through the Internet are
identified by URLs, which stands for Universal Resource Locators. A URL
looks like this:

http://acc6.its.brooklyn.cuny.edu/~phalsall/texts/taote-v3.html

It is composed of three parts. The first part, http://, indicates that this
URL uses the HTTP protocol. There are some other protocols, such as File
Transfer Protocol (FTP) and Secure HTTP (HTTPS), which also make use
of URLs. The next part, acc6.its.brooklyn.cuny.edu, names the server on
which this page can be found. The final part of the URL, /~phalsal/texts/
taote-v3.html, names a specific file on this server.

The usual way to access the World Wide Web is through a browser. Af-
ter typing in a URL or clicking a link, the browser makes an HTTP request
to the appropriate server. If all goes well, the server responds by sending a
file back to the browser, which in turn shows it to the user (in one way or
another).

When, as in the example, the retrieved file is an HTML document, it will
be displayed as a web page. We briefly discussed HTML in Chapter 5, where
we saw that it could contain styling information and refer to image files. In
Chapter 7, I mentioned that HTML pages can also contain <script> tags to
load files of JavaScript code. When showing an HTML document, a browser
will automatically fetch all the script and image files that the page uses so
that it can add them to the document.

Server-Side Programming

Although a URL often points to a concrete file, it is possible for a web server
to do something more complicated than just looking up a file and sending
it to the client. It could, for example, somehow preprocess this file first. Or
maybe there is no file at all, but only a program that, given a URL, has some
way of generating a document for it.

Programs that transform or generate documents allow us to make more
advanced web pages. A file is just a file, static and noninteractive. But when

there is a program being executed for every request, the resulting page can
be customized for each particular user, based on things like whether they
have logged in or specified certain preferences. This can also make manag-
ing the content of web pages much easier—instead of adding a new HTML
file whenever something new is put on a website, a new document is added
to some central storage (usually a database system), and the program that
creates the web pages finds it there and knows how to show it to clients.

This kind of web programming is called server-side programming. It affects
the document before it is sent to the user. In some cases, it is also useful to
have a program that runs after the page has been sent, when the user is look-
ing at it. This is called client-side programming, because the program runs on
the client’s computer. Client-side web programming is what JavaScript was
invented for.

Client-Side Programming

Running programs on the client side is inherently problematic. You can
never really know in advance what kinds of programs the page you are visit-
ing is going to run. If it can send information from your computer to others,
damage something, or infiltrate your system, surfing the Web would be dan-
gerous.

To work around this issue, browsers severely limit the things a JavaScript
program may do. It is not allowed to look at the files on your computer or
to modify anything not related to the web page it was embedded in. Isolat-
ing a programming environment like this is called sandboxing. Allowing the
programs enough room to be useful but at the same time restricting them
enough to make them harmless is not an easy thing to do. Every few months
some JavaScript programmer comes up with a new way to circumvent the
limitations and do something harmful or privacy-invading. The people re-
sponsible for the browsers respond by modifying their programs to make
this trick impossible, and all is well again—until the next problem is discov-
ered.

Basic Web Scripting

We will now walk through some of the things that a JavaScript environment
in a web browser provides and look at some simple things that can be done
with client-side programming.

The window Object

One of the first widespread uses of JavaScript was the open method of the
window object. It takes a URL as an argument and will open a new window
showing that URL.

var comicwindow = window.open("http://www.pbfcomics.com");

Web Programming: A Crash Course 153

154

Chapter 9

If you try that nowadays, your browser will probably block the new win-
dow from opening. Web programmers, especially those trying to get people
to pay attention to advertisements, have abused this window.open method so
much that by now, it is considered really bad style and not allowed by de-
fault. It still has its uses, but as a general rule, your scripts should not open
any new windows unless the user asked for them.

Note that, because open is a method on the window object, the window.
part can be left off. When a function is called “normally,” it is called as a
method on the top-level object, which is what window is. Personally, I think
open sounds a bit generic, so I usually use window.open, which makes it clear
that it is a window that is being opened.

The value returned by window.open is a new window. This is the global
object for the script running in that window, and it contains all the standard
things like the Object constructor and the Math object. But if you try to look at
them, most browsers will (probably) not let you—they will trigger some form
of security exception instead.

This is part of the sandboxing that I mentioned earlier. Pages opened
by your browser might show information that is meant only for you (if you
open, for example, the website of your bank and log in). It would be bad if
any random script running on another web page could mess with them. The
exception to this rule is pages opened on the same domain: When a script
running on a page from eloquentjavascript.net opens another page on that
same domain, it can do everything it wants to this page.

An opened window can be closed with its close method. Here’s an
example:

comicwindow.close();

Other kinds of subdocuments, such as frames (documents within a doc-
ument), are also windows from the perspective of a JavaScript program and
have their own window object and JavaScript environment.

The document Object

Every window object has a document property, which contains an object repre-
senting the document shown in that window. This object contains, for exam-
ple, a property location, with information about the URL of the document.

document.location.href;
— "http://eloquentjavascript.net/chapter10.html"”

Setting document.location.href to a new URL can be used to make the
browser load another document. Another application of the document object
is its write method. This method, when given a string argument, writes some
HTML to the document. When it is used on a fully loaded document, it will
replace the whole document by the given HTML, which is usually not what
you intended. The way to use this function is to have a script call it while the
document is being loaded, in which case the written HTML will be inserted

into the document at the place of the script tag that triggered it. This is a
simple way to add some dynamic elements to a page. For example, here is
a simple document showing the current time:

<html>
<head><title>The time</title></head>
<body>
<h1>The time</h1>
<p>The time is
<script type="text/javascript">
var time = new Date();
document.write(time.getHours() +
</script>
</p>
</body>
</html>

+ time.getMinutes());

Often, the techniques we’ll discuss in Chapter 10 provide a cleaner
and more versatile way to modify the document, but for simple things,
document.write works well.

Timers

The window object also provides methods for scheduling things to happen
after a certain amount of time. If we have, for example, a web page that
allows the user to make a choice between two links (/spoiler.html and
/nospoiler.html) and that automatically picks the most likely link after five
seconds, the page could look like this:

<html>
<head><title>Spoiler alert!</title></head>
<body>
<p>The following page might include spoilers! Continue?</p>
<p>Yes (or wait five seconds)</p>
<p>No!</p>
<script type="text/javascript">
window.setTimeout (function() {
document.location.href = "/spoiler.html";
}, 5000);
</script>
</body>
</html>

The script at the bottom of the document tag calls window. setTimeout,
which “schedules” its first argument to be called after the amount of mill-
iseconds (1/1000 second) given as the second argument. The first argu-
ment can be either a function, which will be called, or a string containing
a JavaScript program, which will be executed.

Web Programming: A Crash Course

155

156

Chapter 9

A timeout can be canceled by passing the value that setTimeout returns
(which we ignore in the example) to window.clearTimeout.

There are similar functions for repeated time-based actions. window
.setInterval causes a function or string to be executed repeatedly, with
the amount of milliseconds between calls specified as a second argument.
window.clearInterval can be used to stop such an effect.

Forms

Another popular application of JavaScript in web pages centers around forms.
In case you aren’t familiar with forms, let me give a quick summary.

A basic HTTP request is a simple request for a file. When this file is not
really a passive file but a server-side program, it can be useful to include in-
formation other than a filename in the request. For this purpose, URLs are
allowed to contain additional “parameters,” such as these:

http://www.google.com/search?q=aztec%20empire

After the filename (/search), the URL continues with a question mark,
after which the parameters follow. This request has a single parameter,
called q (for “query,” presumably), whose value is aztec empire. The %20 part
corresponds to a space. There are a number of characters that are not al-
lowed in these parameters, such as spaces, ampersands, or the equals sign.
These are “escaped” (similar to the way backslashes are used in strings) by
replacing them with a % followed by their numerical value in hexadecimal
form. If that doesn’t mean anything to you, don’t worry—we’ll use built-in
functions that do the encoding and decoding for us.

JavaScript provides the encodeURIComponent and decodeURIComponent func-
tions to do this escaping and to undo it again:

var encoded = encodeURIComponent("aztec empire");
encoded;

— "aztec%20empire"

decodeURIComponent(encoded) ;

— "aztec empire"

When a request contains more than one parameter, they are separated
by ampersands, like this:

http://www.google.com/search?q=aztec%20empire&lang=nl

Basically, a form is a way to make it easy for browser users to create such
parametrized URLs. It contains a number of fields, such as input boxes for
text, check boxes, or widgets that allow you to choose from a given set of
values. It also usually contains a “submit” button and, invisible to the user,
an “action” URL to which the data should be sent. When the submit button
is clicked, or ENTER is pressed, the information that was entered in the fields

is added to this action URL as parameters, and the browser will request this
URL.
Here is the HTML for a simple form:

<form name="userinfo" method="get" action="/info.html">
<p>Please give us your information, so that we can send
you spam.</p>
<p>Name: <input type="text" name="name"></p>
<p>Email: <input type="text" name="email"></p>
<p>Sex: <select name="sex">
<option>Won't say</option>
<option>Male</option>
<option>Female</option>
</select></p>
<p><input name="send" type="submit" value="Send!"></p>
</form>

In a browser, this form might look like this:

Please give us your information, so that we can send you spam.

Name: |

E-Mail: |
Sex: Won't say -

Send!

The name of the form can be used to access it with JavaScript, as we
shall see in a moment. The names of the fields determine the names of
the HTTP parameters that are used to store their values. Sending this
form might produce a URL like this:

http://planetspam.com/info.html?name=Ted&email=ted@zork.comdsex=Male

This assumes that the page showing the form was shown on the
planetspam.com server. When a URL does not contain an Attp:// part and a
server name, such as the URL /info.html used as the form’s action, it is called
a relative URL. Relative URLs are interpreted by the browser to refer to files
on the same server as the current document. When they do not start with a
slash, the path (or directory) of the current document is also retained, and
the given path is appended to it. For example, the relative URL manual. html,
when used from the page at http://test.org/test/index. html, will result in http://
lest.org/test/manual. himl.

Web Programming: A Crash Course 157

158

Chapter 9

The method="get" property of the example form shown previously indi-
cates that this form should encode the values it is given as URL parameters,
as shown earlier. There is an alternative method for sending parameters,
which is called post. An HTTP request using the post method contains, in
addition to a URL, a block of data. A form using the post method puts the
values of its parameters in this data block instead of in the URL.

When sending big chunks of data, the get method will result in URLs
that are a mile wide, so post is usually more convenient. But the difference
between the two methods is not just a question of convenience. Tradition-
ally, get requests are used for requests that just ask the server for some docu-
ment, while post requests are used to take an action that changes something
on the server. For example, getting a list of recent messages on an Internet
forum would be a get request, while adding a new message would be a post
request. There is a good reason why most pages follow this distinction—
programs that automatically explore the Web, such as those used by search
engines, will generally only make get requests. If changes to a site can be
made by get requests, these well-meaning “crawlers” could do all kinds of
damage.

Scripting a Form

When the browser is displaying a page containing a form, JavaScript pro-
grams can inspect and modify the values that are entered in the form’s fields.
This opens up possibilities for all kinds of neat tricks, such as checking val-
ues before they are sent to the server or automatically filling in certain fields.
We will be adding a validity check to the form shown earlier so that it
submits only if the name field is not left empty, and the email field con-
tains something that looks like a halfway valid email address. Because we
no longer want the form to submit immediately when the Send! button is
clicked, we need to change its type property from "submit" to "button", which
will turn it into a regular button with no effect. (Chapter 11 will show a much
better way of doing this.)

<input name="send" type="button" value="Send!">

Every HTML tag shown in a document has a JavaScript object associated
with it. These objects can be used to inspect and manipulate almost every
aspect of the document. In this chapter, we’re only working with the objects
for forms and form fields. In Chapter 10 we’ll talk about these objects in
general.

The document object has a property named forms, which contains links
to all the forms in the document, by name. Our form has a property
name="userinfo", so it can be found under the property userinfo.

var spamForm = document.forms.userinfo;
spamForm.method;
— "get"

spamForm.action;
— "/info.html"

In this case, the properties method and action that were given to the
HTML form tag are also present as properties of the JavaScript object. This
is usually the case, but not always—some HTML properties are spelled differ-
ently in JavaScript, and others are not present at all. Chapter 10 will show a
way to get at all properties.

Next, we will want to get at the actual fields of the form. The object for
the form tag has a property elements, which refers to an object containing
the fields of the form, by name. The following code would put the name
“Eugene” in the form’s name field:

spamForm.elements.name.value = "Eugéne";

Text-input objects have a value property, which can be used to read and
change their content.

With what we know now, we can write a function that takes a form object
as its argument and returns a Boolean value: true when the name field is not
empty and when the email field contains something that matches a regular
expression (see Chapter 8) made to recognize email addresses, and false
otherwise:

function validInfo(form) {
return form.elements.name.value != "" &&
/M 4@, 4\ \w{2,4}$/ . test (form.elements.email.value);

All we have to do now is determine what happens when people click
the Send! button. At the moment (having changed its type attribute from
"submit" to "button"), it does not do anything at all. This can be remedied by
setting its onclick property to a JavaScript function:

spamForm.elements.send.onclick = function() {
if (validInfo(spamForm))
spamForm. submit();
else
alert("Give us a name and a valid email address!");

};

Just like the actions given to setInterval and setTimeout, the value stored
in an onclick (or similar) property can be either a function or a string of
JavaScript code. In this case, we give it a function. Now, when the button
is clicked, the form’s validity is checked. If the form is valid, it is submitted to
the server (which is what the submit method does); otherwise, an error mes-
sage appears.

Web Programming: A Crash Course 159

160

Autofocus

Another trick related to form inputs, as well as other things that can be “se-
lected,” such as buttons and links, is the focus method. When you know for
sure that a user will want to start typing in a certain text field as soon as he
enters the page, you can have your script start by placing the cursor in it so
he won’t have to click it or select it in some other way:

spamForm.elements.name.focus();

Some pages also automatically make the cursor jump to the next field
when it looks like you finished filling in one field—for example, when you
type a ZIP code. This should not be overdone—it makes the page behave
in a way the user does not expect. If he is used to pressing Tab to move the
cursor manually or mistyped the last character and wants to remove it, such
magic cursor-jumping is only annoying.

Browser Incompatibility

Chapter 9

So, that all looks easy. But let me assure you, client-side web programming
isn’t always that straightforward—it can, at times, be a painful ordeal. Why?
Because there are different systems that interpret client-side programs (dif-
ferent browsers mostly), and these tend to behave in slightly different ways.
You’ll usually want your program to work for all popular browsers, but the
only way to be sure that it does is to test it in all of them and work around
any problems you encounter.

On the bright side, things have gotten much, much better in this regard
in the past years. The really broken browsers (Netscape 4, Internet Explorer
5) have become extinct, Internet Explorer 6 is also on the way out, and the
latest releases of all major browsers (Opera, Firefox, Safari, Chrome, and
Internet Explorer) are of a much better quality.

Unfortunately, even these new browsers all still contain several bugs
(programming errors), which often take a long time to get fixed. But do not
let that discourage you. With the right kind of obsessive-compulsive mind-
set, such problems provide wonderful challenges. And for those of us who
do not like wasting our time on things like that, carefully avoiding the ob-
scure corners of the browser’s functionality will generally prevent you from
running into too much trouble.

Bugs aside, the intentional, by-design differences between browsers
don’t make our life easy either. The current situation looks something like
this: On one hand, there are all the “new” browsers: Firefox, Safari, Chrome,
and Opera are the most important ones, but there are more. These browsers
all make a reasonable effort to adhere to a set of standards that have been
developed, or are being developed, by the W3C and WHATWG, organiza-
tions that try to make the Web a less confusing place by defining standard
interfaces for all the functionality provided by browsers. On the other hand,
there is Internet Explorer, Microsoft’s browser, which rose to dominance in

a time when many of these standards did not really exist yet and hasn’t made
much effort to adjust itself to what other people are doing.

In some areas, such as the way the content of an HTML document can
be approached from JavaScript (Chapter 10), the standards are based on the
method that Internet Explorer invented, and things work more or less the
same on all browsers. In other areas, such as the way events (mouse clicks,
key presses, and such) are handled (Chapter 11), Internet Explorer works
radically differently from other browsers.

For a long time, owing partially to the cluelessness of the average Java-
Script developer and partially to the fact that browser incompatibilities were
much worse when browsers like Internet Explorer version 4 or 5 and old ver-
sions of Netscape were still common, the usual way to deal with such differ-
ences was to detect which browser the user was running and litter the code
with alternate solutions for each browser—if we are running in Internet Ex-
plorer, do this; if we have Netscape, do that; and if this is another browser
that we didn’t think of, just hope for the best. You can imagine how hideous,
confusing, and long such programs were.

Many sites would also just refuse to load when opened in a browser that
was “not supported.” This caused a few of the minor browsers to swallow
their pride and pretend they were Internet Explorer, just so they would be
allowed to load such pages.

The navigator object was originally introduced as a place for browser-
specific functionality. Various browsers put different properties in there,
most of them providing information about the browser and the platform it
is running on. On my version of Chrome, the following is shown:

navigator.userAgent;

— "Mozilla/5.0 (X11; U; Linux x86_64; en-US) AppleWebKit/532.9\
(KHTML, 1ike Gecko) Chrome/5.0.307.11 Safari/532.9"

navigator.vendor;

— "Google Inc."

navigator.platform;

— "Linux 1686"

Given this, a program could look for the string Chrome/ in navigator
.userAgent, and run some Chrome-specific code if it was found.

A better approach is to try to “isolate” our programs from differences in
browsers. For example, if you need to find out more about an event, such
as the clicks we handled by setting the onclick property of our send button,
you have to look at the top-level object called event on Internet Explorer,
but you have to use the first argument passed to the event-handling func-
tion on other browsers. To handle this and a number of other differences
related to events, you can write a helper function for attaching events to
things, which takes care of all the plumbing and allows the event-handling
functions themselves to be the same for all browsers. In Chapter 11 we will
write such a function.

Web Programming: A Crash Course 161

162

NOTE

The browser quirks mentioned in the following chapters refer to the state of affairs in
early 2010 and might no longer be accurate on some points.

It is important to note that there is a group of web users who browse the
Internet without JavaScript. A lot of people use a regular graphical browser
with JavaScript disabled for security reasons. Then there are people using
textual browsers, or browsers for blind people. When working on a “serious”
site, it is a good idea to start with a plain HTML system that works and then
add nonessential tricks and conveniences with JavaScript.

Further Reading

Chapter 9

These chapters will only give a somewhat superficial introduction to the
subject of browser interfaces. They are not the main subject of this book,
and they are complex enough to fill a thick book on their own. When you
understand the basics of these interfaces (and understand something about
HTML), it is not too hard to look for specific information online. The in-
terface documentation for the Firefox and Internet Explorer browsers are
a good way to start:

* hutp://www.mozilla.org/docs/dom/domref/dom_short TOC. html
® http://msdn2.microsoft.com/library/yek4tbz0.aspx

THEDOCUMENTOBJECTMODEL

In Chapter 9 we saw JavaScript objects that represented
the form and input tags from an HTML document. Such
objects are part of a structure called the Document Ob-
ject Model (DOM). Every tag in the document is repre-
sented by an object in this model and can be looked
up and interacted with.

DOM Elements

HTML documents have a hierarchical structure. Each element (tag) except
the top <html> element is contained in another element, called its parent.
This element can in turn contain child elements. You can visualize this as a
kind of family tree. If we have a simple document like this:

<html>
<head>
<title>Alchemy for beginners</title>
<script type="text/javascript" src="js/base.js"></script>
</head>

164

Chapter 10

<body>
<h1>Chapter 1: Equipment</h1>
<p>This is what an alchemists' bottle looks like:</p>

</body>
</html>

then the tree would look like this:

Alchemy for beginners

Chapter 1: Equipment
>This is what an

alchemists' bottle

looks like:

The document object model is based on such a view of the document.
Note that the tree contains two types of elements: nodes, which are shown
as boxes, and pieces of simple text. The pieces of text, as we will see, work
somewhat differently than the other elements. For one thing, they never
have children.

The object for the root of the document tree, the html node, can be
reached through the documentElement property of the document object. How-
ever, most of the time we need access to the body element, rather than the
root. This can be found under document.body.

Node Links

The links between these nodes are available as properties of the node ob-
jects. Every DOM object has a parentNode property, which refers to the object
in which it is contained, if any. These parents also have links pointing back
to their children, but because there can be more than one child, these are
stored in a pseudoarray called childNodes. In the document shown in the
diagram, document.body.childNodes contains three elements: an hi header
element, a paragraph, and an image.

For convenience, there are also links called firstChild and lastChild,
pointing at the first and last children inside a node, or null when there are
no children.

Finally, there are properties called nextSibling and previousSibling, which
point at the nodes sitting “next” to a node—nodes that are children of the
same parent, coming before or after the current node. Again, when there
is no such sibling, the value of these properties is null. For example, the h1
element in the example document has a previousSibling property of null and
a nextSibling property that points at the paragraph element.

Types of Nodes

To find out whether a node represents a simple piece of text or an actual
HTML node, we can look at its nodeType property. This contains a number, 1
for regular nodes and 3 for text nodes.

function isTextNode(node) {
return node.nodeType == 3;

}

isTextNode(document.body);

— false
isTextNode(document.body.firstChild.firstChild);
— true

There are 12 such node types, used for various aspects of the DOM tree.
(For example, the document object has a node type of 9.) However, apart
from allowing us to distinguish text nodes, these types serve very little use
in JavaScript. The reason that the DOM interface sometimes seems need-
lessly obscure and cumbersome is that it is specified as an interface that can
be implemented in any programming language, not just JavaScript.

Regular (nontext) nodes have a property called nodeName, indicating the
type of HTML tag that they represent. Text nodes, on the other hand, have
a nodeValue, containing their text content.

document.body.firstChild.nodeName;

— "H1"
document.body.firstChild.firstChild.nodeValue;
— "Chapter 1: Equipment"

The node names are always capitalized, which is something you need to
take into account if you ever want to compare them to something, as in the
following function:

function isImage(node) {
return !isTextNode(node) &3 node.nodeName == "IMG";

}

isImage(document.body.lastChild);
— true

The innerHTML Property

Each node object has an innerHTML property, which represents the HTML
text inside of the node. You can read it but also set it to a new value. Doing
this, for example, would replace the body of your document with a single
paragraph:

The Document Object Model 165

166

Chapter 10

document.body.innerHTML = "<p>Oops</p>";

Similarly, the nodeValue of a text node can be set to a new value in or-
der to change the text content. Note that, with innerHTML, the given string is
interpreted as HTML, while with nodeValue it is interpreted as plain text, so
angle brackets do not have a special meaning.

Finding Your Node

In a few of the examples, I have been finding nodes in the document by go-
ing through a series of firstChild and lastChild properties. This can work,
but it is verbose and easy to break—if we add another node at the start of
our document, document.body.firstChild no longer refers to the hi element,
and code that assumes it does is broken. On top of that, some browsers will
add text nodes for things like spaces and newlines between tags, while others
do not, so the exact layout of the DOM tree can vary.

A better way to do this is to give elements that you need to have access to
an id attribute. In the example document, the picture has the ID "picture”.
We can use this to look it up:

var picture = document.getElementById("picture");
picture.src;

— "img/florence_flask.png"

picture.src = "img/ostrich.png";

The getElementById method of the document object takes an ID string and
returns the node that has this id, or null when no such node is found. When
typing getElementById, note that the last letter is lowercase.

The last line in the previous code, which changes picture.src, will actu-
ally cause the picture shown in the document to change. Almost every aspect
of an HTML document can be changed in this way—finding the node we
need and manipulating its attributes or child-node relations.

DOM nodes also have a method getElementsByTagName that, when given
a tag name, returns an array of all nodes of that type contained in the node
it was called on. For example, in our example document, document.body
.getElementsByTagName("EM")[0] will return the element for alchemists’
bottle.

Node Creation

Another thing we can do with these DOM nodes is to create new ones our-
selves. This makes it possible to add to a document at will. Unfortunately,
the interface for doing this is somewhat clumsy.

The document object has createElement and createTextNode methods. The
first is used to create regular nodes; the second, as the name suggests, cre-
ates text nodes. Let’s create one of both:

var secondHeader = document.createElement("H1");
var secondTitle = document.createTextNode("Chapter 2: Deep magic");

Next, we’ll want to put the title name into the h1 element and then add
the element to the document. The simplest way to do this is the appendChild
method, which can be called on (nontext) nodes. This will put the text into
the header and add the header to the document:

secondHeader.appendChild(secondTitle);
document.body.appendChild(secondHeader);

Often, you will also want to give these new nodes some attributes.
For example, an img (image) tag is rather useless without an src property
telling the browser which image it should show. Most attributes can be
approached directly as properties of the DOM nodes, but there are also
methods setAttribute and getAttribute, which are used to access attributes
in a more general way:

var newImage = document.createElement("IMG");
newImage.setAttribute("src", "img/yinyang.png");
document.body.appendChild(newImage);
newImage.getAttribute("src");

— "img/yinyang.png"

A Creation Helper Function

When we want to build more than a few simple nodes, it gets very tiresome
to create every single node with a call to document.createElement or document
.createTextNode and then add its attributes and child nodes one by one. For-
tunately, it is not hard to write a function to do most of the work for us:

function dom(name, attributes /%, children...x/) {
var node = document.createElement(name);
if (attributes) {
forEachIn(attributes, function(name, value) {
node.setAttribute(name, value);
D;
}
for (var i = 2; i < arguments.length; i++) {
var child = arguments[i];
if (typeof child == "string")
child = document.createTextNode(child);
node.appendChild(child);
}

return node;

}

The Document Object Model 167

168

Chapter 10

This function creates a node of the type given as its first argument, sets
its attributes based on the properties of the second argument (if given), and
then adds any remaining arguments as children of the new node, converting
strings to text nodes first. This is how it could be used to add another para-
graph to our document:

document.body.appendChild(
dom("P", null, "A paragraph with a ",
dom("A", {href: "http://en.wikipedia.org/wiki/Alchemy"}, "link"),
" inside of it."));

Moving Nodes Around

appendChild is not the only way nodes can be inserted into another

node. When the new node should not appear at the end of its parent, the
insertBefore method can be used to place it in front of another child node.
It takes the new node as a first argument and the existing child as a second
argument.

If a node that already has a parentNode is placed somewhere, it is auto-
matically removed from its current position—nodes cannot exist in the
document in more than one place.

When a node must be replaced by another one, use the replaceChild
method, which again takes the new node as a first argument and the exist-
ing one as a second argument.

And, finally, there is removeChild to remove a child node. Note that
this is called on the parent of the node to be removed, giving the child as
an argument.

All three functions discussed earlier require redundant information to
be provided—they are methods on the parent node and take a child node of
this parent as one of the arguments. You’ll often need to do things like this:

node.parentNode.removeChild(node);

If you do not like repeating yourself, you can define shorthands like this:

function removeNode(node) {
node.parentNode.removeChild(node);

}

function insertBefore(newNode, node) {
node.parentNode.insertBefore(newNode, node);

}

When creating new nodes and moving nodes around, it is necessary to
be aware of the following rule: Nodes are not allowed to be inserted into an-
other document from the one in which they were created. This means that if
you have extra frames or windows open, you cannot take a piece of the doc-
ument from one and move it to another, and nodes created with methods

on one document object must stay in that document. Some browsers, notably
Firefox, do not enforce this restriction, so a program that violates it will work
fine in those browsers but break in others.

An Implementation of print

An example of something useful that can be done by manipulating the
document is an implementation of the print function we have been using
throughout the book:

var output = dom("DIV", {id: "printOutput"}, dom("H1", null, "Print output:"));
document.body.appendChild(output);

function print() {
var result = [];
forEach(arguments, function(arg){result.push(String(arg));});
output.appendChild(dom("PRE", null, result.join("")));

}

The code first creates a div element, which is a generic container-type
element, for print to put its text in. It gives this element an id to make it easy
to find and to style (styling will be discussed in a moment) and puts a header
on top of it. The print function simply puts all its arguments into a big string
(remember that it allowed multiple arguments to be passed) and adds a pre
element containing this text to the output area.

pre stands for preformatted, which means newlines and spacing in such
an element will be preserved. In other elements, newlines are treated as if
they were spaces, and multiple subsequent spaces (or tabs or other whites-
pace) are treated as a single space. This is convenient when writing HTML,
since we can break our lines where we want and still have the text flow prop-
erly in the resulting document. But when having a program output text, we
probably want all characters to be preserved.

Style Sheets

Closely tied to HTML and the DOM is the topic of style sheets. It is a big topic,
and I will not discuss it entirely, but some understanding of style sheets is
necessary for a lot of interesting JavaScript techniques.

In old-fashioned HTML, the only way to change the appearance of ele-
ments in a document was to give them extra attributes or to wrap them in
extra tags, such as center to center them horizontally or font to change the
font style or color. This meant that if you wanted the paragraphs or the
headers in your document to look a certain way, you had to add a bunch of
attributes and tags to every single one of them. This quickly adds a lot of noise
to such documents and makes them annoying to write or to change.

Well, people are inventive, and someone came up with a solution for
this problem. Style sheets are a way to make statements like “in this docu-

The Document Object Model 169

170

Chapter 10

ment, all paragraphs should use the Comic Sans font and should be purple;
all tables should have a thick green border.” You specify them once, at the
top of the document or in a separate file, and they affect the whole docu-
ment. Here, for example, is a style sheet to make headers 22 points big and
centered and to make paragraphs use the font and color mentioned earlier
when they have a class attribute of "ugly":

<style type="text/css">
h1 {
font-size: 22pt;
text-align: center;
}
p-ugly {
font-family: Comic Sans MS;
color: purple;
}
</style>

Classes are a concept related to styles. If you have different kinds of
paragraphs, say ugly ones and pretty ones, setting the style for all p elements
is not what you want, so classes can be used to distinguish between them. The
previous style will only be applied to paragraphs like this:

<p class="ugly">Mirror, mirror...</p>

In DOM node objects, you’ll find a className property corresponding to
the class attribute. The word class couldn’t be used since (as was mentioned
in Chapter 1) thatis a reserved word in JavaScript.

The style Property

There is much more to styles: Some styles are inherited by child nodes from
parent nodes and interfere with each other in complex and interesting ways.
For the purpose of DOM programming, the most important things to know
are that each DOM node has a style property, which can be used to manipu-
late the style of that node, and that there are a few kinds of styles that can be
used to make nodes do extraordinary things.

This style property refers to an object, which has properties for all the
possible elements of the style. We can, for example, give the picture in our
document a border 4 pixels wide:

picture.style.borderWidth = "4px";

Note that in style sheets, the words are separated by hyphens, as in
border-width, while in JavaScript, capital letters are used to mark the differ-
ent words, as in borderWidth.

Hiding Nodes

A very useful styling is display: none. This can be used to temporarily hide a
node: When style.display is "none", the element does not appear at all to the
viewer of the document, even though it still exists. Later, display can be set
to the empty string, and the element will reappear.

picture.style.display = "none";
// picture gone
picture.style.display = "";

// picture visible again

Positioning

Another set of style types that can be abused in interesting ways are those
related to positioning. In a simple HTML document, the browser takes care
of determining the screen positions of all the elements—each element is put
next to or below the elements that come before it, and nodes (generally) do
not overlap.

When its position style is set to "absolute”, a node is taken out of the nor-
mal document “flow.” It no longer takes up room in the document but sort
of floats above it. The left and top styles can then be used to influence its
position. This can be used for various purposes, from making a node obnox-
iously follow the mouse cursor to making “windows” open on top of the rest
of the document. This would make our picture spin around the document
in circles:

picture.style.position = "absolute";
var angle = 0;
setInterval(function() {
angle += 0.1;
picture.style.left = (100 + 100 * Math.cos(angle)) + "px";
picture.style.top = (100 + 100 * Math.sin(angle)) + "px";
}, 100);

If you aren’t familiar with trigonometry, just believe me when I tell you
that the cosine and sine stuff is used to build coordinates lying on the out-
line of a circle. Ten times per second, the angle at which we place the pic-
ture is changed, and new coordinates are computed.

Itis a common error when setting styles like this to forget to append
"px" to your value. In most cases, setting a style to a number without a unit
does not work, so you must add "px" for pixels, "%" for percent, "em" for “ems’
(the width of an “M” character), or "pt" for points.

The place that is treated as 0,0 for the purpose of these positions de-
pends on the place of the node in the document. When it is placed inside
another node that has position: absolute or position: relative, the top left of
this node is used. Otherwise, you get the top-left corner of the document.

3

The Document Object Model 17

172

Controlling Node Size

There are also width and height styles, which are used to determine the size
of an element. This, for example, would force the picture element to be 400
by 200 pixels in size:

picture.style.width = "400px";
picture.style.height = "200px";

Word of Caution

Chapter 10

The tricks shown in this chapter, especially when combined with those from
the next chapter, allow you to more or less redefine the way the browser
works. With great power comes great responsibility. It can be tempting to
add all kinds of bling-bling and custom behavior to a page, but keep in mind
that people expect basic rules to hold when they are browsing the Internet.
Things like disabling the right-click context menu or messing with the back
button are just obnoxious and bad style.

BROWSER EVENTS

To add actual useful functionality to a web page, we
need to do more than inspecting and modifying the
document—we must be able to detect the user’s ac-
tions and respond to them. This is done by handling
events, which are the subject of this chapter.

Event Handlers

Key presses, scrolling, mouse clicks, and even mouse motion are all turned
into events by your browser, and we can write code to handle them. For ex-
ample, in Chapter 9, we set the onclick property of a button to do some-
thing when that button was clicked. That was an example of a simple event
handler.

The way browser events work is, fundamentally, very simple. It is pos-
sible to register handlers for specific event types on specific DOM nodes.
Whenever an event occurs, the handler for that event, if any, is called. For
some events, such as key presses, knowing just that the event occurred is not
enough information—you also want to know which key was pressed. To store
such information, an event object is created for every event, and handlers can
look at these objects.

174

Chapter 11

It is important to realize that, even though events can fire at any time,
no two handlers ever run at the same moment. If other JavaScript code is
still running, the browser waits until it finishes before it calls the next han-
dler. This also holds for code that is triggered in other ways, such as with
setTimeout. In programmer jargon, browser JavaScript is single-threaded, which
means there are never two “threads of control” running at the same time.
This is, in most cases, a good thing. It is much harder to keep your data con-
sistent when multiple things are happening at the same time.

An event, when not handled, can “bubble” through the DOM tree. This
means that if you click, for example, a link in a paragraph, any handlers
associated with the link are called first. If there are no such handlers or
these handlers do not indicate that they have finished handling the event,
the handlers for the paragraph—which is the parent of the link—are tried.
After that, the handlers for the parent of the paragraph get a turn. Finally,
if no JavaScript handlers have taken care of the event, the browser handles
ititself. When the event was a click on a link, for example, the browser’s re-
sponse will be to follow that link.

Registering a Handler

So, as you can see, events are easy. The hard thing about them is that while
all browsers support more or less the same functionality, Internet Explorer
has a completely different interface for this functionality. And even among
other browsers there are some differences in what is supported and how this
is exposed.

There are four eventrelated actions one might want to take:

® Registering an event handler
¢ Getting the event object
¢ Extracting information from this object

¢ Signaling that an event has been handled

Unfortunately, none of these actions can be done in a uniform way
across all the major browsers.

The first action, registering a handler, is most easily done by setting a
property of a node corresponding to the event name, such as onclick or
onkeypress. This does in fact work across browsers, but it has an important
drawback—you can attach only one handler to an element. Most of the
time, one is enough, but there are cases where this is a problem—especially
when a program has to be able to work together with other programs (which
might also be adding handlers).

Fortunately, there are also methods for registering handlers, which allow
any number of them to be added. In Internet Explorer, you can add a click
handler to a button with this code (assuming button holds a DOM node for a
button):

button.attachEvent("onclick", function(){alert("Click!");});

On other browsers, the same thing is accomplished like this:

button.addEventListener("click", function(){print("Click!");}, false);

Note how on is left off in the second case. The third argument to
addEventListener, false, indicates that the event should “bubble” through the
DOM tree as normal. Giving true instead can be used to give this handler
priority over the handlers “beneath” it (those registered on child nodes), but
since Internet Explorer does not support this, it is rarely useful.

To make our life easier, we’ll write a function that sees which model is
supported and does the right thing:

function registerEventHandler(node, event, handler) {
if (typeof node.addEventListener == "function")
node.addEventListener(event, handler, false);
else
node.attachEvent("on" + event, handler);

registerEventHandler(button, "click", function(){print("Click (2)");});

The function first checks whether the addEventListener method is avail-
able and falls back to attachEvent when it isn’t. It appends "on" to the event
name in that case, since that’s the form in which that function expects the
event name.

Removing events works very much like adding them, but this time the
methods detachEvent and removeEventListener are used. Note that to remove
a handler, you need to pass the exact function you attached to it as an argu-
ment.

function unregisterEventHandler(node, event, handler) {
if (typeof node.removeEventlListener == "function")
node.removeEventListener(event, handler, false);
else
node.detachEvent("on" + event, handler);

Event Objects

Most browsers pass the event object as an argument to the handler. Inter-
net Explorer stores it in the top-level variable called event. When looking at
JavaScript code, you will often come across something like event || window
.event, which takes the local variable event or, if that is undefined, the top-
level variable by that same name. For example, the following piece of code
will cause the x- and y-coordinates of the mouse to be printed every time you
click anywhere in the document:

Browser Events 175

176

Chapter 11

registerEventHandler(document.body, "click", function(event) {
event = event || window.event;

print(event.clientX, ",", event.clientY);

};

Mouse-Related Event Types

When the user clicks his mouse, three separate events are generated. First
mousedown is generated at the moment the mouse button is pressed. Then,
mouseup is generated at the moment it is released. And finally, click is gen-
erated to indicate something was clicked. When this happens two times in
quick succession, a dblclick (double-click) event is also generated. Note
that it is possible for the mousedown and mouseup events to happen some time
apart—when the mouse button is held for a while. They also are not guar-
anteed to be fired on the same node.

When you attach an event handler to a button, for example, the fact
that it has been clicked is often all you need to know. When the handler
is attached to a node that has children, on the other hand, clicks from the
children will “bubble” up to it, and you will want to find out which child
has been clicked. For this purpose, event objects have a property called
target. . . or srcElement, depending on the browser.

Another interesting piece of information is the precise coordinates at
which the click occurred. Event objects related to the mouse contain clientX
and clientY properties, which give the x- and y-coordinates of the mouse, in
pixels, on the screen. Documents can scroll, though, so often these coordi-
nates do not tell us much about the part of the document that the mouse is
over. Some browsers provide pageX and pageY properties for this purpose, but
others do not. Fortunately, the information about the amount of pixels the
document has been scrolled can be found in document.body.scrollLeft and
document.body.scrollTop.

It is also sometimes possible to find out which mouse button was pressed
using the which and button properties of event objects. Unfortunately, this is
very unreliable—some browsers pretend mice have only one button; others
report right-clicks as clicks during which the control key was held down, and
so on.

Obviously, writing all these checks and workarounds is not something
you want to do in every single event handler. In a moment, after we have
gotten acquainted with a few more incompatibilities, we will write a function
to “normalize” event objects to work the same across browsers.

Apart from clicks, we might also be interested in the movement of the
mouse. The mousemove event of a DOM node is fired whenever the mouse
moves while it is over that element. There are also mouseover and mouseout,
which are fired only when the mouse enters or leaves a node. For events of
this last type, the target (or srcElement) property points at the node that the
event is fired for, while the relatedTarget (or toElement or fromElement) prop-

erty gives the node that the mouse came from (for mouseover) or left to (for
mouseout).

mouseover and mouseout can be tricky when they are registered on an ele-
ment that has child nodes. Events fired for the child nodes will bubble up to
the parent element, so you will also see a mouseover event when the mouse en-
ters one of the child nodes. The target and relatedTarget properties can be
used to detect (and ignore) such events, like this:

registerEventHandler(myParagraph, "mouseover”, function(event) {
event = event || window.event;
if ((event.target || event.srcElement) == myParagraph)
print("The mouse has entered my paragraph!");

b

Keyboard Events

Say we want to react to people pressing keys. There are, again, three events
generated every time a key is pressed: keydown, keyup, and keypress. The first
is generated when the key is pressed down, the second is generated when
itis released, and the third is generated after that. In general, you should
use keydown and keyup in cases where you really want to know which key was
pressed, for example when you want to do something with the arrow keys.
keypress, on the other hand, is to be used when you are interested in the
character that is being typed. The reason for this is that there is often no
character information in keyup and keydown events, and Internet Explorer
does not generate a keypress event at all for special keys such as the arrow
keys.

Finding out which key was pressed can be quite a challenge by itself. For
keydown and keyup events, the event object will have a keyCode property, which
contains a number. Most of the time, this code can be used to identify keys
in a reasonably browser-independent way. Finding out which code corre-
sponds to which key can be determined experimentally.

To find out whether the SHIFT, CTRL, or ALT key was held during a key
or mouse event, you can look at the shiftkey, ctrlkey, and altKey properties
of the event object. These do what you’d expect on most platforms, but for
OS X (Apple) computers, some care is required, since they have somewhat
different conventions. The OPTION key on those machines sets the altKey
property, and the COMMAND key sets a separate property, metaKey.

For keypress events, you will want to know which character was typed.
The event object will have a charCode property, which, if you are lucky, con-
tains the Unicode number corresponding to the character that was typed,
which can be converted to a one-character string with String.fromCharCode.
Unfortunately, some browsers do not define this property, or define it as o,
and store the character code in the keyCode property instead. This code will
cause a character to be printed whenever a key that produces a character is
pressed:

Browser Events 177

178

Chapter 11

registerEventHandler(document.body, "keypress", function(event) {
event = event || window.event;
var charCode = event.charCode || event.keyCode;
if (charCode)
print("Character

};

", String.fromCharCode(charCode), "' was typed.");

Stopping an Event

An event handler can “stop” the event it is handling and prevent further
handling. There are two ways this can be done. First, you can prevent the
event from bubbling up to parent nodes and the handlers defined on those,
and second, you can prevent the browser from taking the standard action
associated with such an event. It should be noted that browsers are free to
ignore this—preventing the default behavior for the pressing of certain
“hotkeys” will, on many browsers, not actually keep the browser from exe-
cuting the normal effect of these keys.

On most browsers, event bubbling is stopped with the stopPropagation
method of the event object, and default behavior is prevented with the
preventDefault method. For Internet Explorer, this is done by setting the
cancelBubble property of this object to true and the returnValue property to
false, respectively.

Normalizing Event Objects

And that was the last of the long list of incompatibilities that we will discuss
in this chapter. This means we can finally write the event normalizer func-
tion and move on to more interesting things.

The following function goes over all the event object properties we dis-
cussed before and makes sure each one can be found under a standard
name. A stop method is added, which cancels both the bubbling and the de-
fault action of the event. Some browsers already provide this, in which case
we leave it as it is.

function normalizeEvent(event) {
if (levent.stopPropagation) {
event.stopPropagation = function() {this.cancelBubble = true;};
event.preventDefault = function() {this.returnValue = false;};
}
if (levent.stop)
event.stop = function() {
this.stopPropagation();
this.preventDefault();
};

if (event.srcElement 8& !event.target)
event.target = event.srcElement;

if ((event.toElement || event.fromElement) 8& !event.relatedTarget)
event.relatedTarget = event.toElement || event.fromElement;
if (event.clientX != undefined &3 event.pageX == undefined) {
event.pageX = event.clientX + document.body.scrollleft;
event.pageY = event.clientY + document.body.scrollTop;
}
if (event.type == "keypress")
event.character = String.fromCharCode(event.charCode || event.keyCode);
return event;

}

Having this function, we can write more convenient wrappers for
registerEventHandler and unregisterEventHandler:

function addHandler(node, type, handler) {
function wrapHandler(event) {
handler(normalizeEvent(event || window.event));
}
registerEventHandler(node, type, wrapHandler);
return {node: node, type: type, handler: wrapHandler};

}

function removeHandler(object) {
unregisterEventHandler(object.node, object.type, object.handler);

}

The addHandler function returns an object that can be used to remove
the handler again. The inner function takes care of finding the event object
for us. It could be used like this, where we add a handler to a text field that
prevents the user from typing the letter Q:

var blockQ = addHandler(textfield, "keypress", function(event) {
if (event.character.tolowerCase() == "q")
event.stop();

b;

// Later...
removeHandler(blockQ);

Tracking Focus

Other event types that can be useful are focus and blur, which are fired on
elements that can be “focused,” such as form inputs. focus, obviously, hap-
pens when you put the focus on the element, for example by clicking it.
blur is JavaScript-speak for “unfocus” and is fired when the focus leaves the
element.

Browser Events 179

180

Chapter 11

The following code would cause the background of a text input field to
be yellow as long as it is focused:

addHandler(textfield, "focus", function(event) {
event.target.style.backgroundColor = "yellow";

D;

addHandler(textfield, "blur", function(event) {

event.target.style.backgroundColor = "";

};

Form Events

Each changeable form element is capable of firing change events. These are
fired when the content or value of the input has changed. Note that for
some inputs, such as text inputs, it does not fire until the element is unfo-
cused. This code will print a message every time the content of a text field is
changed:

addHandler(textfield, "change", function(event) {
print("Content of text field changed to '", event.target.value, "'.");

};

Forms also have a submit event, which is fired when they submit. It can
be stopped to prevent the submit from taking place. This gives us a much
better way to do the form validation we saw in the previous chapter. You
just register a submit handler, which stops the event when the content of the
form is not valid. That way, when the user does not have JavaScript enabled,
the form will still work; it just won’t have instant validation.

Window Events

Some events are fired on the window object as a whole, rather than on indi-
vidual DOM nodes. For example, the load event on a window fires when
the document is fully loaded, which can be useful if your script needs to
do some kind of initialization that has to wait until the whole document is
present.

Most of the time it is best to leave the laying out of a document to the
browser, but there are effects that can be produced only by having a piece
of JavaScript set the exact sizes of some nodes in a document. When you
do this, make sure you also listen for resize events on the window, which is
fired every time the size of the window changes, and recalculate the sizes of
your element every time the window is resized. Whenever the document is
scrolled, the browser fires a scroll event on the window object.

Example: Implementing Sokoban

Armed with addHandler and the dom function from the previous chapter, we
are ready for more challenging feats of document manipulation. As an ex-
ercise, we will implement the game known as Sokoban. This is something of
a classic, but you may not have seen it before. The rules are these: There is
a grid made up of walls, empty space, and one or more “exits.” On this grid,
there are a number of crates or stones, and a little dude that the player con-
trols. This dude can be moved horizontally and vertically into empty squares
and can push the boulders around, provided that there is empty space be-
hind them. The goal of the game is to move a given number of boulders
into the exits. It looks something like this:

Level Input Format

Just like the terraria from Chapter 6, a Sokoban level can be represented

as text. Assume we have an array of level objects. Each level has a property
field, containing a textual representation of the level, and a property boulders,
indicating the amount of boulders that must be expelled to finish the level.
The level depicted in the screenshot looks like this:

var level = {boulders; 10,
field: [“tHthts #ie ",
% % #",
O HHEOH# ",
"to@ 0 #",
"# O fHHHHHO # ")
VL HiE HEEY
" # #",
" #o #",
" #o0 #",
" Ho #",
" #x0 0 #",
" "]}

Browser Events 181

182

Chapter 11

The # characters are walls, the spaces are empty squares, the 0 characters
are used for boulders, an at sign (@) is for the starting location of the player,
and an asterisk (*) is for the exit.

Program Design

Our game will use this textual representation only to store level layouts.
While playing, we want it to look like the picture we saw earlier. If we have
five images, showing an empty field (empty.png), an empty field with the play-
er on it (player.png), a boulder (boulder.png), a wall (wall.png), and an exit
hole (exit.png), we can use these to build up the game board.

The whole board will be held in a div element, which then contains an
image (img element) for every square of the board. At the end of each row,
we need a br element—a “break” that serves much the same purpose as a
newline character in normal text—to make the next image appear on the
next “line.”

It would be possible to use this DOM structure as the main represen-
tation of our data—when we want to see whether there is a wall in a given
square, we just find the right image element and look at its src property. For
simpler things, this approach can be good enough, but it is somewhat messy
and slow, so I chose to keep a separate data structure representing the state
of the playing field.

This data structure is a two-dimensional grid of objects, representing the
squares of the playing field. Each of the objects must store its current con-
tent (as a string). It should also contain a reference to the image element
that is used to display it in the document, because it is responsible for updat-
ing this image’s src property when its content changes.

That gives us two kinds of objects—one to hold the grid of the playing
field and one to represent the individual cells in this grid. If we want the
game to also do things such as move to the next level at the appropriate mo-
ment and be able to reset the current level when you mess up, we can add a
third object, the “controller,” which creates or removes the field objects at
the appropriate moment.

Game Board Representation

Let’s start with the objects representing the squares on the game’s field.
They consist only of a constructor and a single, simple method:

function Square(character, img) {
this.img = img;
var content = {"@": "player", "#": "wall", "x": "exit",
" ": "empty", "0": "boulder"}[character];
if (content == null)
throw new Error("Unrecognized character:
this.setContent(content);

}

+ character + "'");

Square.prototype.setContent = function(content) {
this.content = content;
this.img.src = "img/sokoban/" + content + ".png";

}

Because the field is created from a string, the Square constructor has to
know how to convert a character in this string to a meaningful name (which
is also the name of the image that should be shown for the square). To do
this, it uses an object whose property names are characters and whose prop-
erty values are names.

The setContent method updates both the square’s content property
(which should be a string like "boulder") and the src property of the square’s
image element.

The next object type, which represents the whole playing field, will be
called SokobanField. Its constructor is given a level object; it is responsible for
building the DOM structure for this level and a grid (an array of arrays) of
Square objects.

To identify the individual squares, and to indicate directions, we will
again use the Point object type from Chapter 6, which had x and y proper-
ties, and an add method that allows two points to be added together. In this
constructor, such a point object is created to remember the player position.

function SokobanField(level) {
this.fieldDiv = dom("DIV");
this.squares = [];
this.bouldersToGo = level.boulders;

for (var y = 0; y < level.field.length; y++) {

var line = level.field[y], squareRow = [];

for (var x = 0; x < line.length; x++) {
var img = dom("IMG");
this.fieldDiv.appendChild(img);
squareRow.push(new Square(line.charAt(x), img));
if (line.charAt(x) == "@")

this.playerPos = new Point(x, y);

}
this.fieldDiv.appendChild(dom("BR"));
this.squares.push(squareRow);
}
}

To make it easy for the game code to report the amount of boulders the
player still has to push out of the field and to find out whether the level has
been completed, the field object provides two simple methods:

SokobanField.prototype.status = function() {
return this.bouldersToGo + " boulder" +
(this.bouldersToGo == 1 ? "" : "s") + " to go.";

Browser Events 183

184

Chapter 11

};
SokobanField.prototype.won = function() {
return this.bouldersToGo <= 0;

};

Of course, we will also need methods for inserting the field into the
DOM tree. We could just reach in and use the fieldDiv property of the field
object, but it is cleaner to provide an interface for this:

SokobanField.prototype.place = function(where) {
where.appendChild(this.fieldDiv);

};

SokobanField.prototype.remove = function() {
this.fieldDiv.parentNode.removeChild(this.fieldDiv);

};

The SokobanField object will also take care of moving the player and boul-
ders around through a move method that is given a Point argument indicating
which direction the player wants to move—for example, -1, 0 to move left.

This method proceeds in two steps. If there is a boulder in the player’s
way, it sees whether this boulder can be pushed (either into an empty square
or into an exit). After that, if the square in front of the player is empty—
which is also the case if a boulder was just moved out of there—the player is
moved into it.

When a boulder is dropped into the exit, the bouldersToGo property is up-
dated so that the status and won methods will return up-to-date information.

SokobanField.prototype.move = function(direction) {
var playerSquare = this.squares[this.playerPos.y][this.playerPos.x],
targetPos = this.playerPos.add(direction),
targetSquare = this.squares[targetPos.y][targetPos.x];

// First, see if the player can push a boulder...
if (targetSquare.content == "boulder") {
var pushPos = targetPos.add(direction),
pushSquare = this.squares[pushPos.y][pushPos.x];
if (pushSquare.content == "empty") {
targetSquare.setContent("empty");
pushSquare.setContent("boulder");
}
else if (pushSquare.content == "exit") {
targetSquare.setContent("empty");
this.bouldersToGo--;

}
}

// Then, try to move...
if (targetSquare.content == "empty") {
playerSquare.setContent("empty");
targetSquare.setContent("player");
this.playerPos = targetPos;
}
};

With what we have now, we could run the following code and see the
field appear:

(new SokobanField(level)).place(document.body);

This field is still completely noninteractive. Next up, we write a con-
troller object to remedy that and make the game playable.

The Controller Object

The controller will be an object type called SokobanGame, which is responsible
for the following functions:

® Preparing a place where the game field can be placed
¢ Building and removing SokobanField objects

* Capturing key events and calling the move method on current field with
the correct argument

* Keeping track of the current level number and moving to the next level
when a level is won

¢ Adding buttons to reset the current level or the whole game (back to
level 0)

We start with a constructor. It takes an array of level objects as its first
argument, which it will allow the player to play through. The second argu-
ment should be a DOM node to which it should append the game interface.
It builds a simple set of DOM nodes to wrap around the playing field, con-
sisting of two buttons and a div element to display status information.

The click event handlers on the buttons are simply attached to meth-
ods of the game object (the method function was defined in Chapter 6) that
handle the action associated with these buttons. We will define these in a
moment. The keydown handler is attached to the whole document, meaning
all keydown events that are not handled by some other handler end up being
handled by the game.

function SokobanGame(levels, place) {
this.levels = levels;
var newGame = dom("BUTTON", null, "New game");

Browser Events 185

186

Chapter 11

addHandler (newGame, "click", method(this, "newGame"));
var reset = dom("BUTTON", null, "Reset level");
addHandler(reset, "click", method(this, "resetlLevel"));
this.status = dom("DIV");
this.container = dom("DIV", null, dom("H1", null, "Sokoban"),
dom("DIV", null, newGame, " ", reset), this.status);
place.appendChild(this.container);
addHandler(document, "keydown", method(this, "keyDown"));
this.newGame();

The newGame function does very little work itself; it just sets the game’s
level property to zero and lets resetLevel set up the level. This is the method
responsible for creating and showing the playing field. If there was already a
field present, this is first removed.

SokobanGame.prototype.newGame = function() {
this.level = 0;
this.resetlLevel();
};
SokobanGame.prototype.resetLevel = function() {
if (this.field)
this.field.remove();
this.field = new SokobanField(this.levels[this.levell);
this.field.place(this.container);

this.updateStatus();
};
SokobanGame.prototype.updateStatus = function() {
this.status.innerHTML = "Level " + (1 + this.level) + ": " +
this.field.status();
};

The only thing left to do now is define the keyDown method, which will
cause the game character to move when the user presses the arrow keys.

The method uses an object to map key codes to Point objects repre-
senting a direction in which to move. Only events whose keyCode property
is found in this object are handled.

The direction Point is handed off to the move method of the field object.
This might result in the status to change, so afterward updateStatus is called
to update the status text, and we check whether the player has won the game
yet.

If the game is won and there are more levels after this one, it moves to
the next level. If not, it congratulates the player on winning and restarts the
game.

var arrowKeyCodes = {
37: new Point(-1, 0), // left
38: new Point(0, -1), // up
39: new Point(1, 0), // right
40: new Point(o, 1) // down
};

SokobanGame.prototype.keyDown = function(event) {
if (arrowKeyCodes.hasOwnProperty(event.keyCode)) {
event.stop();
this.field.move(arrowKeyCodes[event.keyCode]);
this.updateStatus();
if (this.field.won()) {
if (this.level < this.levels.length - 1) {
alert("Excellent! Going to the next level.");
this.level++;
this.resetlLevel();
}
else {
alert("You win! Game over.");
this.newGame();
}
}
}
};

Browser Events

187

HTTP REQUESTS

As mentioned in Chapter 9, communication on the
World Wide Web happens over the HTTP protocol. This
chapter describes how to use this protocol to make
your client-side program talk to your web server.

The HTTP Protocol

A simple HTTP request might look like this:

GET /files/data.txt HTTP/1.1
Host: eloquentjavascript.net
User-Agent: My Imaginary Browser

This asks for the file files/data.txt from the server at eloquentjavascript
.net. In addition, it specifies that this request uses version 1.1 of the HTTP
protocol—version 1.0 is also still in use and works slightly differently. The
Host and User-Agent lines are called headers. These follow a pattern: They
start with a word that identifies the information they contain, followed by
a colon, and then the actual information. The User-Agent header tells the
server which program is being used to make the request. Other kinds of
headers are often sent along, for example to state the types of documents
that the client can understand or the language that it prefers.

190

When given the previous request, the server might send the following
response:

HTTP/1.1 200 OK

Last-Modified: Mon, 23 Jul 2007 08:41:56 GMT
Content-Length: 40

Content-Type: text/plain

This is the content of the file data.txt

The first line indicates again the version of the HTTP protocol, followed
by the status of the request. In this case the status code is 200, meaning “OK,
nothing out of the ordinary happened, I am sending you the file.” This is
followed by a few headers, indicating (in this case) the last time the file was
modified, its length, and its type (plain text). After the headers, you geta
blank line, followed by the file itself. This is called the response body.

Apart from requests starting with GET, which indicates the client just
wants to fetch a document, the word POST can also be used to indicate that
a body will be sent along with the request. The difference between these
methods (which is what the verb at the start of a request is called) was shortly
touched on Chapter 9, when discussing forms. There are other types of re-
quests, for example PUT to put a document onto the server and DELETE to
delete a document. These are less widely used, mostly because browsers do
not provide an easy way to issue them—<GET is used for every link you follow,
POST is used for forms that have method="post" specified, but no corresponding
conventions exist for PUT and DELETE.

The XMLHttpRequest API

Chapter 12

When you click a link, submit a form, or in some other way encourage your
browser to go to a new page, it will make an HTTP request and, if success-
ful, show the newly loaded document. In typical situations, this is just what
you want—it is how the Web traditionally works. Sometimes, however, a
JavaScript program wants to communicate with the server without reloading
the page.

To be able to do something like that, the program must make the HTTP
request itself. Contemporary browsers provide an interface for doing this.
As with opening new windows, this interface is subject to some restrictions—
to prevent a script from doing anything scary, it is allowed to make HTTP
requests only to the domain that the current page came from, meaning a
page on http://www.evil.org/ cannot cause your browser to fetch a page from
hitp://www.yourbank.com/, since you might be logged in there, and such a
request could instruct the bank to transfer your money to, say, the owner of
http://www.evil.org/.

Creating a Request Object

An object used to make an HTTP request can, on most browsers, be created
by simply doing new XMLHttpRequest(). Internet Explorer 6, which is still be-
ing used by a few recalcitrants, requires you to do new ActiveXObject("Msxml2
.XMLHTTP") instead. We are already used to writing incompatibility wrappers
by now, so here we go again:

function requestObject() {
if (window.XMLHttpRequest)
return new XMLHttpRequest();
else if (window.ActiveXObject)
return new ActiveXObject("Msxml2.XMLHTTP");
else
throw new Error("Could not create HTTP request object.");

This function sees whether the modern method is supported, falls back
to the Internet Explorer 6 method if not, and throws an error if that doesn’t
work either.

Simple Requests

Now that we have our request object, we can use it to make a request similar
to the example shown earlier:

var request = requestObject();
request.open("GET", "files/data.txt", false);
request.send(null);

request.responseText;
— "This is the content of the file data.txt"

The open method is used to configure a request. In this case, we choose
to make a GET request for our data.txt file. The URL given here is relative—it
does not contain the http:// part or a server name, which means it will look
for the file on the server that the current document came from. The third
parameter, false, will be discussed in a moment. After open has been called,
the actual request can be made with the send method. When the request is a
POST request, the data to be sent to the server (as a string) can be passed to
this method. For GET requests, just pass null.

After the request has been made, the responseText property of the re-
quest object contains the content of the retrieved document. The headers
that the server sent back can be inspected with the getResponseHeader and
getAllResponseHeaders functions. The first looks up a specific header, and the
second gives us a string containing all the headers. These can occasionally
be useful to get some extra information about the document.

HTTP requests 191

192

Chapter 12

request.getResponseHeader ("Content-Type");
— "text/plain"

If you want to add headers to the request that is sent to the server, for
example to provide authentication information or to tell the server what
kind of response you want back (read a book on HTTP to find out how),
you can do so with the setRequestHeader method. This takes two strings as
arguments: the name and the value of the header.

The response code, which was 200 in the example, can be found under
the status property. If something goes wrong, this cryptic code will indi-
cate it. For example, 404 means the file you asked for did not exist. The
statusText contains a slightly less cryptic description of the status:

request.status;

— 200
request.statusText;
— "0K"

When you want to check whether a request succeeded, comparing the
status to 200 is usually enough. However, more complicated web services
might also use different success codes—for example 204, which means “no
content,” indicating the server successfully received the request but doesn’t
have anything to say in response.

Making Asynchronous Requests

When a request is made as in the example shown earlier, the call to the send
method does not return until the request is finished. This is convenient, be-
cause it means the responseText is available after the call to send, and we can
start using it immediately. There is a problem, though: When the server is
slow or the file is big, doing a request might take quite a while. As long as
this is happening, the program is waiting, which causes the whole browser
to wait. Until the request finishes, the user cannot do anything. Pages that
run on a local network, which is fast and reliable, might get away with doing
requests like this. Pages on the great, big, unreliable Internet should not.

When the third argument to open is true, the request is set to be asyn-
chronous. This means that send will return right away, while the request hap-
pens in the background.

request.open("GET", "files/data.txt", true);
request.send(null);

After this, the program will continue running while the request happens
in the background. If you look at the responseText property right after calling
send, it’ll be null. If you look again after a few seconds, the request will have
completed, and the property has been filled in.

“Waiting a few seconds” could be implemented with setTimeout or some-
thing like that, but there is a better way. A request object has a readyState
property, indicating the state it is in. To react to changes in this status, you
can set the onreadystatechange property of the object to a function. This func-
tion will be called every time the state changes.

A request object will start in state 0. Once you call open on it, it goes to
1. Then, calling send puts the object in state 2. When it starts reading a re-
sponse, it goes to 3, and finally, when the whole response was read, the re-
quest reaches state 4. 4 is usually the only state we are really interested in,
since that is the state that indicates the request has finished. This code waits,
asynchronously, for our request to finish and then prints out the status code
and text:

request.open("GET", "files/data.txt", true);
request.onreadystatechange = function() {
if (request.readyState == 4)
print(request.status + " " + request.statusText);
b5

request.send(null);

Fetching XML Data

So, why is the request object called an XML HTTP request? This is a bit of
a misleading name. XML is a way to store textual data. It uses tags and at-
tributes like HTML but is more structured and flexible—to store your own
kinds of data, you may define your own types of XML tags. These HTTP
request objects have some built-in functionality for dealing with retrieved
XML documents, which is why they have XML in their name. They can also
handle other types of documents, though, so HttpRequest would have been a
more sensible name.

When the file retrieved by the request object is an XML document,
the request’s responseXML property will hold a representation of this docu-
ment. This representation works like the DOM objects discussed in Chapter
10, except that it doesn’t have HTML-specific functionality, such as style
or innerHTML. responseXML gives us a document object, whose documentElement
property refers to the outer tag of the XML document. Say we have this doc-
ument (files/fruit.xml):

<fruits»>
<fruit name="banana" color="yellow"/>
<fruit name="lemon" color="yellow"/>
<fruit name="cherry" color="red"/>
</fruits>

HTTP requests 193

We could retrieve it like this:

request.open("GET", "files/fruit.xml", false);
request.send(null);
request.responseXML.documentElement.childNodes.length;

— 3

XML documents can be used to exchange structured information with
the server. Their form—tags contained inside other tags—is often very suit-
able to store things that would be tricky to represent as simple flat text. The
DOM interface is rather clumsy for extracting information, though, and
XML documents are somewhat wordy.

Reading JSON Data

As an alternative to XML, JavaScript programmers have come up with some-
thing called JavaScript Object Notation (JSON). This uses the syntax of Java-
Script values to represent structured information in a more minimalist way.
A JSON document is a file containing a single JavaScript object or array,
which in turn contains any number of other objects, arrays, strings, num-
bers, Booleans, or null values. For an example, this is what fruit.json could
look like:

{"banana": "yellow",
"lemon": "yellow",
"cherry": "red"}

Such a piece of text can be converted to a regular JavaScript value by
using the eval function. eval evaluates the text it is given as a JavaScript pro-
gram. eval("1+1"), for example, will produce 2. In this case, we want to eval-
uate the array in the JSON document so that it becomes an actual array
object.

Before passing a JSON document to eval, you should wrap it in paren-
theses, because when a program starts with a { character, that character will
be interpreted as the start of a block of code, not as the start of an object.
This program fetches the fruit data and looks up the color of lemons:

request.open("GET", "files/fruit.json", true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
var data = eval("(" + request.responseText + ")");
print(data["lemon"]);
}
};

request.send(null);

When running eval on a piece of text, you have to keep in mind that this
means you let the piece of text run whichever code it wants. Since JavaScript

194 Chapter 12

only allows us to make requests to our own domain, you will usually know
exactly what kind of text you are getting, and this is not a problem. In
situations where you do not have control over the text, calling eval is not
recommended—you might put your system, or the users of your site, at risk.

A Basic Request Wrapper

When making lots of requests, we do not want to repeat the whole open, send,
onreadystatechange ritual every time. A very simple wrapper could look like
this:

function simpleHttpRequest(url, success, failure) {
var request = requestObject();
request.open("GET", url, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
if (request.status == 200 || !failure)
success(request.responseText);
else if (failure)
failure(request.status, request.statusText);
}
b
request.send(null);

}

The function retrieves the URL it is given and calls the function it is
given as a second argument with the content. When a third argument is
given, this is used to indicate failure—a non-200 status code.

To be able to do more complex requests, the function could be made
to accept extra parameters to specify the method (GET or POST), an optional
string to post as data, a way to add extra headers, and so on. With so many
arguments, the function should probably use an argument-object as shown
in Chapter 7.

Learning HTTP

HTTP is a very clever and flexible protocol. Whenever you find yourself
making serious use of it, and especially if you end up designing an HTTP
interface (which comes up in almost all server-side web programming), I
want you to promise me that you will first study the way the protocol actually
works.

The reason I ask is that most programmers start working with HTTP
with only a very minimal understanding of it. I certainly did. They don’t
know how to properly take advantage, or even deal with, features such as
caching (a mechanism to prevent repeatedly fetching the same document)
and Internet media types (a way to identify the format of documents), and
the result is that they build overcomplicated, brittle, wrong-headed wrap-

HTTP requests 195

196

Chapter 12

pers in an attempt to “hide” the use of HTTP. When used correctly, HTTP
is a great match for most forms of communication and does not need to be
hidden.

There are various books and Internet resources available to help “get”
HTTP. As usual, be wary of the advice offered on Internet forums and web-
sites with poor spelling, since people who know a little still tend to talk a lot.
For the technically minded, the HTTP standard is actually a very good and
enlightening read, but, like most standard documents, it is rather dense. A
more forgiving read is Gourley and Totty’s HTTP: The Definitive Guide, pub-
lished by O’Reilly.

INDEX

Symbols

88, as logical and operator, 14, 28
* (asterisk), as multiplication
operator, 11, 27, 142
*= operator, 23
\ (backslash), 12, 140, 141
{} (braces)
for blocks, 21, 32, 194
for objects, 43, 96
= (equal sign), 15, 43, 44
==, as equal to operator, 14, 26,
46, b5
===, as precisely equal to operator, 26
! (exclamation mark), as not
operator, 14
I=, as not equal to operator, 14
I==, as not precisely equal to
operator, 26
/ (forward slash), as division
operator, 11, 27
/= operator, 23
> (greater-than sign), 13
>=, as greater than or equal to
operator, 14
< (less-than sign), 13
<=, as less than or equal to
operator, 14
- (minus sign), 11, 13, 27
-= operator, 23
-- operator, 23
() parentheses
for applying functions, 17, 33-34
for grouping, 11, 142

% (percent sign), as modulo
operator, 11, 23
+ (plus sign), 11, 12, 27, 142
++ operator, 23
+= operator, 23
?: operator, 76
" (quotation marks), 12, 44, 87, 140
; (semicolon), 15, 23
[]1 (square brackets)
for accessing properties, 43,
44, 47
for arrays, 46, 47
in regular expressions, 140
|, as logical or operator, 14, 28, 39

A

a (HTML tag), 86, 89
absolute positioning, 171
abstraction, 5, 36, 71, 102
acos function, 61
addEventListener method, 175
addHandler function, 179
alert function, 17, 35
algorithm, 46, 74
altKey property, 177
anonymous function, 34, 73, 133
appendChild method, 167
application
of functions, 17, 33, 35, 37
of operators, 11
apply method, 75, 94, 108
argument, 17, 30, 35, 86, 136
arguments object, 59, 75, 91

198

INDEX

arithmetic, 11
addition, 11, 75
division, 11, 27
multiplication, 11, 27, 142
subtraction, 11, 13, 27
array, 4647, 73, 76, 104
literal, 46
methods, 48, 59
pseudo-array, 59, 91, 164
traversal, 46, 48, 73
Array type, 46—48, 104
asin function, 61
assignment, 15, 23, 84
asynchronous request, 192-193
atan function, 61
attachEvent method, 174
attribute, 167
automated testing, 70

backslash (\), 12, 140, 141
BASIC, 1
between function, 64, 65
binary, 3, 10
binary operator, 13
bind function, 108
bit, 4, 9
block (of statements), 21
blur event, 179
body (HTML tag), 78
body property, 164
Book of Programming, The, 79
Boolean conversion, 19, 26
Boolean function, 19
Boolean type, 13-14
BouncingBug type, 112
br (HTML tag), 182
braces, {}
for blocks, 21, 32, 194
for objects, 43, 96
break keyword, 23
browser, 2, 7, 190
detection, 161
events, 173-187
incompatibility, 160, 166
button (HTML tag), 185
button property, 176

C

caching (HTTP), 195
call method, 95
cancelBubble property, 178
capitalization

in style sheets, 170

in variable names, 24-25
case keyword, 24
cat example, 41-43, 48-59
catch keyword, 66, 67, 69
ceil function, 61
center (HTML tag), 169
change event, 180
char reserved word, 16
character, 12
charAt method, 49, 50
charCode property, 177
childNodes property, 164
class (CSS), 170
class reserved word, 16
className property, 170
cleaning up, 67
clearInterval method, 156
clearTimeout method, 155
CleverlichenEater type, 122
click event, 159, 174, 176, 185
client, 151
clientX property, 176
clientY property, 176
clone function, 115, 124
close method, 154
closure, 34-35, 73, 74
code reuse, 36, 37, 116, 122
comment, 25, 136
comparisons, 13
compose function, 92
computer, 2
concat method, 83
concatenation, 12, 88
concurrency, 174
conditional execution, 19, 76
confirm function, 18
Confucius, 2
construct method, 124

constructor, 25, b4, 95-98, 124, 126

constructor property, 96, 116
control flow, 19-22, 30, 66

convention, 134

corner case, 50

cos function, 61

count function, 76

create method, 124
createElement method, 166
createTextNode method, 166
ctrlKey property, 177

D
data, 2, 9, 41-62

data structure, 45, 57, 100, 104, 182

Date type, b4
dblclick event, 176
decodeURIComponent function, 156
default keyword, 24
DELETE (HTTP method), 190
delete operator, 44
dependency (module), 130
detachEvent method, 175
Dictionary type, 100, 113
discretization, 102
dispatch, 24
display style, 171
div (HTML tag), 169, 182
document object, 154, 163
Document Object Model (DOM),
158, 163-172, 193
connections in, 164
events, 173-187
language-independence, 165
modification of, 165, 166
querying, 166
structure of, 163
document restriction, 168
documentation, 101, 130
documentElement property, 164
do loop, 21
DOM (Document Object Model).
See Document Object
Model (DOM)
dom function, 167
DOM node, 163, 164
creating, 166
finding, 166
hiding, 171
links between, 164

positioning, 171

removing, 168

sizing, 172
DrunkBug type, 114

e constant, 61
ECMAScript, 6
ecosystem. See terrarium
efficiency, 38
elegance, 38
else keyword, 19
em (HTML tag), 89
Emily (aunt), 41
encapsulation, 102
encodeURIComponent function, 156
entropy, 115
environment
functions, 17
modification of, 18
equal sign (=), 15, 43, 44

equal to (==) operator, 13, 26, 46, 55

error
handling, 63-70
exceptions, 66
return value, 65
types of, 63
propagation, 64
Error type, 68
escapeHTML function, 87, 145
escaping
in HTML, 78, 86, 87

in regular expressions, 139, 146

in strings, 12
eval function, 194
event, 173, 175
bubbling, 174
handler, 173, 174
keyboard-related, 177
mouse-related, 176
normalization, 178
object, 173, 175
stopping of, 178
exception handling, 66
exclamation mark (!), as not
operator, 14
exponentiation, 21, 30, 61

INDEX

199

200

INDEX

expression, 14

extend method, 124

eXtensible Markup Language
(XML), 193

ExtJS, 137

extractDate function, 56, 143

F

false, 13
feature detection, 161, 175, 178, 191
file (script), 7, 130
finally keyword, 68
findCats function, 57
findSequence function, 39
firstChild property, 164, 166
first-class functions, 34, 73
floor function, 61
focus event, 179
focus method, 160
fold algorithm, 75
font (HTML tag), 169
footnote, 79
for loop, 22, 26, 69, 73, 105
forEach function, 73, 114
forEachIn function, 99
for/in loop, 52, 62
form (HTML), 156, 158
form (HTML tag), 157
formatDate function, 58
forms property, 158
forward slash (/), as division opera-
tor, 11, 27
framework, 36, 137
fromCharCode method, 177
Funarg problem, 34
function, 29-39
application, 17, 33, 35, 37
body, 30
composition, 92
definition, 29, 30
expressions, 34
higher-order, 73-77, 105
as namespace, 132
purity, 37, 84
as value, 33, 73

function keyword, 30, 34, 77, 92
Function type, 17
functional programming, 71-92
performance of, 92
utilities, 73-77, 90-92

G

garbage collection, 9
GET (HTTP method), 158, 190
getAllResponseHeaders method, 191
getAttribute method, 167
getDate method, b5
getDay method, 55
getElementById method, 166
getElementsByTagName method, 166
getFullYear method, b5
getHours method, 55
getMinutes method, 55
getMonth method, 55
getResponseHeader method, 191
getSeconds method, 55
getTime method, b5
getTimezoneOffset method, 56
global variable, 31, 131. See
also variable
graceful degradation, 162
grammar, 14, 79, 147
grandmother’s tale, 72
greater-than (>) operator, 13
greater than or equal to (>=)
operator, 13
Grid type, 105

h1 (HTML tag), 78

hard-coding, 112

hasOwnProperty method, 98, 100

head (HTML tag), 78

height style, 172

hermit, 77-81

higher-order function, 73-77, 105.
See also function

html (HTML tag), 78

HTML (HyperText Markup Lan-
guage), 7, 77-78, 152
attribute, 78
generation, 81, 86
styling, 169
tag, 77
whitespace rules, 169
HTTP (HyperText Transfer Proto-
col), 151, 189-190, 195
header, 189, 191
method, 158, 190, 191
request, 152, 156, 189
response, 190
status code, 192, 195
HyperText Markup Language. See
HTML (HyperText
Markup Language)
HyperText Transfer Protocol. See
HTTP (HyperText
Transfer Protocol)

i variable, 47

id attribute, 166, 169

if keyword, 19, 26, 76

image, 182

img (HTML tag), 78, 165, 166

in operator, 44, 52, 98, 100

indentation, 22, 49

index0f method, 51, 83

infinite loop, 69

inherit method, 123

inheritance, 115-116, 122, 125-128

.ini file example, 147-149

inner function, 31, 54, 56

innerHTML property, 165

input (HTML tag), 157, 159

insertBefore method, 168

instanceof operator, 126

interface, 94, 101, 106, 110, 130

design, 36, 37, 53, 102, 134
composability, 135
layering, 135
object, 134

invalid input, 63

invoking functions, 17, 33, 35, 37
isA method, 126

isImage function, 165

isNaN function, 19, 27

isTextNode function, 165

J

Java, 6
JavaScript, 6
availability of, 2, 162
console, 68
flexibility of, 6
syntax, 14
trying out, 7
versions of, 6
weaknesses of, 6, 100, 130
JavaScript Object Notation (JSON),
194-195
join method, 48, 88
jQuery, 137
JSON (JavaScript Object Notation),
194-195

keyCode property, 177
keydown event, 177, 185
keypress event, 177
keyup event, 177
keyword, 16

L

lastChild property, 164, 166

lastElement function, 65, 66

left style, 171

length property, 43, 46, 59, 62

less-than (<) operator, 13

less than or equal to (<=)
operator, 13

lexical scoping, 31-32, 73, 91

library, 137

Lichen type, 118

LichenEater type, 119

iNDEX 201

202

INDEX

LifeLikeTerrarium type, 115
load event, 180

local variable, 31

location property, 154
logical operators, 14

loop body, 21

looping, 5, 20-23

termination, 23

makeAdder function, 35
manager, 3

map function, 76, 91, 131
match method, 143

Math object, 61

max function, 17, 61
media type, 195

memory, 4, 9

message box, 17

metaKey property, 177
method, 48, 94, 112
method function, 108
method method, 123
MIME, 195

min function, 17, 61
minus sign (-), 11, 13, 27
mix-in (inheritance), 127
mixInto function, 127
module, 129-187
modulo operator (%), 11, 23
mousedown event, 176
mousemove event, 176
mouseout event, 176
mouseover event, 176
mouseup event, 176
multiple inheritance, 127, 128
multiple returns, 59
mutability, 43, 45

namespace pollution, 61, 98, 131
naming, 4, 36

NaN value, 19, 27, 64

navigator object, 161

negate function, 74

negation, 14

nested functions, 31
new operator, 54, 95, 123
newline, 12, 49
nextSibling property, 164
node.js, 6
nodeName property, 165
nodeType property, 165
nodeValue property, 165
normalizeEvent function, 178
not (!) operator, 14
not equal to (!=) operator, 14
not precisely equal to (!==
operator, 26

null value, 26, 43, 143
Number function, 19, 25, 56
Number type, 10-11
numbers

digital, 80

precision of, 10, 79-81

0

Object type, 43, 96
object-oriented programming,
93-128
objects, 43-46, 93-128
comparing, 55
design, 104
identity, 45
literal, 43
as modules, 133
for named arguments, 136
property, 43
obscenity filter example, 146
onreadystatechange property, 192
op object, 90
open method, 153, 191, 192
operator, 11, 13-14, 28, 90
optional argument. See argument
organization (of code), 129
0OS X, 177

P

p (HTML tag), 78

pageX property, 176
pageY property, 176
paradigm shift, 93

paragraph, 49
parameter, 17
parentheses, ()

for applying functions, 17, 33-34

for grouping, 11, 142
parentNode property, 164
partial application, 91
partial function, 91
percent sign (%), as modulo

operator, 11, 23

PI constant, 61
plus sign (+), 11, 12, 27, 142
Point type, 103, 183
polymorphism, 114, 116
pop method, 48
pop-up blocker, 153
position style, 171
POST (HTTP method), 158, 190
pow function, 61
power function, 30, 35-37
pre (HTML tag), 169
precedence, 11, 14
precisely equal to (===) operator, 26
premature optimization, 38
preventDefault method, 178
previousSibling property, 164
print function, 18, 60, 169
privacy, 153
private property, 110
program, 14, 19, 30

nature of, 2, 79-81

size, 79-81
programmer error, 63
programming

analogy for, 2, 79-81

client-side, 153

difficulty of, 2

history of, 1, 3

joy of, 3

language, 2, 3, 5

server-side, 153, 195
prompt function, 18
properties method, 98, 99
property, 43-45, 96

access, 43

assignment, 43

deletion, 44

enumerability, 62, 100

propertyIsEnumerable method, 100

protocol, 151

prototype, 96-98, 115, 124

Prototype (library), 137

prototype pollution, 98

prototype property, 96, 123

provide function, 133

pseudo-array, 59, 91, 164. See
also array

pure function, 37, 84

push method, 48

PUT (HTTP method), 190

Q

query string (URL), 156
quotation marks ("), 12, 44, 87, 140

rabbit example, 94-98
raise (exception), 66
random function, 113
randomElement function, 114
randomInteger function, 113
range function, 47, 60
readyState property, 192
recipe, 71
recluse, 77-81
record (data structure), 57
recursion, 33, 37-39, 84
reduce function, 75
refactoring, 52
RegExp type, 146
registerEventHandler function, 175
regular expressions, 139-149
alphanumeric characters in,
140-141
boundaries, 141
case sensitivity, 142
character sets, 140
grouping, 142
line boundary, 141
matching, 143
repetition, 142
replacing, 144
syntax, 139-143
whitespace, 140
word boundary, 141

INDEX 203

204

INDEX

relatedTarget property, 176
relative URL, 157

removeChild method, 168
removeEventListener method, 175
removeHandler function, 179
renderFile function, 90
renderHTML function, 88

repetition, avoiding of, 36, 116, 126

replace method, 87, 144
replaceChild method, 168
requestObject function, 191
reserved words, 16

resize event, 180

response body, 190
responseText property, 191
responseXML property, 193
return keyword, 30, 31, 58, 95
return value, 17, 30
returnValue property, 178
round function, 37, 61
run-time error, 63, 64

S

sandboxing, 153, 154, 190
scientific notation, 10
script (HTML tag), 7, 131, 154
scroll event, 180
scrollleft property, 176
scrollTop property, 176
search method, 139
security, 153, 154, 194
select (HTML tag), 157
self variable, 108, 117
semicolon (;), 14, 23

send method, 191, 192
server, 151

set (data structure), 45
setAttribute method, 167
setDate method, 55
setFullYear method, b5
setHours method, 55
setInterval method, 156
setMinutes method, bb
setMonth method, 55
setRequestHeader method, 192
setSeconds method, bb

setTimeout method, 155
shiftKey property, 177
shortcut evaluation, 28, 39
side effect, 15, 17, 37, 45, 53, 84
simpleHttpRequest function, 195
simulation, 102, 109, 115, 120
sin function, 61
slice method, 50
Sokoban, 181-187
levels, 181-182
SokobanField type, 183
SokobanGame type, 185
spellcheck example, 135
spinning node example, 171
split method, 49, 82
sqrt function, 61
square brackets, []
for accessing properties, 43,
44, 47
for arrays, 46, 47
in regular expressions, 140
square function, 29
square root, 61
Square type, 182
src property, 166, 182
srcElement property, 176
stack, 33
overflow, 33, 38
unwinding of, 66
standard environment, 17
startsWith function, 50
state, 15, 21-23
statement, 14, 21
status property, 192
statusText property, 192
stop method, 178
stopPropagation method, 178
String function, 19, 37
String type, 12, 48
Stroustrup, Bjarne, 78
StupidBug type, 106
style property, 170
style sheets, 169-172
submit event, 180
submit method, 159
subtype, 123
sum function, 61, 73, 75, 92

sup (HTML tag), 89
supertype, 123
switch keyword, 24

T

tag function, 86
tan function, 61
target property, 176
tentacle (variable analogy), 16, 25
ternary operator, 76
terrarium, 102-122
action object, 106
bug object, 106
Terrarium type, 106
test method, 141
testing, automated, 70
text adventure example, 125-128
text input, 18, 157
text node, 164
content of, 165
distinguishing, 165
textual data, 12
this variable, 94, 95, 108
threading, 174, 192
throw keyword, 66, 67
time zone, 56
timer, 155
toLowerCase method, 48
top style, 171
top-level variable, 31, 131
toString method, 62, 96, 103, 107,
111,114
toUpperCase method, 48
trigonometry, 61, 171
true, 13
try keyword, 67, 68
type, 9, 13
checking, 64
conversion, 26, 27
typeof operator, 13

unary operator, 13

undefined value, 25, 30, 31, 35, 43
unhandled exception, 68
Unicode, 13, 177

Universal Resource Locators
(URLs), 152, 156, 191

unregisterEventHandler function, 175

unwinding the stack, 66

URLs (Universal Resource
Locators), 152, 156, 191

vV

value, 9
value property, 159
var keyword, 15, 31
variable, 4, 15, 21, 30. See also
global variable
model of, 16
naming, 15, 16
scope, 31, 34, 108
variadic function, 60

w

Web, the, 6, 151-153, 189
Web browser, 2, 7, 190
detection, 161
events, 173-187
incompatibility, 160, 166
Weizenbaum, Joseph, 2
which property, 176
while loop, 5, 20, 26
width style, 172
wiki syntax, 79
window object, 132, 153
World Wide Web (WWW), 6,
151-153, 189
write method, 154

X

XML (eXtensible Markup Lan-
guage), 193
XMLHttpRequest type, 191, 193

Y
Yahoo! User Interface (YUI), 137

/4

zeroPad function, 37

INDEX 205

COLOPHON

The fonts used in Eloquent JavaScript are New Baskerville, Futura, The Sans
Mono Condensed and Dogma. The book was typeset with KIEX 2 package
nostarch by Boris Veytsman (2008/06/06 v1.3 Typesetting books for No Starch
Press).

This book was printed at bound by Transcontinental, Inc. at Transcon-
tinental Gagné in Louiseville, Quebec, Canada. The paper is Domtar Husky
70# Smooth, which is certified by the Forest Stewardship Council (FSC). The
book has an Otabind binding, which allows it to lie flat when open.

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

PRIVACY EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

FREE SPEECH ErF's Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

INNOVATION Err's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

FAIR USE EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

TRANSPARENCY EFF nas developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

INTERNATIONAL EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/zlobal

EFFFF.IHIs

ELECTRONIC FRONTIER FOUNDATION

EFF is a member-supported organization. Join Now! www.eff.ore/support

Cowad Buat, M.D.

GRAY HAT
PYTHON

Il-_lealr(n\(‘f;u a
G%;a% G::J.’

"iran Li,wvaéa

More No-Nonsense Books from @ NO STARCH PRESS

LAND OF LISP

Learn to Program in Lisp, One Game at a Time!
by CONRAD BARSKI, M.D.

Lisp is a uniquely powerful programming language that, despite its academic
reputation, is actually very practical. Land of Lisp brings the language into the
real world, teaching readers Lisp by showing them how to write several com-
plete Lisp-based games, including a text adventure, an evolution simulation,
and a robot battle. While building these games, readers learn the core concepts
of Lisp programming, such as recursion, input/output, object-oriented pro-
gramming, and macros. And thanks to Lisp’s powerful syntax, the example
code is short and easy to understand. The book is filled with the author’s bril-
liant Lisp cartoons, which are sure to appeal to many Lisp fans and, in the tradi-
tion of all No Starch Press titles, make learning more fun.

OCTOBER 2010, 504 pp., $49.95
ISBN 978-1-59327-281-4

GRAY HAT PYTHON

Python Programming for Hackers and Reverse Engineers
by JUSTIN SEITZ

Gray Hat Python explains how to complete various hacking tasks with Python,
which is fast becoming the programming language of choice for hackers,
reverse engineers, and software testers. Author Justin Seitz explains the con-
cepts behind hacking tools like debuggers, Trojans, fuzzers, and emulators. He
then goes on to explain how to harness existing Python-based security tools
and build new ones when the pre-built ones just won’t cut it. The book teaches
readers how to automate tedious reversing and security tasks; sniff secure traf-
fic out of an encrypted web browser session; use PyDBG, Immunity Debugger,
Sulley, IDAPython, and PYEMU; and more.

APRIL 2009, 216 PpP., $39.95
ISBN 978-1-59327-192-3

LEARN YOU A HASKELL FOR GREAT GOOD!

by MIRAN LIPOVACA

Learn You a Haskell for Great Good! is a fun, illustrated guide to learning Haskell,
a functional programming language that’s growing in popularity. The book
introduces programmers familiar with imperative languages (such as C++, Java,
or Python) to the unique aspects of functional programming. Packed with
jokes, pop culture references, and the author’s own hilarious artwork, Learn
You a Haskell for Great Good! eases the learning curve of this complex language
and is a perfect starting point for any programmer looking to expand their
horizons.

MARCH 2011, 400 pp., $44.95
ISBN 978-1-59327-283-8

MAP SCRIPTING 101

An Example-Driven Guide to Building Interactive Maps with Bing, Yahoo!, and
Google Maps
by ADAM DUVANDER

Map Scripting 101 uses a project-based approach to teach readers how to create
useful and fun online map mashups like weather maps and local concert track-
ers. Author Adam DuVander shows readers how to use Mapstraction, an open
source JavaScript library, to create and manipulate basic maps by setting zoom
levels, showing and hiding markers, geocoding addresses, customizing maps
for visitors based on their locales, and so on. Readers will also learn to handle
complex GIS (geographic information system) data and formats like KML and
GeoRSS, and to create graphical overlays to make sense of data and trends.
This book is perfect for any web developer, whether their goal is to build a map
to track earthquakes around the world or to simply mark the best coffee shops
in town.

AUGUST 2010, 376 pp., $34.95
ISBN 978-1-59327-271-5

WICKED COOL PHP
Real-World Scripts That Solve Difficult Problems

by WILLIAM STEINMETZ with BRIAN WARD

Rather than focus on the basics of the language, Wicked Cool PHP provides (and
explains) PHP scripts that can be implemented immediately to simplify web-
masters’ lives. These include a wide variety of scripts that process credit cards,
check for valid email addresses, template HTML, override PHP’s default set-
tings, and serve dynamic images and text. Readers will also find extensive sec-
tions on working with forms, words, and files; ways to harden PHP by closing
common security holes; and instructions for keeping data and transactions
secure. By exploring working code, readers learn how to customize their web
server’s behavior, prevent spammers from adding annoying comments, scrape
information from other websites, and much more.

FEBRUARY 2008, 216 pp., $29.95
ISBN 978-1-59327-173-2

PHONE: EMAIL:

800.420.7240 OR SALES@NOSTARCH.COM
415.863.9900

MONDAY THROUGH FRIDAY, WEB:

9 AM. TO 5 P.M. (PST) WWW.NOSTARCH.COM
FAX: MAIL:

415.863.9950 NO STARCH PRESS

24 HOURS A DAY, 38 RINGOLD STREET

7 DAYS A WEEK SAN FRANCISCO, CA 94103

USA

N
MAP SCRIPTING
101

I
WICKED COOL

"PHP

UPDATES

Visit http://nostarch.com/ejs. htm for updates,
errata, and an interactive code sandbox where
you can run the examples from the book.

Master the Language

of the Web

JavaScript is at the heart of almost every
modern Web application, whether it's Google
Apps, Twitter, or the newest browser-based
game. Though it's simple for beginners to pick
up and play with, JavaScript is not a toy—it’s a
flexible and complex language that can be used
to build full-scale applications.

Eloquent JavaScript dives into this
flourishing language and teaches you to

write code that’s beautiful and effective.

By immersing you in example code and
encouraging experimentation right from the
start, the author quickly gives you the tools
you need to build your own programs. As you
follow along with examples like an artificial life
simulation and a version of the classic game
Sokoban, you'll learn to:

= Understand the essential elements of
programming: syntax, control, and data

= Use object-oriented and functional
programming techniques to organize and
clarify your programs

THE FINEST IN GEEK ENTERTAINMENT™
www.nostarch.com

OTABIND
| | [f FLAT.”

This book uses a lay-flat binding that won't snap shut.

$29.95 ($34.95 CDN)

> Script the browser and make basic Web
applications

== Work with tools like regular expressions and
XMLHttpRequest objects

And since programming is an art that’s best
learned by doing, all example code is avail-
able online in an interactive sandbox for you to
experiment with. With Eloquent JavaScript
as your guide, you can tweak, expand, and
modify the author’s code, or throw it away and
build your own creations from scratch. Before
you know it, you'll be fluent in the language of
the Web.

Marijn Haverbeke is a programming language
enthusiast and polyglot. He’s worked his way
from trivial BASIC games on the Commodore,
through a C++ phase, to the present where he
mostly hacks on database systems and web
APIs in dynamic languages. He created and
maintains several popular open-source projects.

Shelve In: Programming Languages/JavaScript

ISBN: 978-1-59327-282-1

52995

6 89145 72820 o

	Copyright
	Dedication
	Brief Contents
	Contents in Detail
	Introduction
	Chapter 1: Basic JavaScript: Values, Variables, and Control Flow
	Values
	Variables
	The Environment
	Program Structure
	More on Types

	Chapter 2: Functions
	The Anatomy of a Function Definition
	Techniques

	Chapter 3: Data Structures: Objects and Arrays
	The Problem: Aunt Emily’s Cats
	Basic Data Structures
	Solving the Problem of Aunt Emily’s Cats
	Some More Theory

	Chapter 4: Error Handling
	Types of Problems
	Handling Errors
	Automated Testing

	Chapter 5: Functional Programming
	Abstraction
	Higher-Order Functions
	The Sad Story of the Recluse
	Other Functional Tricks

	Chapter 6: Object-Oriented Programming
	Objects
	Building an Ecosystem Simulation
	A More Lifelike Simulation
	Prototypal Inheritance

	Chapter 7: Modularity
	Modules
	The Shape of a Module
	Interface Design
	Libraries

	Chapter 8: Regular Expressions
	Syntax
	Matching and Replacing
	Parsing an .ini File
	Conclusion

	Chapter 9: Web Programming: A Crash Course
	The Internet
	Basic Web Scripting
	Browser Incompatibility
	Further Reading

	Chapter 10: The Document Object Model
	DOM Elements
	Style Sheets
	Word of Caution

	Chapter 11: Browser Events
	Event Handlers
	Example: Implementing Sokoban

	Chapter 12: HTTP requests
	The HTTP Protocol
	The XMLHttpRequest API
	Learning HTTP

	Index
	COLOPHON
	UPDATES

