
[1]

www.allitebooks.com

http://www.allitebooks.org

Deploying Node.js

Learn how to build, test, deploy, monitor, and maintain
your Node.js applications at scale

Sandro Pasquali

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Deploying Node.js

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1170715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-140-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Sandro Pasquali

Reviewers
Benjamin Bahrenburg

Nikola Brežnjak

Félix Saparelli

Jim Schubert

Commissioning Editor
Edward Gordon

Acquisition Editor
Meeta Rajani

Content Development Editor
Rohit Kumar Singh

Technical Editor
Humera Shaikh

Copy Editor
Sarang Chari

Project Coordinator
Mary Alex

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Sandro Pasquali, in 1997, formed Simple.com, a technology company that
sold the world's first JavaScript-based application development framework and
was awarded several patents for deployment and advertising technologies that
anticipated the future of Internet-based software. Node represents, for him, the
natural next step in the inexorable march toward the day when JavaScript powers
nearly every level of software development.

Sandro has led the design of enterprise-grade applications for some of the largest
companies in the world, including Nintendo, Major League Baseball, Bang
and Olufsen, LimeWire, AppNexus, Conde Nast, and others. He has displayed
interactive media exhibits during the Venice Biennial, won design awards, built
knowledge management tools for research institutes and schools, and started and
run several start-ups. Always seeking new ways to blend design excellence and
technical innovation, he has made significant contributions across all levels of
software architecture, from data management and storage tools to innovative user
interfaces and frameworks.

He is the author of Mastering Node.js, also by Packt Publishing, which takes you on a
deep dive into Node, teaching you how to use it to build modern, fast, and scalable
networked software.

Sandro runs a software development company in New York and trains corporate
development teams interested in using Node and JavaScript to improve their products.
He spends the rest of his time entertaining his beautiful daughter and his wife.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Benjamin Bahrenburg is an author, blogger, speaker, and technology director.
Over the last decade, he has designed and implemented innovative enterprise-scale
solutions to meet the technology challenges of numerous Fortune 100 organizations.
Ben specializes in cross-platform mobile solutions built upon full-stack JavaScript
solutions.

Ben is the author of Appcelerator Titanium Business Application Development Cookbook
by Packt Publishing, and he is a frequent speaker on Mobile JavaScript techniques.
He spends much of his time blogging about JavaScript and mobile development at
bencoding.com.

For more information, you can contact Ben on Twitter at @bencoding.

Nikola Brežnjak is an engineer at heart and a "jack of all trades" kind of guy. He
lives in Croatia with his lovely wife and daughter. For those who care about titles,
he has a master's degree in computing from FER (http://www.fer.unizg.hr/en/
education/msc_study/comp/piis). Over the past 7 years, he has worked in the
betting software industry, where he made use of his knowledge in areas ranging
from full-stack (web and desktop) development to game development through
Linux and database administration and the use of various languages (C#, PHP, and
JavaScript, to name just a few). Lately, he's been interested in the MEAN stack, the
Ionic framework, and Unity3D. Also, he likes to help out on StackOverflow, where
he's currently in the top 1 percent. He self-published the book Getting MEAN with
MEMEs at https://leanpub.com/meantodo.

You can find out more about him through his blog at http://www.nikola-
breznjak.com/blog.

I would like to thank my wife and daughter for supporting me in
all my geeky endeavors. Also, I would like to thank my parents,
who taught me the power of hard and consistent work.

www.allitebooks.com

http://www.fer.unizg.hr/en/education/msc_study/comp/piis
http://www.fer.unizg.hr/en/education/msc_study/comp/piis
https://leanpub.com/meantodo
http://www.nikola-breznjak.com/blog
http://www.nikola-breznjak.com/blog
http://www.allitebooks.org

Félix Saparelli is a software developer at McKay Software, based in northern New
Zealand. His role as a full-stack developer covers the design and development of
elegant industrial solutions.

He has travelled the world by boat and studied architecture. He speaks two
languages and has visited over 25 countries (and counting). He enjoys tea, despises
rain, and appreciates fan fiction. Over this time, he's developed a passion for all
things computing. He's spent the last 7 years programming and interacting with the
open source community.

To find out more about him, visit his website at https://passcod.name. You can
also find him on Twitter at @passcod.

Jim Schubert is an applications and web developer from Richmond, VA. He has
previously held positions with GE Healthcare, Primescape Solutions, Enghouse
Interactive, and Expedia. He is currently a senior systems analyst at Integrated
Business Systems, Inc., where he contributes to the design and construction of
complete club management systems. He is mainly proficient in C#, Scala, and
JavaScript. While at Expedia, he helped drive the success of an internally consumed
Node.js API before moving on to construct a Scala API designed for both internal and
external consumption. When not blogging about C# or AngularJS or self-publishing
books about software, he is usually reading any book related to software construction
he can get his hands on.

I'd like to say thanks to my beautiful wife, Crystal, and our
handsome son, Jack.

www.allitebooks.com

https://passcod.name
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Appreciating Node	 1

Understanding Node's unique design	 3
Concurrency	 4
Parallelism and threads	 5
Concurrency and processes	 8
Events	 9
The event loop	 11

The implications of Node's design on system architects	 15
Building large systems out of small systems	 16
Streams	 17

Using full-stack JavaScript to maximum effect	 19
Hot code	 19
Browserify	 20

Summary	 22
Chapter 2: Installing and Virtualizing Node Servers	 23

Getting a basic Node server up and running	 24
Hello world	 24
Making HTTP requests	 26
Proxying and tunneling	 27
HTTPS, TLS (SSL), and securing your server	 29
Creating a self-signed certificate for development	 29
Installing a real SSL certificate	 30

Installing applications on Heroku	 32
Add-ons	 33
Git	 34
Managing configuration variables	 37
Managing your deployment	 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Installing applications on OpenShift	 39
Installing a Node application and MongoDB	 41
Deploying your app	 42

Using Docker to create lightweight virtual containers	 44
First, some Unix	 45
Getting started with Docker	 47
Creating a Dockerfile	 48
Building and running a Docker image	 50

Summary	 52
Chapter 3: Scaling Node	 53

Scaling vertically across multiple cores	 54
spawn(command, [arguments], [options])	 56
fork(modulePath, [arguments], [options])	 59
exec(command, [options], callback)	 61
execFile	 62
Communicating with your child process	 62

child.connected	 62
child.stdin	 62
child.stdout	 62
child.stderr	 62
child.pid	 63
child.kill([signal])	 63
child.disconnect()	 63
child.send(message, [sendHandle])	 63

The cluster module	 64
cluster.isMaster	 65
cluster.isWorker	 65
cluster.worker	 65
cluster.workers	 66
cluster.setupMaster([settings])	 66
cluster.fork([env])	 66
cluster.disconnect([callback])	 66
cluster events	 66
worker.id	 67
worker.process	 67
worker.suicide	 67
worker.send(message, [sendHandle])	 67
worker.kill([signal])	 67
worker.disconnect()	 67

Scaling horizontally across different machines	 68
Using Nginx	 69

Deploying an Nginx load balancer on DigitalOcean	 71
Installing and configuring Nginx	 72

Load balancing with Node	 77
Using node-http-proxy	 78

Table of Contents

[iii]

Using message queues	 80
Using Node's UDP Module	 84

Summary	 90
Chapter 4: Managing Memory and Space	 91

Dealing with large crowds	 92
Microservices	 92
Redis pub/sub	 94
Microservices with Seneca	 97

Reducing memory usage	 100
Use streams, not buffers	 101
Understanding prototypes	 102
Memory-efficient data structures with Redis	 105

Using bitwise operations to analyze user actions over time	 105
Using HyperLogLog to count unique anonymous visitors	 110

Taming V8 and optimizing performance	 113
Optimizing JavaScript	 113

Numbers and tracing optimization/de-optimization	 114
Objects and arrays	 116
Functions	 118

Caching strategies	 118
Using Redis as a cache	 119
Deploying CloudFlare as a CDN	 122

Managing sessions	 125
JSON Web Token authentication and sessions	 126

Summary	 130
Chapter 5: Monitoring Applications	 131

Dealing with failure	 132
The 'domain' module	 133
Catching process errors	 136
Logging	 139

Logging with UDP	 139
Logging with Morgan	 142

Modifying behavior in changing environments	 144
Node REPL	 145
Remotely monitoring and managing Node processes	 147

Profiling processes	 151
Using third-party monitoring tools	 155

PM2	 155
Monitoring	 158

Nodetime	 160
Using New Relic for monitoring	 162
Summary	 165

Table of Contents

[iv]

Chapter 6: Building and Testing	 167
Building with Gulp, Browserify, and Handlebars	 168

Using Gulp	 168
Erecting a build scaffold	 172
Running and testing your build	 179

Using Node's native testing tools	 181
The Node debugger	 182
The 'assert' module	 186

Testing with Mocha, Chai, Sinon, and npm	 188
Mocha	 190
Chai	 191
Sinon	 193

Spies	 193
Stubs	 195
Mocks	 197

Automated browser testing with PhantomJS and CasperJS	 199
Headless testing with PhantomJS	 199
Navigation scenarios with CasperJS	 202

Summary	 205
Chapter 7: Deploying and Maintaining	 207

Using GitHub webhooks	 208
Enabling webhooks	 208
Implementing a build/deploy system using webhooks	 212

Synchronizing local and deployed builds	 216
Developing locally with Vagrant	 216
Provisioning with Ansible	 219

Integrating, delivering, and deploying	 223
Continuous integration	 223
Continuous delivery	 223
Continuous deployment	 224
Building and deploying with Jenkins	 224
Deploying to Heroku	 228

Package maintenance	 231
Understanding Semver	 232
Managing packages with npm	 234

Designing a dependency tree	 238
Summary	 241

Index	 243

[v]

Preface
Over the past few years, Node.js has found its way into the technology stack
of Fortune 500 companies, mobile-first start-ups, successful Internet-based
businesses, and other enterprises. In addition to validating its power as a platform,
this success has exposed a shortage of tools for managing, deploying, and
monitoring Node.js applications. Even though the Node.js community is open and
collaborative, comprehensive information on how professional Node developers
design, test, and push their code into production environments is hard to find.

This book is an attempt to close that gap in knowledge by explaining and
documenting techniques and tools that working Node.js developers can use to create
scalable, smart, robust, and maintainable software for the enterprise.

After a brief introduction to Node and the philosophy behind its design, you will
learn how to install and update your applications on local servers and across the
cloud. This foundation is then built upon by proceeding step by step through load
balancing and other scaling techniques, explaining how to handle sudden changes in
traffic volume and shape, implement version control, and design memory-efficient,
stateful, distributed applications.

Once you've completed the groundwork essential to creating production-ready
systems, you will need to test and deploy them. Filled with real-world code
examples, this book is structured as a progressive workbook explaining strategies
for success to be used during each stage of the testing, deploying, monitoring, and
maintaining marathon that every successful piece of software runs.

When you've finished this book, you will have learned a set of reusable patterns
directly applicable to solving the problems that you are dealing with today and will
have laid the foundation to make confident decisions about how to build and deploy
your next project.

Preface

[vi]

What this book covers
Chapter 1, Appreciating Node, goes into the thinking behind Node.js, helping you
to think clearly about what Node.js is good at, what it is less good at, and how to
leverage Node.js to solve real-world challenges.

Chapter 2, Installing and Virtualizing Node Servers, teaches you how to create a basic
Node.js application and get it running on a server. You will also learn how to do
the same thing on certain popular cloud-hosting providers, such as DigitalOcean
and Heroku, additionally learning how to use Docker to create lightweight, easily
replicable, virtual machines.

Chapter 3, Scaling Node, explores both vertical and horizontal scaling techniques.
You will learn how to use the cluster module to maximize Node's effectiveness on
a single server and how to coordinate many distributed Node.js servers to handle
increasing network traffic, learning about Nginx load balancing, setting up proxies
using message queues, and coordinating interprocess communication in the process.

Chapter 4, Managing Memory and Space, demonstrates how good engineering practices
never go out of style. We start with a discussion of microservices, introducing
general techniques to design systems composed of small, focused, communicating
processes. Next comes a deep exploration of how to optimize JavaScript, particularly
for the V8 compiler. Beginning with several examples of memory-efficient ways
to store and retrieve event data in Redis, we look at caching strategies, session
management, and using CDNs to reduce server load.

Chapter 5, Monitoring Applications, explains strategies to effectively monitor your
application once it has been deployed. Examples of using various third-party
monitoring tools are included as well as examples outlining how you can build your
own custom system sampling and logging modules. Finally, we look at debugging
techniques, examining several tools and strategies to help you find and prevent
runtime bottlenecks.

Chapter 6, Building and Testing, introduces certain considerations when creating a
build pipeline for your application. Full examples of using Gulp, Browserify, and
npm to create build tools are provided as well as information on testing with Mocha,
mocking with Sinon, and using PhantomJS for headless browser testing.

Chapter 7, Deploying and Maintaining, walks you through the entire deployment
pipleline, from setting up virtualized development environments to building
continuous integration into your workflow. You will learn about using GitHub
webhooks and Vagrant and using Jenkins to automate your deployment process.
Additionally, the npm package manager will be fully dissected, and strategies for
dependency management will be discussed.

Preface

[vii]

What you need for this book
You will need to install Node v. 0.12.5 or higher, preferably on a Unix-based
operating system, such as Linux or Mac OS X. You will also need to install several
tools primarily to set up development and deployment examples:

•	 Use Node Version Manager (nvm) to install Node.js (and npm): https://
github.com/creationix/nvm

•	 Git: http://git-scm.com/book/en/Getting-Started-Installing-Git
•	 Redis: http://redis.io/topics/quickstart
•	 MongoDB: http://docs.mongodb.org/manual/installation/
•	 Nginx: http://wiki.nginx.org/Install
•	 Docker: https://docs.docker.com/installation/
•	 PhantomJS: http://phantomjs.org/download.html
•	 Jenkins: https://wiki.jenkins-ci.org/display/JENKINS/

Installing+Jenkins

•	 Vagrant: http://docs.vagrantup.com/v2/installation/
•	 In addition, these npm packages must be installed globally (npm install

<packagename> -g):

°° gulp
°° pm2
°° mocha

Further installation and configuration instructions for these and other packages will
be provided, when necessary, as you work through the book.

Who this book is for
This book is designed for Node.js developers who are ready to deploy large
Node.js applications in production environments. It is designed to teach intermediate
Node.js developers about the platform in more detail by situating examples in
realistic contexts, focusing on modular design, and using extensive testing, active
monitoring, and team-focused maintenance strategies. Those who are interested in
improving the quality and efficiency of the JavaScript/Node programs they write
and in delivering robust systems that withstand enterprise-level traffic, will enjoy
this book. DevOps engineers without experience with the Node.js platform will
also gain valuable information on how the techniques they already know are being
implemented by the Node.js community.

https://github.com/creationix/nvm
https://github.com/creationix/nvm
http://git-scm.com/book/en/Getting-Started-Installing-Git
http://redis.io/topics/quickstart
http://docs.mongodb.org/manual/installation/
http://wiki.nginx.org/Install
https://docs.docker.com/installation/
http://phantomjs.org/download.html
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Installing+Jenkins
http://docs.vagrantup.com/v2/installation/

Preface

[viii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Therefore, once we have the page loaded, we send keystrokes (sendKeys) into the
#source input box with the Italian word "Ciao"."

A block of code is set as follows:

variable = produceAValue()
print variable
// some value is output when #produceAValue is finished.

Any command-line input or output is written as follows:

> This happens first

> Then the contents are available, [file contents shown]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "You
should see You just deployed some Node! displayed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[ix]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[x]

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Appreciating Node
At the time of writing this book, Node is approaching its fifth year of existence, and
its usage has grown in each of those five years. The opportunity for Node to fail has
come, and passed. Node is a serious technology built by a highly skilled core team
and very active community focused on constantly improving its speed, security,
and usefulness.

Every day, developers face some of the problems that NodeJS aims to solve. Some
of them are as follows:

•	 Scaling networked applications beyond a single server
•	 Preventing I/O bottlenecks (database, file, and network access)
•	 Monitoring system usage and performance
•	 Testing the integrity of system components
•	 Managing concurrency safely and reliably
•	 Pushing code changes and bug fixes into live environments

In this book, we will look at techniques of deploying, scaling, monitoring, testing,
and maintaining your Node applications. The focus will be on how Node's event-
driven, nonblocking model can be applied in practice to these aspects of software
design and deployment.

On February 28, 2014, Eran Hammer delivered the keynote address to attendees
of NodeDay, a large developer conference organized and sponsored by PayPal.
He began his address by reciting some numbers relevant to his employer, Walmart:

•	 11,000 stores
•	 Half a trillion dollars of net sales per year
•	 2.2 million employees
•	 The largest private employer in the world

www.allitebooks.com

http://www.allitebooks.org

Appreciating Node

[2]

He continued:

"55 percent of our Black Friday traffic, which is our Superbowl of the year…we do
about 40 percent of annual revenues on Black Friday. 55 percent came on mobile…
that 55 percent of traffic went 100 percent through Node. […] We were able to
deliver…this massive traffic with the equivalent of two CPUs and 30 Gigs of RAM.
That's it. That's what Node needed to handle 100 percent of mobile Node traffic on
Black Friday. […] Walmart global e-commerce is a 10-billion-dollar business, and
by the end of this year, all 10 billion will go through Node."

 Eran Hammer, Senior Architect, Walmart Labs

Modern network software, for various reasons, is growing in complexity and, in
many ways, changing how we think about application development. Most new
platforms and languages are attempting to address these changes. Node is no
exception—and JavaScript is no exception.

Learning about Node means learning about event-driven programming,
composing software out of modules, creating and linking data streams, and
producing and consuming events and their related data. Node-based architectures
are often composed of many small processes and/or services communicating with
events—internally, by extending the EventEmitter interface and using callbacks and
externally, over one of several common transport layers (for example, HTTP, TCP) or
through a thin messaging layer covering one of these transport layers (for example,
0MQ, Redis PUBSUB, and Kafka). It is likely that these processes are composed of
several free, open source, and high-quality npm modules, each distributed with unit
tests and/or examples and/or documentation.

In this chapter, we will take a quick tour of Node, highlighting the problems it aims
to solve, the solutions implied by its design, and what this means to you. We will
also briefly discuss some of the core topics we will explore more comprehensively
in later chapters, such as how to structure efficient and stable Node servers, how to
make the best use of JavaScript for your application and your team, and how to think
about and use Node for best results.

Let's start with understanding the how and why of Node's design.

Chapter 1

[3]

Understanding Node's unique design
I/O operations (disk and network) are clearly more expensive. The following table
shows clock cycles consumed by typical system tasks (from Ryan Dahl's original
presentation of Node—https://www.youtube.com/watch?v=ztspvPYybIY):

L1-cache 3 cycles

L2-cache 14 cycles

RAM 250 cycles

Disk 41,000,000 cycles

Network 240,000,000 cycles

The reasons are clear enough: a disk is a physical device, a spinning metal
platter—storing and retrieving that data is much slower than moving data between
solid-state devices (such as microprocessors and memory chips) or indeed optimized
on-chip L1/L2 caches. Similarly, data does not move from point to point on a
network instantaneously. Light itself needs 0.1344 seconds to circle the globe! In a
network used by many billions of people regularly interacting across great distances
at speeds much slower than the speed of light, with many detours and few straight
lines, this sort of latency builds up.

When our software ran on personal computers on our desks, little or no
communication was happening over the network. Delays or hiccups in our
interactions with a word processor or spreadsheet had to do with disk access time.
Much work was done to improve disk access speeds. Data storage and retrieval
became faster, software became more responsive, and users now expect this
responsiveness in their tools.

With the advent of cloud computing and browser-based software, your data
has left the local disk and exists on a remote disk, and you access this data via a
network—the Internet. Data access times have slowed down again, dramatically.
Network I/O is slow. Nevertheless, more companies are migrating sections of
their applications into the cloud, with some software being entirely network-based.

https://www.youtube.com/watch?v=ztspvPYybIY

Appreciating Node

[4]

Node is designed to make I/O fast. It is designed for this new world of networked
software, where data is in many places and must be assembled quickly. Many of
the traditional frameworks to build web applications were designed at a time when
a single user working on a desktop computer used a browser to periodically make
HTTP requests to a single server running a relational database. Modern software
must anticipate tens of thousands of simultaneously connected clients concurrently
altering enormous, shared data pools via a variety of network protocols on any
number of unique devices. Node is designed specifically to help those building that
kind of network software.

What do concurrency, parallelism, asynchronous execution, callbacks, and events
mean to the Node developer?

Concurrency
Running code procedurally, or in order, is a reasonable idea. We tend to do that
when we execute tasks and, for a long time, programming languages were naturally
procedural. Clearly, at some point, the instructions you send to a processor must be
executed in a predictable order. If I want to multiply 8 by 6, divide that result by 144
divided by 12, and then add the total result to 10, the order of those operations must
proceed sequentially:

((8x6) / (144/12)) + 10

The order of operations must not be as follows:

(8x6) / ((144/12) + 10)

This is logical and easy to understand. Early computers typically had one processor,
and processing one instruction blocked the processing of subsequent instructions.
But things did not stay that way, and we have moved far beyond single-core
computers.

If you think about the previous example, it should be obvious that calculating
144/12 and 8x6 can be done independently—one need not wait for the other. A
problem can be divided into smaller problems and distributed across a pool of
available people or workers to work on in parallel, and the results can be combined
into a correctly ordered final calculation.

Multiple processes, each solving one part of a single mathematical problem
simultaneously, are an example of parallelism.

Chapter 1

[5]

Rob Pike, co-inventor of Google's Go programming language, defines concurrency in
this way:

"Concurrency is a way to structure a thing so that you can, maybe, use parallelism
to do a better job. But parallelism is not the goal of concurrency; concurrency's goal
is a good structure."

Concurrency is not parallelism. A system demonstrating concurrency allows
developers to compose applications as if multiple independent processes are
simultaneously executing many possibly related things. Successful high-concurrency
application development frameworks provide an easy-to-reason-about vocabulary to
describe and build such a system.

Node's design suggests that achieving its primary goal—to provide an easy way to
build scalable network programs—includes simplifying how the execution order of
coexisting processes is structured and composed. Node helps a developer reasoning
about a program, within which many things are happening at once (such as serving
many concurrent clients), to better organize his or her code.

Let's take a look at the differences between parallelism and concurrency, threads and
processes, and the special way that Node absorbs the best parts of each into its own
unique design.

Parallelism and threads
The following diagram describes how a traditional microprocessor might execute the
simple program discussed previously:

Appreciating Node

[6]

The program is broken up into individual instructions that are executed in order.
This works but does require that instructions be processed in a serial fashion, and,
while any one instruction is being processed, subsequent instructions must wait. This
is a blocking process—executing any one segment of this chain blocks the execution
of subsequent segments. There is a single thread of execution in play.

However, there is some good news. The processor has (literally) total control of the
board, and there is no danger of another processor nulling memory or overriding
any other state that this primary processor might manipulate. Speed is sacrificed for
stability and safety.

We do like speed; however, the model discussed earlier rapidly became obsolete as
chip designers and systems programmers worked to introduce parallel computing.
Rather than having one blocking thread, the goal was to have multiple cooperating
threads.

This improvement definitely increased the speed of calculation but introduced some
problems, as described in the following schematic:

Chapter 1

[7]

This diagram illustrates cooperating threads executing in parallel within a single
process, which reduces the time necessary to perform the given calculation. Distinct
threads are employed to break apart, solve, and compose a solution. As many
subtasks can be completed independently, the overall completion time can be
reduced dramatically.

Threads provide parallelism within a single process. A single thread represents a
single sequence of (serially executed) instructions. A process can contain any number
of threads.

Difficulties arise out of the complexity of thread synchronization. It is very difficult
to model highly concurrent scenarios using threads, especially models in which the
state is shared. It is difficult to anticipate all the ways in which an action taken in one
thread will affect all the others if it is never clear when an asynchronously executing
thread will complete:

•	 The shared memory and the locking behavior this requires lead to systems
that are very difficult to reason about as they grow in complexity.

•	 Communication between tasks requires the implementation of a wide range
of synchronization primitives, such as mutexes and semaphores, condition
variables, and so on. An already challenging environment requires highly
complex tools, expanding the level of expertise necessary to complete even
relatively simple systems.

•	 Race conditions and deadlocks are a common pitfall in these sorts of
systems. Contemporaneous read/write operations within a shared program
space lead to problems of sequencing, where two threads may be in an
unpredictable race for the right to influence a state, event, or other key system
characteristic.

•	 Because maintaining dependable boundaries between threads and their
states is so difficult, ensuring that a library (for Node, it would be a package
or module) is thread safe occupies a great deal of the developer's time.
Can I know that this library will not destroy some part of my application?
Guaranteeing thread safety requires great diligence on the part of a library's
developer, and these guarantees may be conditional: for example, a library
may be thread safe when reading—but not when writing.

We want the power of parallelization provided by threads but could do without
the mind-bending world of semaphores and mutexes. In the Unix world, there
is a concept that is sometimes referred to as the Rule of Simplicity: Developers
should design for simplicity by looking for ways to break up program systems into small,
straightforward cooperating pieces. This rule aims to discourage developers' affection for
writing 'intricate and beautiful complexities' that are, in reality, bug-prone programs.

Appreciating Node

[8]

Concurrency and processes
Parallelism within a single process is a complicated illusion that is achieved deep
within mind-bendingly complex chipsets and other hardware. The question is really
about appearances—about how the activity of the system appears to, and can be
programmed by, a developer. Threads offer hyper-efficient parallelism, but make
concurrency difficult to reason about.

Rather than have the developer struggle with this complexity, Node itself manages
I/O threads, simplifying this complexity by demanding only that control flow
be managed between events. There is a need to micromanage I/O threading; one
simply designs an application to establish data availability points (callbacks) and
the instructions to be executed once the said data is available. A single stream of
instructions that explicitly takes and relinquishes control in a clear, collision-free,
and predictable way aids development:

•	 Instead of concerning themselves with arbitrary locking and other collisions,
developers can focus on constructing execution chains, the ordering of which
is predictable.

•	 Parallelization is accomplished through the use of multiple processes, each
with an individual and distinct memory space, due to which communication
between processes remains uncomplicated—via the Rule of Simplicity,
we achieve not only simple and bug-free components, but also easier
interoperability.

•	 The state is not (arbitrarily) shared between individual Node processes.
A single process is automatically protected from surprise visits from
other processes bent on memory reallocation or resource monopolization.
Communication is through clear channels using basic protocols, all of which
make it very hard to write programs that make unpredictable changes across
processes.

•	 Thread safety is one less concern for developers to waste time worrying
about. Because single-threaded concurrency obviates the collisions present in
multithreaded concurrency, development can proceed more quickly and on
surer ground.

A single thread describing asynchronous control flow efficiently managed by an
event loop brings stability, maintainability, readability, and resilience to Node
programs. The big news is that Node continues to deliver the speed and power of
multithreading to its developers—the brilliance of Node's design makes such power
transparent, reflecting one part of Node's stated aim of bringing the most power to
the most people with the least difficulty.

Chapter 1

[9]

Events
Many JavaScript extensions in Node emit events. These are instances of events.
EventEmitter. Any object can extend EventEmitter, which gives the developer an
elegant toolkit to build tight, asynchronous interfaces to their object methods.

Work through this example demonstrating how to set an EventEmitter object
as the prototype of a function constructor. As each constructed instance now has
the EventEmitter object exposed to its prototype chain, this provides a natural
reference to the event's Application Programming Interface (API). The counter
instance methods can, therefore, emit events, and these can be listened for. Here, we
emit the latest count whenever the counter.increment method is called and bind a
callback to the "incremented" event, which simply prints the current counter value to
the command line:

var EventEmitter = require('events').EventEmitter;
var util = require('util');

var Counter = function(init) {
 this.increment = function() {
 init++;
 this.emit('incremented', init);
 }
}

util.inherits(Counter, EventEmitter);

var counter = new Counter(10);

var callback = function(count) {
 console.log(count);
}
counter.addListener('incremented', callback);

counter.increment(); // 11
counter.increment(); // 12

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Appreciating Node

[10]

To remove the event listeners bound to counter, use counter.
removeListener('incremented', callback).

EventEmitter, as an extensible object, adds to the expressiveness of JavaScript. For
example, it allows I/O data streams to be handled in an event-oriented manner in
keeping with Node's principle of asynchronous, nonblocking programming:

var stream = require('stream');
var Readable = stream.Readable;
var util = require('util');

var Reader = function() {
 Readable.call(this);
 this.counter = 0;
}

util.inherits(Reader, Readable);

Reader.prototype._read = function() {
 if(++this.counter > 10) {
 return this.push(null);
 }
 this.push(this.counter.toString());
};

// When a #data event occurs, display the chunk.
//
var reader = new Reader();
reader.setEncoding('utf8');
reader.on('data', function(chunk) {
 console.log(chunk);
});
reader.on('end', function() {
 console.log('--finished--');
});

In this program, we have a Readable stream pushing out a set of numbers—with
listeners on that stream's data event catching numbers as they are emitted and
logging them—and finishing with a message when the stream has ended. It is plain
that the listener is called once per number, which means that running this set did
not block the event loop. Because Node's event loop need only commit resources to
handling callbacks, many other instructions can be processed in the downtime of
each event.

Chapter 1

[11]

The event loop
The code seen in non-networked software is often synchronous or blocking. I/O
operations in the following pseudo-code are also blocking:

variable = produceAValue()
print variable
// some value is output when #produceAValue is finished.

The following iterator will read one file at a time, dump its contents, and then read
the next until it is done:

fileNames = ['a','b','c']
while(filename = fileNames.shift()) {
 fileContents = File.read(filename)
 print fileContents
}
//	 > a
//	 > b
//	 > c

This is a fine model for many cases. However, what if these files are very large? If
each takes 1 second to fetch, all will take 3 seconds to fetch. The retrieval on one file
is always waiting on another retrieval to finish, which is inefficient and slow. Using
Node, we can initiate file reads on all files simultaneously:

var fs = require('fs');
var fileNames = ['a','b','c'];
fileNames.forEach(function(filename) {
 fs.readFile(filename, {encoding:'utf8'}, function(err, content)
 {
 console.log(content);
 });
});
//	 > b
//	 > a
//	 > c

The Node version will read all three files at once, each call to fs.readFile returning
its result at some unknowable point in the future. This is why we can't always expect
the files to be returned in the order they were arrayed. We can expect that all three
will be returned in roughly the time it took for one to be retrieved—something less
than 3 seconds. We have traded a predictable execution order for speed, and, as with
threads, achieving synchronization in concurrent environments requires extra work.
How do we manage and describe unpredictable data events so that our code is both
easy to understand and efficient?

www.allitebooks.com

http://www.allitebooks.org

Appreciating Node

[12]

The key design choice made by Node's designers was the implementation of an
event loop as a concurrency manager. The following description of event-driven
programming (taken from http://www.princeton.edu/~achaney/tmve/
wiki100k/docs/Event-driven_programming.html) clearly not only describes the
event-driven paradigm, but also introduces us to how events are handled in Node
and how JavaScript is an ideal language for such a paradigm:

"In computer programming, event-driven programming or event-based
programming is a programming paradigm in which the flow of the program is
determined by events—that is, sensor outputs or user actions (mouse clicks, key
presses) or messages from other programs or threads.

Event-driven programming can also be defined as an application architecture
technique in which the application has a main loop that is clearly divided down to
two sections: the first is event selection (or event detection), and the second is event
handling […]

Event-driven programs can be written in any language although the task is easier
in languages that provide high-level abstractions, such as closures."

As we've seen in the preceding quote, single-threaded execution environments
block and can, therefore, run slowly. V8 provides a single thread of execution for
JavaScript programs.

How can this single thread be made more efficient?

Node makes a single thread more efficient by delegating many blocking operations
to OS subsystems to process, bothering the main V8 thread only when there is
data available for use. The main thread (your executing Node program) expresses
interest in some data (such as via fs.readFile) by passing a callback and is notified
when that data is available. Until that data arrives, no further burden is placed on
V8's main JavaScript thread. How? Node delegates I/O work to libuv, as quoted at
http://nikhilm.github.io/uvbook/basics.html#event-loops:

"In event-driven programming, an application expresses interest in certain events
and responds to them when they occur. The responsibility of gathering events from
the operating system or monitoring other sources of events is handled by libuv, and
the user can register callbacks to be invoked when an event occurs."

The user in the preceding quote is the Node process executing a JavaScript program.
Callbacks are JavaScript functions, and managing callback invocation for the user
is accomplished by Node's event loop. Node manages a queue of I/O requests
populated by libuv, which is responsible for polling the OS for I/O data events
and handing off the results to JavaScript callbacks.

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Event-driven_programming.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Event-driven_programming.html
http://nikhilm.github.io/uvbook/basics.html#event-loops

Chapter 1

[13]

Consider the following code:

var fs = require('fs');
fs.readFile('foo.js', {encoding:'utf8'}, function(err,
 fileContents) {
 console.log('Then the contents are available', fileContents);
});
console.log('This happens first');

This program will result in the following output:

> This happens first

> Then the contents are available, [file contents shown]

Here's what Node does when executing this program:

•	 Node loads the fs module. This provides access to fs.binding, which is
a static type map defined in src/node.cc that provides glue between C++ and JS
code. (https://groups.google.com/forum/#!msg/nodejs/R5fDzBr0eEk/
lrCKaJX_6vIJ).

•	 The fs.readFile method is passed instructions and a JavaScript callback.
Through fs.binding, libuv is notified of the file read request and is passed a
specially prepared version of the callback sent by the original program.

•	 libuv invokes the OS-level functions necessary to read a file within its own
thread pool.

•	 The JavaScript program continues, printing This happens first. Because
there is a callback outstanding, the event loop continues to spin, waiting for
that callback to resolve.

•	 When the file descriptor has been fully read by the OS, libuv (via internal
mechanisms) is informed and the callback passed to libuv is invoked, which
essentially prepares the original JavaScript callback for re-entrance into the
main (V8) thread.

•	 The original JavaScript callback is pushed onto the event loop queue and is
invoked on the next tick of the loop.

•	 The file contents are printed to the console.
•	 As there are no further callbacks in flight, the process exits.

https://groups.google.com/forum/#!msg/nodejs/R5fDzBr0eEk/lrCKaJX_6vIJ
https://groups.google.com/forum/#!msg/nodejs/R5fDzBr0eEk/lrCKaJX_6vIJ

Appreciating Node

[14]

Here, we see the key ideas that Node implements to achieve fast, manageable,
and scalable I/O. If, for example, there were 10 read calls made for 'foo.js' in
the preceding program, the execution time would, nevertheless, remain roughly
the same. Each call would have been made in parallel in its own thread within the
libuv thread pool. Even though we wrote our code "in JavaScript", we are actually
deploying a very efficient multithreaded execution engine while avoiding the
difficulties of thread management.

Let's close with more details on how exactly libuv results are returned into the main
thread's event loop.

When data becomes available on a socket or other stream interface, we cannot simply
execute our callback immediately. JavaScript is single threaded, so results must be
synchronized. We can't suddenly change the state in the middle of an event loop
tick—this would create some of the classic multithreaded application problems of
race conditions, memory access conflicts, and so on.

Upon entering an event loop, Node (in effect) makes a copy of the current instruction
queue (also known as stack), empties the original queue, and executes its copy. The
processing of this instruction queue is referred to as a tick. If libuv, asynchronously,
receives results while the chain of instructions copied at the start of this tick are
being processed on the single main thread (V8), these results (wrapped as callbacks)
are queued. Once the current queue is emptied and its last instruction has completed,
the queue is again checked for instructions to execute on the next tick. This pattern of
checking and executing the queue will repeat (loop) until the queue is emptied, and
no further data events are expected, at which point the Node process exits.

This discussion at https://github.com/joyent/node/
issues/5798 among some core Node developers about the
process.nextTick and setImmediate implementations offers
very precise information on how the event loop operates.

The following are the sorts of I/O events fed into the queue:

•	 Execution blocks: These are blocks of JavaScript code comprising the
Node program; they could be expressions, loops, functions, and so on. This
includes EventEmitter events emitted within the current execution context.

•	 Timers: These are callbacks deferred to a time in the future specified in
milliseconds, such as setTimeout and setInterval.

•	 I/O: These are prepared callbacks returned to the main thread after being
delegated to Node's managed thread pool, such as filesystem calls and
network listeners.

https://github.com/joyent/node/issues/5798
https://github.com/joyent/node/issues/5798

Chapter 1

[15]

•	 Deferred execution blocks: These are mainly the functions slotted on the
stack according to the rules of setImmediate and process.nextTick.

There are two important things to remember:

•	 You don't start and/or stop the event loop. The event loop starts as soon as
a process starts and ends when no further callbacks remain to be performed.
The event loop may, therefore, run forever.

•	 The event loop executes on a single thread but delegates I/O operations
to libuv, which manages a thread pool that parallelizes these operations,
notifying the event loop when results are available. An easy-to-reason-about
single-threaded programming model is reinforced with the efficiency of
multithreading.

To learn more about how Node is bound to libuv and other core libraries, parse
through the fs module code at https://github.com/joyent/node/blob/master/
lib/fs.js. Compare the fs.read and the fs.readSync methods to observe the
difference between how synchronous and asynchronous actions are implemented—
note the wrapper callback that is passed to the native binding.read method in
fs.read.

To take an even deeper dive into the very heart of Node's design, including the
queue implementation, read through the Node source at https://github.com/
joyent/node/tree/master/src. Follow MakeCallback within fs_event_wrap.cc
and node.cc. Investigate the req_wrap class, a wrapper for the V8 engine, deployed
in node_file.cc and elsewhere and defined in req_wrap.h.

The implications of Node's design on
system architects
Node is a new technology. At the time of writing this, it has yet to reach its 1.0
version. Security flaws have been found and fixed. Memory leaks have been found
and fixed. Eran Hammer, mentioned at the beginning of this chapter, and his entire
team at Walmart Labs actively contribute to the Node codebase—in particular when
they find flaws! This is true of many other large companies committed to Node, such
as PayPal.

If you have chosen Node, and your application has grown to such a size that you
feel you need to read a book on how to deploy Node, you have the opportunity to
not only benefit from the community, but have a part, perhaps, in literally designing
aspects of the environment based on your particular needs. Node is open source, and
you can submit pull requests.

https://github.com/joyent/node/blob/master/lib/fs.js
https://github.com/joyent/node/blob/master/lib/fs.js
https://github.com/joyent/node/tree/master/src
https://github.com/joyent/node/tree/master/src

Appreciating Node

[16]

In addition to events, there are two key design aspects that are important to
understand if you are going to do advanced Node work: build your systems out of
small parts and use evented streams when piping data between them.

Building large systems out of small systems
In his book, The Art of Unix Programming, Eric Raymond proposed the Rule of
Modularity:

"Developers should build a program out of simple parts connected by well-defined
interfaces, so problems are local, and parts of the program can be replaced in
future versions to support new features. This rule aims to save time on debugging
complex code that is complex, long, and unreadable."

This idea of building complex systems out of "small pieces, loosely joined" is seen
in management theory, theories of government, manufacturing, and many other
contexts. In terms of software development, it advises developers to contribute only
the simplest, most useful component necessary within a larger system. Large systems
are hard to reason about, especially if the boundaries of their components are fuzzy.

One of the primary difficulties when constructing scalable JavaScript programs is
the lack of a standard interface to assemble a coherent program out of many smaller
ones. For example, a typical web application might load dependencies using a
sequence of <script> tags in the <head> section of a HyperText Markup Language
(HTML) document:

<head>
 <script src="fileA.js"></script>
 <script src="fileB.js"></script>
</head>

There are many problems with this sort of system:

•	 All potential dependencies must be declared prior to their being needed—
dynamic inclusion requires complicated hacks.

•	 The introduced scripts are not forcibly encapsulated—nothing stops both
files from writing to the same global object. Namespaces can easily collide,
which makes arbitrary injection dangerous.

•	 fileA cannot address fileB as a collection—an addressable context, such as
fileB.method, isn't available.

•	 The <script> method itself isn't systematic, precluding the design of useful
module services, such as dependency awareness and version control.

Chapter 1

[17]

•	 Scripts cannot be easily removed or overridden.
•	 Because of these dangers and difficulties, sharing is not effortless, thus

diminishing opportunities for collaboration in an open ecosystem.

Ambivalently inserting unpredictable code fragments into an application frustrates
attempts to predictably shape functionality. What is needed is a standard way to
load and share discreet program modules.

Accordingly, Node introduced the concept of the package, following the CommonJS
specification. A package is a collection of program files bundled with a manifest file
describing the collection. Dependencies, authorship, purpose, structure, and other
important metadata is exposed in a standard way. This encourages the construction
of large systems from many small, interdependent systems. Perhaps, even more
importantly, it encourages sharing:

"What I'm describing here is not a technical problem. It's a matter of people getting
together and making a decision to step forward and start building up something
bigger and cooler together."

 – Kevin Dangoor, creator of CommonJS

In many ways, the success of Node is due to the growth in the number and quality
of packages available to the developer community that are distributed via Node's
package management system, npm. This system has done much to help make
JavaScript a viable, professional option for systems programming.

A good introduction to npm for anyone new to Node can be
found at: https://www.npmjs.org/doc/developers.html.

Streams
In his book, The C++ Programming Language, Third Edition, Bjarne Stoustrup states:

"Designing and implementing a general input/output facility for a programming
language is notoriously difficult. […] An I/O facility should be easy, convenient,
and safe to use; efficient and flexible; and, above all, complete."

It shouldn't surprise anyone that a design team focused on providing efficient
and easy I/O has delivered such a facility through Node. Through a symmetrical
and simple interface, which handles data buffers and stream events so that the
implementer does not have to, Node's Stream module is the preferred way to
manage asynchronous data streams for both internal modules and, hopefully,
for the modules that developers will create.

https://www.npmjs.org/doc/developers.html

Appreciating Node

[18]

An excellent tutorial on the Stream module can be found at
https://github.com/substack/stream-handbook. Also, the
Node documentation is comprehensive at http://nodejs.org/
api/stream.html.

A stream in Node is simply a sequence of bytes or, if you like, a sequence of
characters. At any time, a stream contains a buffer of bytes, and this buffer has a
length of zero or more.

Because each character in a stream is well defined, and because every type of digital
data can be expressed in bytes, any part of a stream can be redirected, or piped, to any
other stream, different chunks of the stream can be sent to different handlers. In this
way, stream input and output interfaces are both flexible and predictable and can be
easily coupled.

In addition to events, Node is distinctive for its comprehensive use of streams.
Continuing the idea of composing applications out of many small processes
emitting events or reacting to events, several Node I/O modules and features are
implemented as streams. Network sockets, file readers and writers, stdin and stdout,
Zlib, and so on, are all data producers and/or consumers that are easily connected
through the abstract Stream interface. Those familiar with Unix pipes will see some
similarities.

Five distinct base classes are exposed via the abstract Stream interface: Readable,
Writable, Duplex, Transform, and PassThrough. Each base class inherits from
EventEmitter, which we know to be an interface to which event listeners and
emitters can be bound. Streams in Node are evented streams, and sending data
between processes is commonly done using streams. Because streams can be
easily chained and otherwise combined, they are fundamental tools for the Node
developer.

It is recommended that you develop a clear understanding of what streams are and
how they are implemented in Node before going further as we will use streams
extensively throughout this book.

https://github.com/substack/stream-handbook
http://nodejs.org/api/stream.html
http://nodejs.org/api/stream.html

Chapter 1

[19]

Using full-stack JavaScript to maximum
effect
JavaScript has become a full-stack language. A native JavaScript runtime exists in all
browsers. V8, the JavaScript interpreter used by Node, is the same engine powering
Google's Chrome browser. And the language has gone even further than covering
both the client and server layers of the software stack. JavaScript is used to query the
CouchDB database, do map/reduce with MongoDB, and find data in ElasticSearch
collections. The wildly popular JavaScript Object Notation (JSON) data format
simply represents data as a JavaScript object.

When different languages are used within the same application, the cost of context
switching goes up. If a system is composed of parts described in different languages,
the system architecture becomes more difficult to describe, understand, and extend.
If different parts of a system speak differently, every cross-dialect conversation will
require expensive translation.

Inefficiencies in comprehension lead to larger costs and more brittle systems. The
members of the engineering team for this system must each be fluent in these many
languages or be grouped by different skill sets; engineers are expensive to find and/
or train. When the inner workings of significant parts of a system become opaque to
all but a few engineers, it is likely that cross-team collaboration will decrease, making
product upgrades and additions more difficult and likely leading to more errors.

What new opportunities open up when these difficulties are reduced or eliminated?

Hot code
Because your clients and servers will speak the same language, each can pass code to
be natively executed on the other. If you are building a web application, this opens
up very interesting (and unique) opportunities.

For example, consider an application that allows one client to make changes to
another's environment. This tool allows a software developer to make changes to
the JavaScript powering a website and allows their clients to see those changes in
real time in their browsers. What this application must do is transform live code in
many browsers so that it reflects changes. One way to do this would be to capture
a change set into a transform function, pass that function across to all connected
clients, and have that function executed in their local environment, updating it to
reflect the canonical view. One application evolves, it emits a genetic update in the
code of JavaScript, and the rest of its species similarly evolves. We will use one such
technology in Chapter 7, Deploying and Maintaining.

Appreciating Node

[20]

Since Node shares the same JavaScript code base, a Node server, on its own
initiative, can take this action. The network itself can broadcast code for its clients to
execute. Similarly, clients can send code to the server for execution. It is easy to see
how this allows hot code pushes, where a Node process sends a unique packet of
raw JavaScript to specific clients for execution.

When Remote Procedure Calls (RPC) no longer require a broker layer to translate
between communicating contexts, code can exist anywhere in the network for as
long or as brief a period as necessary and can execute in multiple contexts, which
are chosen for reasons of load balancing, data awareness, computational power,
geographic precision, and so on.

Browserify
JavaScript is the language common to Node and the browser. However, Node
significantly extends the JavaScript language, adding many commands and other
constructs that are not available to the client-side developer. For example, there is no
equivalent of the core Node Stream module in JavaScript.

Additionally, the npm repository is rapidly growing, and, at the time of writing,
contains more than 80,000 Node packages. Many of these packages are equally
useful on the client as well as within Node. The spread of JavaScript to the server
has, in effect, created two cooperating threads producing enterprise-grade JavaScript
libraries and modules.

Browserify was developed to make it easy to share npm modules and core Node
modules seamlessly with the client. Once a package has been browserified, it is easily
imported into a browser environment using the standard <script> tag. Installing
Browserify is simple:

npm install -g browserify

Let's build an example. Create a file, math.js, written as you would write an npm
module:

module.exports = function() {
 this.add = function(a, b) {
 return a + b;
 }
 this.subtract = function(a, b) {
 return a - b;
 }
};

Chapter 1

[21]

Next, create a program file, add.js, that uses this module:

var Math = require('./math.js');
var math = new Math;

console.log(math.add(1,3)); // 4

Executing this program using Node on the command line (> node add.js) will
result in 4 being printed to your terminal. What if we wanted to use our math
module in the browser? Client-side JavaScript doesn't have a require statement, so
we browserify it:

browserify math.js -o bundle.js

Browserify walks through your code, finding require statements and automatically
bundling those dependencies (and the dependencies of those dependencies) into one
file that you load into your client application:

<script src="bundle.js"></script>

As an added bonus, this bundle automatically introduces some useful Node globals
to your browser environment: __filename, __dirname, process, Buffer, and
global. This means you have, for example, process.nextTick available in the
browser.

The creator of Browserify, James Halliday, is a prolific contributor to the
Node community. Visit him at https://github.com/substack. Also,
there exists an online service for testing out browserified npm modules at
http://requirebin.com. The full documentation can be found at https://
github.com/substack/node-browserify#usage.
Another exciting project that, like Browserify, leverages Node to enhance the
JavaScript available to browser-based JavaScript is Component. The authors
describe it this way: Component is currently a stopgap for ES6 modules and Web
Components. When all modern browsers start supporting these features, Component
will begin focusing more on semantic versioning and server-side bundling as
browsers would be able to handle the rest. The project is still in flux but worth a
look. Here's the link: https://github.com/componentjs/guide.

www.allitebooks.com

https://github.com/substack
https://github.com/substack/node-browserify#usage
https://github.com/substack/node-browserify#usage
https://github.com/componentjs/guide
http://www.allitebooks.org

Appreciating Node

[22]

Summary
In this chapter, we went on a whirlwind tour of Node. You learned something about
why it is designed the way it is and why this event-driven environment is a good
solution to modern problems in networked software. Having explained the event
loop and the related ideas around concurrency and parallelism, we talked a bit about
the Node philosophy of composing software from small pieces loosely joined. You
learned about the special advantages that full-stack JavaScript provides and explored
new possibilities of applications made possible because of them.

You now have a good understanding of the kind of applications we will be
deploying, and this understanding will help you see the unique concerns and
considerations faced when building and maintaining Node applications. In the next
chapter, we'll dive right in with building servers with Node, options for hosting
these applications, and ideas around building, packaging, and distributing them.

[23]

Installing and Virtualizing
Node Servers

Recall the story from Chapter 1, Appreciating Node, about how Walmart ran all of its
Black Friday mobile traffic through Node, which was deployed across the equivalent of
2 CPUs and 30 gigs of RAM. This demonstrates that Node processes I/O so efficiently
that even Walmart-level traffic on Black Friday can be handled with only a few
servers. This means that, for many people, running your Node application on a
single server is all you'll ever need to do.

Nevertheless, it is often good to have several servers at your disposal, such as
redundant servers to ensure failover recovery, a distinct database server, specialized
media servers, one hosting a message queue, and so on. In keeping with the idea of
separating concerns into many independent processes, Node-based applications are
often composed of many lightweight servers spread across a data center, possibly
even spread across several data centers.

In this chapter, we will look at the basics of setting up single Node servers concretely
and virtually. The goal is to explore your options for mass producing servers in
response to scaling needs and to see how you can connect these together. You will
learn how to set up an HTTP/S server yourself as well as how to do tunneling and
proxying with Node. We'll then look at a few popular cloud-hosting solutions and
how to set up Node servers on those. We'll close with a discussion on Docker, an
exciting new technology to create lightweight virtual services.

Installing and Virtualizing Node Servers

[24]

Getting a basic Node server up and
running
HTTP is a data transfer protocol built upon a request/response model. Normally, a
client makes a request to a server, receives a response, makes another request, and so
on. HTTP is stateless, which simply means that each request or response maintains
no information on previous requests or responses. Facilitating this sort of rapid-
pattern network communication is the sort of I/O that Node is designed to excel at.
While Node represents a much more interesting technology stack overall, it does help
engineers in creating networked protocol servers. In this section, we will move through
a general overview of how to set up a basic HTTP server and then into a few more
specialized uses of the protocol.

Hello world
An HTTP server responds to connection attempts and manages data as it arrives
and as it is sent along. A Node server is typically created using the createServer
method of the HTTP module:

var http = require('http');

var server = http.createServer(function(request, response) {
 console.log('Got Request Headers: ');
 console.log(request.headers);
 response.writeHead(200, {
 'Content-Type': 'text/plain'
 });
 response.write('PONG');
 response.end();
}).listen(8080);

The object returned by http.createServer is an instance of http.Server, which
extends EventEmitter and broadcasts network events as they occur, such as a client
connection or request. Most server implementations using Node use this method of
instantiation. However, listening for event broadcasts by an http.Server instance
can be a more useful, even natural, way to organize server/client interactions within
a Node program.

Chapter 2

[25]

Here, we create a basic server that simply reports when a connection is made and
when it is terminated:

var http = require('http');
var server = new http.Server();

server.on("connection", function(socket) {
 console.log("Client arrived: " + new Date());
 socket.on("end", function() {
 console.log("Client left: " + new Date());
 });
})

server.listen(8080);

When building multiuser systems, especially authenticated multiuser systems, this
point in the server-client transaction is an excellent place for client validation and
a tracking code. Cookies can be set and read, along with other session variables. A
client arrival event can be broadcast to other concurrent clients interacting within
real-time applications.

By adding a listener for requests, we arrive at the more common request/response
pattern, handled as a Readable stream. When a client posts data, we can catch that
data, as shown here:

server.on("request", function(request, response) {
 request.setEncoding("utf8");
 request.on("readable", function() {
 console.log(request.read())
 });
});

Send this server some data using curl:

curl http://localhost:8080 -d "Here is some data"

Using connection events, we can nicely separate our connection-handling code,
grouping it into clearly defined functional domains, which are correctly described
as executing in response to particular events.

Installing and Virtualizing Node Servers

[26]

For example, we can set timers on server connections. Here, we can terminate client
connections that fail to send new data within a roughly 2-second window:

server.setTimeout(2000, function(socket) {
 socket.write("Too Slow!", "utf8");
 socket.end();
});

Making HTTP requests
HTTP servers are often called upon to perform HTTP services for clients making
requests. Most commonly, this sort of proxying was done on behalf of web
applications running in browsers with restrictions on cross-domain requests. Node
provides an easy interface to make external HTTP calls.

For example, the following code will fetch the front page of google.com:

var http = require('http');

http.request({
 host: 'www.google.com',
 method: 'GET',
 path: "/"
}, function(response) {
 response.setEncoding('utf8');
 response.on('readable', function() {
 console.log(response.read())
 });
}).end();

Here, we simply dump a Readable stream to the terminal, but this stream could
easily be piped to a Writable stream, perhaps bound to a file handle. Note that you
must always signify that you're done with a request using the request.end method.

A popular Node module to manage HTTP requests is Mikeal Rogers'
request:
https://github.com/mikeal/request

https://github.com/mikeal/request

Chapter 2

[27]

Because it is common to use HTTP.request in order to GET external pages, Node
offers a shortcut:

http.get("http://www.google.com/", function(response) {
 console.log("Status: " + response.statusCode);
}).on('error', function(err) {
 console.log("Error: " + err.message);
});

Let's now look at a few more advanced implementations of HTTP servers, where we
perform general network services for clients.

Proxying and tunneling
Sometimes, it is useful to provide a means for one server to function as a proxy,
or broker, for other servers. This would allow one server to distribute requests to
other servers, for example. Another use would be to provide access to a secured
server to users who are unable to connect to that server directly—this is often seen
in countries that place restrictions on Internet access. It is also common to have one
server answering for more than one URL using a proxy; that one server can forward
requests to the right recipient.

Because Node has consistent network interfaces implemented as evented streams, we
can build a simple HTTP proxy in just a few lines of code. For example, the following
program will set up an HTTP server on port 8080, which will respond to any request
by fetching the front page of Google and piping that back to the client:

var http = require('http');
var server = new http.Server();

server.on("request", function(request, socket) {
 http.request({
 host: 'www.google.com',
 method: 'GET',
 path: "/",
 port: 80
 }, function(response) {
 response.pipe(socket);
 }).end();
});

server.listen(8080);

Installing and Virtualizing Node Servers

[28]

Once this server receives the client socket, it is free to push content from any
readable stream back to the client. Here, the result of the GET of www.google.com is
so streamed. One can easily see how an external content server managing a caching
layer for your application might become a proxy endpoint.

Using similar ideas, we can create a tunneling service using Node's native
CONNECT support:

var http = require('http');
var net = require('net');
var url = require('url');
var proxy = new http.Server();

proxy.on('connect', function(request, clientSocket, head) {
 var reqData = url.parse('http://' + request.url);
 var remoteSocket = net.connect(reqData.port, reqData.hostname,
 function() {
 clientSocket.write('HTTP/1.1 200 \r\n\r\n');
 remoteSocket.write(head);

 // The bi-directional tunnel
 remoteSocket.pipe(clientSocket);
 clientSocket.pipe(remoteSocket);
 });
}).listen(8080, function() {

We've set up a proxy server that responds to clients requesting an HTTP CONNECT
method [on("connect")], which contains the request object, the network socket-
binding client and server, and the 'head' (the first packet) of the tunneling stream.
When a CONNECT request is received from a client, we parse out request.url,
fetch the requested host information, and open the requested network socket.
By piping remote data to the client and client data to the remote connection, a
bidirectional data tunnel is established. Now we need only make the CONNECT
request to our proxy, as follows:

 var request = http.request({
 port: 8080,
 hostname: 'localhost',
 method: 'CONNECT',
 path: 'www.google.com:80'
 });
 request.end();

www.google.com

Chapter 2

[29]

Once a status 200 confirmation of our CONNECT request is received, we can push
request packets down this tunnel, catching responses and dumping those to stdout:

 request.on('connect', function(res, socket, head) {
 socket.setEncoding("utf8");
 socket.write('GET / HTTP/1.1\r\nHost:
 www.google.com:80\r\nConnection: close\r\n\r\n');
 socket.on('readable', function() {
 console.log(socket.read());
 });
 socket.on('end', function() {
 proxy.close();
 });
 });
});

HTTPS, TLS (SSL), and securing your server
Web applications have grown in size, importance, and complexity. The security
of web applications has, therefore, become an important topic. For one reason or
another, early web applications were allowed to venture into the experimental
world of client-side business logic, unsecured password transmission, and open web
services while shielded by only a diaphanous curtain. This is becoming harder to
find among users interested in the security of their information.

As Node is regularly deployed as a web server, it is imperative that the community
begins to accept responsibility for securing these servers. HTTPS is a secure
transmission protocol—essentially, encrypted HTTP formed by layering the HTTP
protocol on top of the SSL/TLS protocol. Let's learn how to secure our Node
deployments.

Creating a self-signed certificate for
development
In order to support SSL connections, a server will need a properly signed certificate.
While developing, it is much easier to simply create a self-signed certificate, allowing
us to use Node's HTTPS module.

Installing and Virtualizing Node Servers

[30]

These are the steps needed to create a certificate for development. Remember
that this process does not create a real certificate, and the generated certificate is
not secure—it simply allows us to develop within an HTTPS environment from a
terminal:

openssl genrsa -out server-key.pem 2048

openssl req -new -key server-key.pem -out server-csr.pem

openssl x509 -req -in server-csr.pem -signkey server-key.pem -out server-
cert.pem

These keys can now be used to develop HTTPS servers. The contents of these files
need simply be passed along as options to a Node server running on the (default)
SSL port 443:

var https = require('https');
var fs = require('fs');

https.createServer({
 key: fs.readFileSync('server-key.pem'),
 cert: fs.readFileSync('server-cert.pem')
}, function(req,res) {
 ...
}).listen(443)

Free low-assurance SSL certificates are available from http://www.
startssl.com/ for cases where self-signed certificates are not ideal
during development.

Installing a real SSL certificate
In order to move a secure application out of a development environment and into an
Internet-exposed environment, a real certificate will need to be purchased. The prices
of these certificates have been dropping year by year, and it should be easy to find
providers of reasonably priced certificates with a high enough level of security. Some
providers even offer free personal-use certificates.

http://www.startssl.com/
http://www.startssl.com/

Chapter 2

[31]

Setting up a professional certificate simply requires changing the HTTPS options
we introduced previously. Different providers will have different processes and
filenames. Typically, you will need to download or, otherwise, receive a private
#key file from your provider, your signed domain certificate #crt file, and a general
bundle #ca describing certificate chains:

var options = {
 key : fs.readFileSync('mysite.key'),
 cert : fs.readFileSync('mysite.com.crt'),
 ca : [fs.readFileSync('gd_bundle.crt')]
};

It is important to note that the #ca parameter must be sent as an array even if the
bundle of certificates has been concatenated into one file.

Here are the key takeaways of this:

•	 HTTP sockets are abstracted into evented streams. This is true for all network
interfaces provided by Node. These streams can easily be connected to one
another.

•	 Because stream activity is evented, those events can be recorded. Very
precise logging information on the behavior of a system can be recorded
either in event handlers or by piping streams through a PassThrough
Stream parameter that might listen for and record events.

•	 Node excels as an I/O service. Node servers can act as dispatchers solely
interested in brokering communication between a client and any number of
remote services or even specialized processes running on a local OS.

Now that you know how to set up an HTTP server and work with the protocol
within Node, go ahead and experiment. Create a small application on your local
machine that allows users to read a Twitter feed or connect to a public data API.
Get used to authenticating remote services over the wire and interacting with them
either through their API or by otherwise acting as a proxy for their data. Get used to
composing network applications by integrating remote network services using Node
as a broker.

www.allitebooks.com

http://www.allitebooks.org

Installing and Virtualizing Node Servers

[32]

Running your own servers in production can be expensive and time consuming,
especially if you aren't familiar with systems administration. For this reason, a
large number of cloud-hosting companies have sprung up and many are designed
specifically for the Node developer.

Let's take a look at a few of them. By way of comparison, the same Node application
will be deployed on each—an editable JSON document stored in MongoDB bound
to a simple browser-based User Interface (UI). You are encouraged to try these
services out in order, which is not necessary though.

Installing applications on Heroku
Heroku is a mature PaaS cloud-hosting solution that supports the development of
Node applications. To get started, visit http://www.heroku.com and submit an
e-mail address. Heroku is free to start with. After you've confirmed your account,
you can start deploying apps right away.

Scaling Heroku applications involves increasing the number of dynos that you are
paying for. Each dyno is an isolated container running your application and you are
able to increase or decrease the number of dynos your application uses with ease. In
this way, there aren't any hosting packages to buy—you simply scale as needed by
asking for more, or fewer, dynos.

Heroku allows you to deploy applications on many platforms and languages—it is
not Node-centric. This is something to keep in mind should you anticipate the need
to add services to your application not written in Node.

To control Heroku remote instances, you will use a local utility belt application. Once
you've joined Heroku and confirmed your signup, log in and go to the Apps section
of your dashboard. There should be instructions there on installing Heroku Toolbelt
(https://toolbelt.heroku.com/).

The heroku command-line client will be installed in /usr/local/
heroku and /usr/local/heroku/bin will be added to your path.

Once you have Toolbelt installed, open a terminal and log in to Heroku with heroku
login. Since this is your first time, you will most likely be asked to generate a public
key. Once this key is generated and uploaded, you are secure, and, going forward,
you can administer your Heroku deployments via Toolbelt and the command line.

http://www.heroku.com
https://toolbelt.heroku.com/

Chapter 2

[33]

Heroku recognizes your application as a Node application if it finds a package.json
file in the root directory of your application folder. Our sample app already contains
one, so there is no need to create another. However, as Heroku is not an exclusive
Node host, it does not automatically find the start script for our -- server.js --
application at the start attribute of that package file:

"scripts": {
 "start": "node server.js"
}

Instead, Heroku requires what is called Procfile. Create a Procfile file in the root
directory of our sample application and insert the following text into it:

web: node server.js

It's slightly different, but we can see that the effect is ultimately the same. Procfile
declares that we want a "web" process—the process that will be spun up after the
command node server.js is executed will expect to have HTTP traffic routed to it.

When you installed Heroku Toolbelt, another application was also installed:
Foreman. Foreman helps you manage Procfile-based applications. Its
primary importance for us is that it allows you to start Heroku applications
locally. While you can simply update the scripts attribute of your Node
package and run your application directly through Node, it does save a
step. Try foreman start and visit localhost:8080.

In the following sections, we will look at how a repository is installed and managed
on Heroku, and how to add to our applications on MongoDB, and we'll deploy a
JSON editing application.

Add-ons
On Heroku, databases are understood as one of many add-ons. From logging tools,
to caching layers, to databases, Heroku offers dozens of add-ons. Since we need a
MongoDB instance to run our application, let's install one.

Note that, while a developer (sandbox) MongoDB instance from MongoLab is free,
Heroku requires you to verify your account with a credit card. If you don't have a
credit card, it is still possible to get a free MongoDB cloud account through other
services and use those credentials for your Heroku application. In the end, we simply
need a MongoDB endpoint somewhere to connect to.

Installing and Virtualizing Node Servers

[34]

To add a MongoDB account, run the heroku addons:add mongolab command:

Adding mongolab on mighty-hamlet-7855... done, v14 (free)

Welcome to MongoLab. Your new subscription is being created and will be
available shortly. Please consult the MongoLab Add-on Admin UI to check
on its progress.

Use heroku addons:docs mongolab to view documentation in your browser.

You just added a configuration option to your Heroku instance. Not surprisingly,
you can view this information via heroku config, which will return you something
like this:

MONGOLAB_URI: mongodb://heroku_app2485743:ie02k3nnic3l0tjfgi3135inq@
ds035488.mongolab.com:35488/heroku_app2487483

With our database established, let's now push our application into Heroku and get it
running.

Git
Deploying applications on Heroku involves pushing your local version into the
remote application repository you just provisioned. There is no heroku deploy
command; what you do is push to Git, thus triggering post-receive hooks at
Heroku's end. These deploy your app.

If you're unfamiliar with Git, visit http://git-scm.com/
book/en/Getting-Started-Git-Basics.

Let's try it out. Within your code bundle, there exists a json-editor folder. First,
enter that folder and update the MongoDB connection and authentication code in
server.js so that we can use the database connection defined earlier:

var mongodb = require('mongodb');
var db = new mongodb.Db('your_db_identifier',
 new mongodb.Server('dt019963.mongolab.com', 29960, {})
);
db.open(function (err, db_p) {
 if (err) { throw err; }
 db.authenticate('your_username', '6i490i5d3teoen62524vqkccgu',
 function (err, replies) {
 // You are now connected and authenticated.
 });
});

http://git-scm.com/book/en/Getting-Started-Git-Basics
http://git-scm.com/book/en/Getting-Started-Git-Basics

Chapter 2

[35]

Next, run the following commands in your terminal:

git init

git add .

git commit -m "initial commit"

This initializes our application as a proper Git repository. Now, we need to inform
Heroku of our new application and our new Git repository. Let's deploy.

From within the json-editor folder of your code bundle, use Heroku Toolbelt to
create your first Heroku app:

heroku create

If all goes well, you should see something like this in your terminal:

Creating mighty-hamlet-7855... done, stack is cedar

http://mighty-hamlet-7855.herokuapp.com/ | git@heroku.com:mighty-
hamlet-7855.git

Git remote heroku added

If you visit that URL immediately, you will receive an error message. We haven't
pushed our repository, so there is nothing deployed, which means there is nothing to
show. To deploy an application to Heroku, push your local Git repo:

git push heroku master

This should result in a lot of build output, clearly informing you of what is
happening:

-----> Node.js app detected

-----> Requested node range: 0.10.x

...

-----> Building runtime environment

-----> Discovering process types

 Procfile declares types -> web

...

-----> Launching... done, v3

 http://mighty-hamlet-7855.herokuapp.com/ deployed to Heroku

Installing and Virtualizing Node Servers

[36]

Deploying to Heroku, therefore, naturally combines the actual container deployment
with the application version management via Git. What is more, pushing changes
on your Git repository to Heroku will automatically update a running application,
allowing "hot" code refreshes. Being able to continuously deploy your application
can be of great benefit in some circumstances, as we'll see in later chapters.

Before we begin, take note that the URL of your deployed app has no port number.
Heroku automatically assigns a port through which the web process communicates
with your application—this is not in our control. However, it is made available to
your Node process via process.env.PORT. For this reason, you will need to change
the }).listen(8081); line in server.js to }).listen(process.env.PORT ||
8081);.

We are now ready to start up our application. Remember that we are deploying a
Procfile-based application—processes are defined as being of a certain type. In our
case, that type is "web". We also need to assign dynos to our deployment—we need
to requisition a process from Heroku to run our app within. The command to start
up such an application is as follows:

heroku ps:scale web=1

This tells Heroku to give us one (1) dyno (also known as a process) of the web type.
You could also ask for two, or more, depending on your needs.

Run that command. You should see something like the following:

Scaling dynos... done, now running web at 1:1X.

This tells us that everything is running fine and we have 1 dyno that is 1x in size
handling our application. You can check that your process is running with the
heroku ps command:

=== web (1X): `node server.js`

web.1: up 2014/04/04 17:40:34 (~ 27m ago)

Our application is running! Visit the Heroku URL you were given earlier. You
should see a JSON editor and our MongoDB document:

Chapter 2

[37]

This is a JSON editor reading the MongoDB document created on our server. It
doesn't do much other than letting you change the value of the for attribute. If you
look at the JavaScript code in index.html, you'll see that we've structured our client
to send updates to the server via an /update path whenever values are changed in
this document:

var editor = new jsoneditor.JSONEditor(container, {
 change : function() {
 var json = editor.get();

 var xhr = new XMLHttpRequest();
 xhr.open('POST', '/update', true);
 xhr.onload = function () {
 console.log("POST RESPONSE: ", this.responseText);
 };
 xhr.send('data=' + JSON.stringify(json));
 },
 mode : "form"
});

Try it out. Use the editor to change Deploying NodeJS to something else. If you
open your browser's console, you should see POST RESPONSE: OK on each change
you make to this value. After you've made a change, reload your browser. You'll see
the new value—the changes you've made are being persisted on MongoDB via our
Heroku instance.

Managing configuration variables
It is normal for certain aspects of an application to be configurable. For example,
an application deployed for production will most likely be configured differently
than one being built in a development environment. Also, authentication credentials
(such as the one we are using for our MongoDB connection) will be included in
environment variables.

As many configuration variables are sensitive, it is a bad idea to include them in
an application repository or in a public file. How can variables be shared across
multiple processes in a secure way? One solution is to pass environment variables
when starting a Node process via the command line. If we wanted to inform a
Node process that it should execute as a production server, for example, we can do
something like this:

NODE_ENV=PRODUCTION node myprogram.js

Installing and Virtualizing Node Servers

[38]

Within that script, we can access the value via process.env:

console.log(process.env.NODE_ENV);
// production

While passing configuration variables in this way works very well in terms of
privacy, it can be tedious to do this repeatedly for every process, especially if there
are many variables.

Heroku provides an interface to help with managing environment variables. If you
log in to your Heroku instance and visit the Settings section, you will see something
like the following:

These environment variables will be passed to your application automatically
when it is started and/or restarted. Using the Edit button, you can add or remove
additional settings.

Managing your deployment
If your application crashes for any reason, heroku ps will indicate this. You also
have access to your process logs via heroku logs. Just as when you are starting your
process, stopping your process involves scaling your dynos down to zero:

heroku ps:scale web=0

Heroku allows you to very precisely scale and configure your process, scale to many
dynos, add various workers, and change the size of the dynos themselves. In our
example, we use the basic 1x dyno, which has the smallest memory and compute
power, and is the cheapest. For more information, visit https://devcenter.
heroku.com/articles/dyno-size and https://devcenter.heroku.com/
articles/process-model.

https://devcenter.heroku.com/articles/dyno-size
https://devcenter.heroku.com/articles/dyno-size
https://devcenter.heroku.com/articles/process-model
https://devcenter.heroku.com/articles/process-model

Chapter 2

[39]

From time to time, you might commit a change that is incorrect or want to redeploy a
previous release. Don't worry! Toolbelt allows you to manage your releases.

To list releases, use heroku releases:

v11 Deploy 310fe56 nataxia@gmail.com 2014/05/04 18:19:45 (~ 6m ago)

v10 Deploy a0c6005 nataxia@gmail.com 2014/05/04 18:15:17 (~ 10m ago)

...

You can get specific information on a release:

> heroku releases:info v11

=== Release v11

By: spasquali@gmail.com

Change: Deploy 310fe56

When: 2014/04/04 18:19:45 (~ 8m ago)

Rolling back to the immediately previous version is accomplished with a simple
Heroku rollback. You can also roll back to a specific release:

> heroku rollback v11

Rolling back mighty-hamlet-7855... done, v11

Just as when pushing changes, the version rolled back to will automatically "go live".

You can open your application right from the command line with
heroku open.

Installing applications on OpenShift
Red Hat, the enterprise Linux company, operates OpenShift, a cloud-hosting
solution. OpenShift offers several options for how you want to deploy your
apps—via a web-based interface, via the command line, or through an online IDE.
As we've worked on the command line for our other deployment examples, we'll
do the same with OpenShift.

Installing and Virtualizing Node Servers

[40]

Once you've joined and confirmed your account, you will need to install the
OpenShift client tools—rhc. For the purposes of this section, I'll use the Mac OS X
client. Regardless of which package you happen to choose, the command set remains
the same:

sudo gem install rhc

gem update rhc

This will install the client and update it to the latest version.

Once installed, you will need to set up your SSH keys and authenticate with the
system by running an rhc setup. Just enter your authentication information, confirm
the installation of keys, and confirm the upload of credentials.

You will then be asked to enter a namespace. This will serve as your identifier in the
system, among other things forming the subdomain of your deployed instance.

OpenShift works on the idea of Gears and Cartridges.

Gears are, roughly, containers with a certain allocation of compute units, memory,
disk, bandwidth, and so on, with a given capacity of cartridges. Larger gears are
more performant and (generally) can support a greater number of cartridges. You
can think of your installation as a collection of managed runtimes (cartridges),
fully isolated and deployed to one or more gears. As your application needs to
grow, you will add gears and cartridges. When you add cartridges, the OpenShift
system deploys your cartridge to the correct gear within your deployment—certain
cartridges with access to only their own gear and others with access to all gears.
Pricing depends on the number of gears used and, depending on the characteristic
of those gears, the implied number of cartridge slots.

OpenShift supports many types of development environments, open source
repositories, web frameworks, databases, and so on—a very rich ecosystem of tools,
many more than are available in the providers we've looked at so far. You can even
develop your own cartridges or use community cartridges.

The system makes it easy to dynamically scale your deployment in terms of gears,
or cartridges, or both. The free tier we will use offers three small gears.

Chapter 2

[41]

Installing a Node application and MongoDB
In the OpenShift ecosystem, Node is not a special citizen (as it is with NodeJitsu) or
one of a fixed set of process types (as with Heroku). Because of the modularity that
this concept of gears and cartridges offers, creating a sample Node application with
access to a MongoDB instance can be accomplished in one line:

rhc app create MyApp nodejs-0.10 mongodb-2.4

Application Options

Domain: <your namespace>

Cartridges: nodejs-0.10, mongodb-2.4

Gear Size: default

Scaling: no

Creating application 'MyApp' ...

...

Your application 'myapp' is now available.

URL: http://yoursub.rhcloud.com/

SSH to: 5366e4cc500446d15300022d@yoursub.rhcloud.com

Git remote: ssh://5366e4cc500446d15300022d@yoursub.rhcloud.com/~/git/
myapp.git/

Cloned to: /json_editor/myapp

As you can see, your deployment is powerfully configured, allowing SSH access and
HTTP access, and is ready as a Git repo—if you look inside your json-editor folder, a
new folder, myapp/, has been created. Go ahead and visit your URL. Full instructions
on how to use Git are provided as well as how to access your application via other
means.

We want to now replace this sample Node app with our own json-editor app.

www.allitebooks.com

http://www.allitebooks.org

Installing and Virtualizing Node Servers

[42]

Deploying your app
We, of course, do not want to use the sample app provided by OpenShift. Rather
than reconfiguring, let's keep the .git remote configuration in myapp/ and copy
the following files and folders in our json-editor/ folder into the myapp folder:

index.html
jsoneditor.css
jsoneditor.js
package.json
server.js
/img

These will overwrite any similar files that OpenShift created, while preserving the
others. Make sure you have changed the directory to myapp/ as we'll be working
from there from now on.

As we did when installing on Heroku, we will need to consult the process.env
object when starting our Node server. Open server.js and go to this line:

}).listen(8081);

Now, change the line to the following:

}).listen(process.env.OPENSHIFT_NODEJS_PORT || 8081,
 process.env.OPENSHIFT_NODEJS_IP || "127.0.0.1");

We are now ready to deploy our app. Update Git with all local files, commit them,
and push to OpenShift:

git add .

git commit -m "first"

git push

If all goes well, you should see the following at the tail end of the resulting output:

remote: Starting MongoDB cartridge

remote: Starting NodeJS cartridge

remote: Starting application 'myapp' ...

remote: -------------------------

remote: Git Post-Receive Result: success

remote: Activation status: success

remote: Deployment completed with status: success

Chapter 2

[43]

We can see how both Node and MongoDB are cartridges (not special processes or
add-ons) and how a successful post-receive hook will automatically deploy and
activate our app (not unlike what we saw when deploying to Heroku).

Should anything go wrong, we have direct access to our deployment logs. To connect
to your application (myapp) via SSH, use the rhc tool:

rhc ssh myapp

Once connected, jump to your log directory using cd $OPENSHIFT_LOG_DIR. You
should see two logs:

mongodb.log

nodejs.log

These are standard Linux log files and you can read or otherwise manipulate them,
for example, by tailing them.

You can also tail your logs via rhc:

rhc tail

When you are remotely logged in to your virtual container, you can
jump to the root directory of your app via cd $OPENSHIFT_REPO_DIR.

Controlling your application is easily done via rhc. Several commands are available
via rhc app <command>. These are a few commonly used commands:

•	 delete: This deletes an application from the server
•	 force-stop: This stops all application processes
•	 reload: This reloads the application's configuration
•	 restart: This restarts the application
•	 show: This shows information about an application
•	 start: This starts the application
•	 stop: This stops the application
•	 tidy: This cleans out logs and tmp directories and tidies up the git repo on

the server

OpenShift offers a flexible option for those who want a little more control over the
application they are deploying—power tools for power users.

Installing and Virtualizing Node Servers

[44]

Using Docker to create lightweight virtual
containers
This image from the Docker website (http://www.docker.com/) gives information
on how and why the Docker team feels their technology fits into the future of
application development:

The preceding image, concisely describing the generational shift in application
architecture we are now experiencing, can just as easily be used to describe the how
and why of Node's design.

Docker, according to the website, …is an open source engine that automates the
deployment of any application as a lightweight, portable, self-sufficient container that will
run virtually anywhere. Once you have created a Docker image of your application,
a running instance of that image can be spun in milliseconds. Yes, that's right: a
few milliseconds. Docker lets you create even hundreds of deployments of your
application in a few seconds.

http://www.docker.com/

Chapter 2

[45]

The Docker ecosystem has three main components. Here's some information about
the components from the documentation:

•	 Docker containers: Docker containers are like directories. A Docker
container holds everything that is needed for an application to run. Each
container is created from a Docker image. Docker containers can be run,
started, stopped, moved, and deleted. Each container is an isolated and
secure application platform. You can consider Docker containers to be the
run portion of the Docker framework.

•	 Docker images: The Docker image is a template, for example, an Ubuntu
operating system with Apache and your web application installed. Docker
containers are launched from images. Docker provides a simple way to build
new images or update existing images. You can consider Docker images to be
the build portion of the Docker framework.

•	 Docker registries: Docker registries hold images. These are public (or
private) stores that you can upload or download images to and from. These
images can be images you create yourself, or you can make use of images
that others have previously created. Docker registries allow you to build
simple and powerful development and deployment workflows. You can
consider Docker registries to be the share portion of the Docker framework.

You can create images of applications to be run in any number of isolated containers,
sharing those images with others if you'd like. The concept of composing Node
applications out of many independent processes naturally aligns with the philosophy
behind Docker. Docker containers are sandboxed, with their own filesystems, and
so on, and are unable to execute instructions on their host without your knowledge.
They can expose a port to their host OS, however, and later in this chapter, we'll
learn how to use Node to link together many independent virtual containers into a
larger application.

First, some Unix
Docker is a new technology, and at the time of this writing, it is not yet available
on all flavors of Unix (although the team is working hard to make that a reality in
the near future). I will install Docker on CentOS. The Docker website (https://
www.docker.io/) is regularly updated with information on how to install on your
favorite flavor of Unix.

https://www.docker.io/
https://www.docker.io/

Installing and Virtualizing Node Servers

[46]

Knowing the details of your OS is important. To find out your OS distribution name
and version, use cat /etc/*-release, which should return something like this:

CentOS release 6.5 (Final)

Or you can try cat /proc/version:

Linux version 2.6.32-279.14.1.el6.x86_64 (mockbuild@cb79.bsys.dev.centos.
org) (gcc version 4.4.6 20120305 (Red Hat 4.4.6-4) (GCC)) #1 SMP Tue Nov
6 23:43:09 UTC 2012

When you begin to create virtual machines and bind to ports, it will be necessary to
check the status of your network on occasion. You should definitely install a good
process viewer, such as HTOP (http://hisham.hm/htop/), as this will let you
quickly scan/search through your open process list.

To get a quick list of stats on the network connections for your box, use netstat,
which will return a list somewhat like this:

You can see that port 8080 is bound to the Node process 31878. You can also directly
ask for the process ID associated with a port:

> fuser 8080/tcp

8080/tcp: 31878

To get more information on a process, type ls -l /proc/31878/exe:

lrwxrwxrwx 1 root root 0 Oct 9 2013 /proc/31878/exe -> /root/nvm/
v0.10.20/bin/node

To get more information on a port user, try lsof:

> lsof -i :8080

COMMAND PID USER FD TYPE DEVICE NODE NAME

node 31878 root 10u IPv4 22570201 TCP *:webcache (LISTEN)

Keeping on top of who is listening where, and to what, will serve you well as you
move through this book.

http://hisham.hm/htop/

Chapter 2

[47]

Getting started with Docker
First, you will need to install Docker. Installation instructions for all supported Linux
distributions can be found at http://docs.docker.io/installation/.

Once you have the Docker service installed, you will need to start it:

service docker start

Then, stop the Docker service:

service docker stop

If everything is working, this command should tell you something about your
Docker installation:

docker info

A Docker container runs an image of your application. You can create these images
yourself, of course, but there does exist a large ecosystem of existing images. Let's
create our own image of a Node server running Express.

To search the Docker image repository, visit https://index.
docker.io/.

First, we'll need to build an application to run. Create a folder to put your application
files into. Just as with all Node applications, we'll need to create a package.json file
for npm to parse:

{
 "name": "docker-example",
 "private": true,
 "version": "0.0.0",
 "description": "Example of running a Node app within a CENTOS
 container",
 "author": "Sandro Pasquali <spasquali@gmail.com>",
 "dependencies": {
 "express": "4.1.1"
 }
}

http://docs.docker.io/installation/
https://index.docker.io/
https://index.docker.io/

Installing and Virtualizing Node Servers

[48]

Next, we need a program that will start an Express HTTP server. Create the
following file and name it server.js:

var express = require('express');

var port = 8087;

var app = express();
app.get('/', function (req, res) {
 res.send('You just deployed some Node!\n');
});

app.listen(port);
console.log('Running on http://localhost:' + port);

Now, install and start your application:

npm install;

node app.js

// Running on http://localhost:8087

You can now point your browser to your host on port 8087 and see You just
deployed some Node! displayed.

Now, we will look at how we can build these files into a virtual container using
Docker.

Creating a Dockerfile
Our goal is to describe the environment this application executes within such that
Docker can reproduce that environment in a container. Also, we want to add the
source files of our application to run in this newly virtualized environment. Docker
can act as a builder that follows the instructions you provide on how to build an
image of your application.

To begin with, you should have a folder containing your application files. This is
your source code repository. Within this repository, create a ./src folder. We will
shortly learn why this folder is created. If this folder is the one where your test
application was built, remove the node_modules folder.

Chapter 2

[49]

A Dockerfile is a list of instructions to build an application. You can build Docker
images manually, of course, but it is likely that you will want to repeat those
actions many times. A Dockerfile describes a build process. What you will normally
declare in a Dockerfile is the Linux version that the container will run and any OS
installations you might need to do—such as Node and npm. Additionally, you will
indicate where the source code for your application resides: within the ./src folder
created earlier.

A Dockerfile is always built upon another Docker image. Normally, you will build
upon an OS image. We'll use CentOS 6.4 for this example. My Dockerfile starts with
a comment about the version of Docker I am building on and the name of the image
this image will be built from:

DOCKER-VERSION 0.9.0

FROM centos:6.4

We have now established an OS to run in the container. Now we will simply list
typical Unix commands to set up a build environment. First, we'll need Node and
npm:

Enable EPEL for Node.js

RUN rpm -Uvh http://download.fedoraproject.org/pub/epel/6/i386/epel-
release-6-8.noarch.rpm

Install Node.js and npm

RUN yum install -y npm

Great! Now our container knows how to build Node and npm. Now let's bundle
our application into the ./src directory of our container using the ADD directive:

Bundle app source

ADD . /src

Now that our application files are bundled into ./src, let's enter that directory and
install the application package:

Install app

RUN cd /src; npm install

Our app is now installed. Note that in app.js we are exposing an Express server on
port 8087. A container can't know this, so we have to tell the container to set up the
port redirection on the host system:

EXPOSE 8087

Installing and Virtualizing Node Servers

[50]

Finally, the container is told to start the Node application:

CMD ["node", "/src/app.js"]

That's it. Now, create a file named (exactly) Dockerfile, containing the preceding
instructions. We can now use this Dockerfile to build a Docker image.

Building and running a Docker image
The command to build a Docker image is docker build. Docker will look in
the current folder for a Dockerfile and build an image based on the instructions
contained therein. Since we will most likely reuse this image, it is a good idea to tag
it with a special name. To give an image a name, use the –t directive, followed by the
tag of your choice, followed by a path to the Dockerfile (here, the current directory):

docker build -t docker/example .

When you run that command, you will see a lot of output to your terminal as
the requested packages are downloaded and installed. This may take some time.
Thankfully, Docker caches these installs—the next build using this Dockerfile, or
others containing identical install instructions, will be much faster.

If the build went well, your image can be listed, with the docker images command
outputting something like this:

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

docker/example latest d8bb295407f1 20 minutes ago 667.8 MB

centos 6.4 539c0211cd76 2 months ago 300.6 MB

To remove an image, use docker rmi <image id>.

Our application is now containerized. We can run it using the following command:

docker run -p 49001:8087 -d docker/example

The –d directive instructs Docker to run this image in detached mode—to run it in
the background. The 49001:8087 segment is necessary to map the virtual port that
our Express server is listening to within the container (8087) to an actual port on our
host machine.

Chapter 2

[51]

Open your browser and point it to the host machine at port 49001. You should see
You just deployed some Node! displayed. The Node application we created earlier
is now running in a container.

To demonstrate the point of Docker, execute the same run instruction given earlier,
but change the port mapping to something like 49002:8087. Open a different browser
window on your application by changing the port accordingly. You now have two
identical copies of your application running on the same host in isolated containers.

More details on run directives can be found at http://docs.
docker.io/reference/run/.
To learn more about port redirection, visit http://docs.docker.
io/use/port_redirection/#port-redirection.

You will want to be able to check for the running Docker instances. The command
to do this is docker ps, which will display information similar to the following:

Here we see our two running containers, including information about what they are
running and how they are mapped. To stop a running container, use docker stop
<container id>. You can use docker start <container id> to either restart a
stopped container or, of course, start a new one. This implies that stopping a container
does not destroy the container. To do that, use docker rm <container id>.

For a full list of Docker commands, simply type docker in your
terminal.

www.allitebooks.com

http://docs.docker.io/reference/run/
http://docs.docker.io/reference/run/
http://docs.docker.io/use/port_redirection/#port-redirection
http://docs.docker.io/use/port_redirection/#port-redirection
http://www.allitebooks.org

Installing and Virtualizing Node Servers

[52]

Summary
In this chapter, you learned how to create Node servers and applications, both locally
and in the cloud. Having deployed a simple document-editing application using Node
and MongoDB across three different PaaS providers, you have an early sense of what
is available to the Node developer who is looking to scale their application. You were
introduced to Docker, which offers a powerful new containerization technology,
allowing us to make many cheap clones of our applications; wherever there is Linux,
there exists a deploy target for Docker.

In the next chapter, we will take these simple ideas about scaling farther and
deeper by exploring in more detail how Node can be scaled both vertically and
horizontally—across cores and across many machines.

[53]

Scaling Node
Like concurrency and parallelism, scalability and performance are not the same thing.

"The terms "performance" and "scalability" are commonly used interchangeably,
but the two are distinct: performance measures the speed with which a single
request can be executed, while scalability measures the ability of a request to
maintain its performance under increasing load. For example, the performance of
a request may be reported as generating a valid response within three seconds, but
the scalability of the request measures the request's ability to maintain that three-
second response time as the user load increases."

 – Pro Java EE 5, Steve Haines

It is not unusual for a reviewer to assert that Node cannot scale across cores and is,
therefore, unable to optimize performance on a given machine. This belief is based
on two false impressions—that Node is "not good at" CPU-intensive tasks and that it
cannot scale because its process can only leverage a single core. These claims are often
stretched further into assertions about how Node's claim of being nonblocking is
false, primarily by imagining locked threads and underutilized hardware.

Scaling Node

[54]

Scalable applications remain responsive under increasing load. Scalable applications
imply that more nodes can be added to, and removed from, a system depending on
fluctuations in both client connections and resource needs (such as more memory or
storage space). Node aims to make it easy to conceptualize, describe, and implement
scalable networked applications. The primary focus is on creating a toolkit to
build structures out of many nodes connected through evented network streams
communicating through standard protocols. Distributed systems are concerned
with failure more than with performance and the question that arises is: how can
we swap, add, and remove nodes intelligently within a running system?

Solving the C10K problem, which is the problem of optimizing network
sockets to handle a large number of clients at the same time (https://
en.wikipedia.org/wiki/C10k_problem) is a key design goal for
many modern application tools and environments, including Node.

We will look at two common scaling strategies—vertical and horizontal scaling.
Vertical scaling (scaling up) involves increasing the ability of a single server to
handle increasing load, usually by increasing the number of CPUs, memory, storage
space, and so on, on a single box. Horizontally scaling systems (scaling out) respond
to a load by adding or subtracting servers or other network resources. Deploying
a scalable Node solution can be done by utilizing both of these techniques either
individually or in tandem.

Scaling vertically across multiple cores
As we discussed in Chapter 1, Appreciating Node, libuv is used within the Node
environment to manage multiple I/O threads. The OS itself also schedules threads,
distributing the work required by various processes. Node provides a way for a
developer to take advantage of this OS-level scheduling by spawning and forking
many processes. In this section, we will learn how to distribute your program's tasks
across independent processes generally and how to distribute a Node server's load
across multiple cooperating server processes.

Modern software development is no longer the realm of monolithic programs.
Modern applications are distributed and decoupled. We now build applications
that connect users with resources distributed across the Internet. Many users
are accessing shared resources simultaneously. A complex system is easier to
understand if the whole is understood as a collection of interfaces to programs that
solve one or a few clearly defined, related problems. In such a system, it is expected
(and desirable) that processes should not sit idle.

https://en.wikipedia.org/wiki/C10k_problem
https://en.wikipedia.org/wiki/C10k_problem

Chapter 3

[55]

While a single Node process runs on a single core, any number of Node processes
can be "spun up" through the use of the child_process module. Basic usage of
this module is straightforward: we fetch a ChildProcess object and listen for data
events. This example will call the Unix command ls, listing the current directory:

var spawn = require('child_process').spawn;
var ls = spawn('ls', ['-lh', '.']);
ls.stdout.on('readable', function() {
 var d = this.read();
 d && console.log(d.toString());
});
ls.on('close', function(code) {
 console.log('child process exited with code ' + code);
});

Here, we use spawn on the ls process (list directory) and read from the resulting
readable stream, receiving something like this:

-rw-r--r-- 1 root root 43 Jul 9 19:44 index.html

-rw-rw-r-- 1 root root 278 Jul 15 16:36 child_example.js

-rw-r--r-- 1 root root 1.2K Jul 14 19:08 server.js

child process exited with code 0

Any number of child processes can be spawned in this way. It is important to note
here that when a child process is spawned or otherwise created, the OS itself assigns
the responsibility for that process to a given CPU. Node is not responsible for how an
OS allocates resources. The upshot is that on a machine with eight cores, it is likely
that spawning eight processes will result in each being allocated to independent
processors. In other words, child processes are automatically spread by the OS across
CPUs, putting the lie to claims that Node cannot take full advantage of multicore
environments.

Each new Node process (child) is allocated 10 MB of memory and
represents a new V8 instance that will take at least 30 milliseconds to
start up. While it is unlikely that you will spawn many thousands of
these processes, understanding how to query and set OS limits on user-
created processes is beneficial. You can use htop or top to report the
number of processes currently running, or you can use ps aux | wc
–l from the command line. The Unix command ulimit (http://
ss64.com/bash/ulimit.html) provides important information on
user limits on an OS. Passing ulimit the –u argument will show the
maximum number of user processes that can be spawned. Changing the
limit is accomplished by passing it as an argument—ulimit –u 8192.

http://ss64.com/bash/ulimit.html
http://ss64.com/bash/ulimit.html

Scaling Node

[56]

The child_process module represents a class exposing four main methods: spawn,
fork, exec, and execFile. These methods return a ChildProcess object that
extends EventEmitter, exposing an interface to child events, and a few functions
helpful to manage child processes. We'll take a look at its main methods and follow
up with a discussion of the common ChildProcess interface.

spawn(command, [arguments], [options])
This powerful command allows a Node program to start and interact with processes
spawned via system commands. In the preceding example, we used spawn to call a
native OS process, ls, passing that command the arguments '-lh' and '.'. In this
way, any process can be started just as one might start it via a command line. The
method takes three arguments:

•	 command: This is a command to be executed by the OS shell
•	 arguments: These are optional command-line arguments sent as an array
•	 options: This is an optional map of settings for spawn

The options for spawn allow its behavior to be carefully customized:

•	 cwd (string): By default, this command will understand its current working
directory to be the same as that of the Node process calling spawn. Change
that setting using this directive.

•	 env (object): This is used to pass environment variables to a child process, for
instance, we spawn a child process with an environment object, such as:
{
 name : "Sandro",
 role : "admin"
}

The child process environment will have access to the values specified in the
preceding code.

•	 detached (Boolean): When a parent process spawns a child process, both
processes form a group, and the parent process is normally the leader of that
group. To make a child process the group leader, use detached. This allows
the child process to continue running even after the parent process exits.
Because the parent process waits for the child process to exit by default, you
can call child.unref() to tell the parent process's event loop that it should
not count the child reference and exit if no other work exists.

•	 uid (number): Set the uid (user identity) for the child process in terms of
standard system permissions, such as a uid that has privileges to execute on
the child process.

Chapter 3

[57]

•	 gid (number): Set the gid (group identity) for the child process in terms of
standard system permissions, such as a gid that has execute privileges on the
child process.

•	 stdio (string or array): Child processes have file descriptors, the first three
being process.stdin, process.stdout, and process.stderr standard I/O
descriptors in that order (fds = 0,1,2). This directive allows those descriptors
to be redefined, inherited, and so on.

Normally, to read the output of the following child process program, a parent
process would listen on child.stdout:

process.stdout.write(new Buffer("Hello!"));

If, instead, we wanted a child to inherit its parent's stdio such that when the child
writes to process.stdout, what is emitted is piped through to the parent process's
process.stdout stream, we would pass the relevant parent file descriptors to the
child, overriding its own:

spawn("node", ['./reader.js', './afile.txt'], {
 stdio: [process.stdin, process.stdout, process.stderr]
});

In this case, the child's output will pipe straight through to the parent process's
standard output channel. Also, see fork, in the upcoming paragraphs, for more
information on this kind of pattern.

Each of the three (or more) file descriptors can take one of six values:

•	 'pipe': This creates a pipe between the child process and the parent process.
As the first three child file descriptors are already exposed to the parent
process (child.stdin, child.stdout, child.stderr), this is only necessary
in more complex child implementations.

•	 'ipc': Create an IPC channel to pass messages between a child process
and a parent process. A child process can have a maximum of one IPC
file descriptor. Once this connection is established, the parent process can
communicate with the child process via child.send. If the child sends JSON
messages through this file descriptor, those emissions can be caught using
child.on("message"). If you are running a Node program as a child, it is
likely a better choice to use ChildProcess.fork, which has this messaging
channel built in.

•	 'ignore': The file descriptors 0–2 will have /dev/null attached to them. For
others, the referenced file descriptor will not be set on the child.

Scaling Node

[58]

•	 A stream object: This allows the parent to share a stream with the child. For
demonstration purposes, given a child that will write the same content to any
provided Writable stream, we could do something like this:
var writer = fs.createWriteStream("./a.out");
writer.on('open', function() {
 var cp = spawn("node", ['./reader.js'], {
 stdio: [null, writer, null]
 });
});

The child will now fetch its content and pipe it to whichever output stream it
has been sent to:

fs.createReadStream('cached.data').pipe(process.stdout);

•	 An integer: This is a file descriptor ID.
•	 null, undefined: These are the default values. For file descriptors 0–2 (stdin,

stdout, stderr), a pipe is created. Others default to ignore.

In addition to passing stdio settings as an array, certain common groupings can be
implemented by passing a shortcut string value:

•	 'ignore' = ['ignore', 'ignore', 'ignore']

•	 'pipe' = ['pipe', 'pipe', 'pipe']

•	 'inherit' = [process.stdin, process.stdout, process.stderr] or
[0,1,2]

It should be noted that the ability to spawn any system process means that one can
use Node to run other application environments installed on the OS. If we had the
popular PHP language installed, the following would be possible:

var spawn = require('child_process').spawn;

var php = spawn("php", ['-r', 'print "Hello from PHP!";']);

php.stdout.on('readable', function() {
 var d;
 while(d = this.read()) {
 console.log(d.toString());
 }
});

// Hello from PHP!

Running a more interesting, larger program would be just as easy.

Chapter 3

[59]

Apart from the ease with which one can run Java, Ruby, or other programs through
Node using this technique, asynchronously, we also have here a good answer to a
persistent criticism of Node: JavaScript is not as fast as other languages for crunching
numbers or doing other CPU-heavy tasks. This is true in the sense that Node is
primarily optimized for I/O efficiency and helping with the management of high-
concurrency applications, and JavaScript is an interpreted language without a strong
focus on heavy computation.

However, using spawn, one can very easily pass massive computations and long-
running routines on analytic engines or calculation engines to separate processes in
other environments. Node's simple event loop will notify the main application when
those operations are done, seamlessly integrating the resultant data. Meantime, the
main application is free to keep serving clients.

fork(modulePath, [arguments], [options])
Just like spawn, fork starts a child process but is designed to run Node programs
with the added benefit of having a communication built in. Rather than passing a
system command to fork as its first argument, we pass the path to a Node program.
As with spawn, command-line options can be sent as a second argument, accessible
via process.argv in the forked child process.

An optional object can be passed as its third argument, with the following
parameters:

•	 cwd (string): By default, this command will understand its current working
directory to be the same as that of the Node process calling fork. Change
that setting using this directive.

•	 env (object): This is used to pass environment variables to a child process.
See spawn.

•	 encoding (string): This sets the encoding of the communication channel.
•	 execPath (string): This is the executable used to create the child process.
•	 silent (Boolean): By default, a child process for which fork has been used

will have stdio associated with that of the parent process (child.stdout
is identical to parent.stdout, for example). Setting this option to 'true'
disables this behavior.

An important difference between fork and spawn is that the former's child process
does not automatically exit when it is finished. Such a child process must explicitly exit
when it is done, which is easily accomplished via process.exit().

Scaling Node

[60]

In the following example, we will create a child process that emits an incrementing
number every tenth of a second, which its parent process then dumps to the system
console. First, let's look at the child program:

var cnt = 0;

setInterval(function() {
 process.stdout.write(" -> " + cnt++);
}, 100);

Again, this will simply write a steadily increasing number. When forked a child
process, a child process will inherit the stdio stream of its parent, so we only need
to create the child process in order to get the output in a terminal running the parent
process:

var fork = require('child_process').fork;
fork('./emitter.js');

// -> 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8 -> 9 -> 10 ...

The silent option can be demonstrated here. The following code
turns off any output to the terminal:

fork('./emitter.js', [], { silent: true });

Creating multiple, parallel processes is easy. Let's multiply the number of children
created:

fork('./emitter.js');
fork('./emitter.js');
fork('./emitter.js');

-> 0 -> 0 -> 0 -> 1 -> 1 -> 1 -> 2 -> 2 -> 2 -> 3 -> 3 -> 3 -> 4
 ...

It should be clear at this point that using fork, we are creating many parallel
execution contexts spread across all machine cores.

This is straightforward enough, but the built-in communication channel that fork
provides makes communicating with child processes for which fork has been used
even easier and cleaner. Consider the following two code snippets:

Chapter 3

[61]

Parent:

var fork = require('child_process').fork;
var cp = fork('./child.js');
cp.on('message', function(msgobj) {
 console.log('Parent got message:', msgobj.text);
});

cp.send({
 text: "I love you"
});

Child:

process.on('message', function(msgobj) {
 console.log('Child got message:', msgobj.text);
 process.send({
 text: msgobj.text + ' too'
 });
});

By executing the parent script, we will see the following in our console:

Child got message: I love you

Parent got message: I love you too

exec(command, [options], callback)
In cases where the complete buffered output of a child process is sufficient, with no
need to manage data through events, child_process offers the exec method. The
method takes three arguments:

command: This is a command-line string. Unlike spawn and fork, which pass
arguments to a command via an array, this first argument accepts a full command
string, such as ps aux | grep node.

•	 options: This is optional.
•	 cwd: This is a string. Set the working directory for the command process.
•	 env: This is an object. It's a map of key-value pairs that will be exposed to the

child process.
•	 encoding: This is a string. It is the encoding of the child process's data

stream. The default value is 'utf8'.

Scaling Node

[62]

•	 timeout: This is a number. It is the number of milliseconds that we need to
wait for the process to complete, at which point the child process will be sent
the killSignal signal.

•	 maxBuffer: This is a number. It is the maximum number of bytes allowed
on stdout or stderr. When this number is exceeded, the process is killed.
The default value is 200 KB.

•	 killSignal: This is a string. The child process receives this signal after a
timeout. The default value is SIGTERM.

•	 callback: This receives three arguments: an Error object, if any; stdout
(a Buffer containing the result); and stderr (a Buffer containing error data,
if any). If the process was killed, Error.signal will contain the kill signal.

execFile
Use this method when you want the functionality of exec but are targeting a Node
file. Importantly, execFile does not spawn a new subshell, which makes it slightly
less expensive to run.

Communicating with your child process
All instances of the ChildProcess object extend EventEmitter, exposing events
which are useful to manage child data connections. Additionally, ChildProcess
objects expose useful methods of interacting with child processes directly. Let's go
through these now, beginning with attributes and methods.

child.connected
When a child process is disconnected from its parent process via child.
disconnect(), this flag will be set to false.

child.stdin
This is a Writable stream corresponding to the child process's standard in.

child.stdout
This is a Readable stream corresponding to the child process's standard out.

child.stderr
This is a Readable stream corresponding to the child process's standard error.

Chapter 3

[63]

child.pid
This is an integer representing the process ID (PID) assigned to the child process.

child.kill([signal])
Try to terminate a child process, sending it an optional signal. If no signal is
specified, the default is SIGTERM (for more about signals, see http://unixhelp.
ed.ac.uk/CGI/man-cgi?signal+7). While the method name sounds terminal, it is
not guaranteed to kill a process—it only sends a signal to a process. Dangerously,
if kill is attempted on a process that has already exited, it is possible that another
process, which has been newly assigned the PID of the dead process, will receive the
signal, with indeterminable consequences. You should fire a close event, which will
receive the signal used to close the process.

child.disconnect()
When child.disconnect() is triggered on a child process belonging to a process
group that it does not lead, the IPC connection between the child and its parent will
be severed, resulting in the child dying gracefully as it has no IPC channel to keep it
alive. You can also call process.disconnect() from within the child process itself.
Once a child process has disconnected, the connected flag on that child reference
will be set to false.

child.send(message, [sendHandle])
As we saw in our discussion of fork, and when using the ipc option on spawn, child
processes can be sent messages via this method. A TCP server or socket object can be
passed along with the message as a second argument. In this way, a TCP server can
spread requests across multiple child processes. For example, the following server
distributes socket handling across a number of child processes equaling the total
number of CPUs available. Each forked child is given a unique ID, which it reports
when started. Whenever the TCP server receives a socket, that socket is passed as a
handle to a random child process. That child process then sends a unique response,
demonstrating that socket handling is being distributed. The following code snippets
show this:

Parent:

var fork = require('child_process').fork;
var net = require('net');

var children = [];

http://unixhelp.ed.ac.uk/CGI/man-cgi?signal+7
http://unixhelp.ed.ac.uk/CGI/man-cgi?signal+7

Scaling Node

[64]

require('os').cpus().forEach(function(f, idx) {
 children.push(fork("./child.js", [idx]));
});

net.createServer(function(socket) {
 var rand = Math.floor(Math.random() * children.length);
 children[rand].send(null, socket);
}).listen(8080);

Child:

var id = process.argv[2];
process.on('message', function(n, socket) {
 socket.write('child ' + id + ' was your server today.\r\n');
 socket.end();
});

Start the parent server in a terminal window. In another window, run telnet
127.0.0.1 8080. You should see something similar to the following, with a random
child ID being displayed on each connection (assuming there exist multiple cores):

Trying 127.0.0.1...

...

child 3 was your server today.

Connection closed by foreign host.

The cluster module
We saw how spreading work across multiple cores by spawning independent
processes helps to vertically scale Node applications. The Node API has been further
augmented with a cluster module that formalizes this pattern and extends it.
Continuing with Node's core purpose of helping to make scalable network software
easier to build, the particular goal of the cluster module is to facilitate the sharing
of network sockets among many child workers.

For example, the following code creates a cluster of worker processes, all sharing the
same HTTP connection:

var cluster = require('cluster');
var http = require('http');
var numCPUs = require('os').cpus().length;

if(cluster.isMaster) {
 for(var i = 0; i < numCPUs; i++) {

Chapter 3

[65]

 cluster.fork();
 }
}

if(cluster.isWorker) {
 http.createServer(function(req, res) {
 res.writeHead(200);
 res.end("Hello from " + cluster.worker.id);
 }).listen(8080);
}

We'll dig into the details shortly. The important thing to note is how this program
does different things depending on whether it is running as a master process or as a
child process. On its first execution, it is the master, indicated by cluster.isMaster.
When a master process calls cluster.fork, this same program is forked as a child
process, in this case one child for each CPU. When this program is re-executed, in a
forking context, cluster.isWorker will be true, and a new HTTP server running on
a shared port is started. Multiple processes are sharing the load for a single server.

Connect to this server with a browser. You will see something like Hello from 8, the
integer corresponding to the unique cluster.worker.id ID of the worker that is
assigned the responsibility of handling your request. Balancing across all workers is
handled automatically such that refreshing your browser a few times will result in
different worker IDs being displayed.

The cluster API breaks down into two sections: the methods, attributes, and events
available to the cluster master and those available to the child process. As workers
in this context are defined using fork, the documentation for that method of child_
process can be applied here as well.

cluster.isMaster
This is a Boolean value indicating whether the process is a master.

cluster.isWorker
This is a Boolean value indicating whether the process was forked from a master.

cluster.worker
This is a reference to the current worker object and is only available to a child
process.

Scaling Node

[66]

cluster.workers
This is a hash containing references to all active worker objects, keyed by the worker
ID. Use this to loop through all worker objects. This only exists within the master
process.

cluster.setupMaster([settings])
This is a convenient way of passing a map of default arguments when a child is
forked. If all child processes are going to use fork on the same file (as is often the
case), you will save time by setting it here. The available defaults are as follows:

•	 exec: This is a string. The file path to the process file defaults to __filename.
•	 args: This is an array. Strings are sent as arguments to the child process.
•	 silent: This is a Boolean value that determines whether or not to send output

to the master's stdio.

cluster.fork([env])
This creates a new worker process. Only the master process can call this method.
To expose a map of key-value pairs to the child's process environment, send an
object to env.

cluster.disconnect([callback])
This is used to terminate all workers in a cluster. Once all the workers have died
gracefully, the cluster process will itself terminate if it has no further events to wait
on. To be notified when all child processes have expired, pass callback.

cluster events
This cluster object emits several events:

•	 fork: This is fired when the master tries to use fork on a new child. This is
not the same as online. This receives a worker object.

•	 online: This is fired when the master receives notification that a child is fully
bound. This differs from the fork event. This receives a worker object.

•	 listening: When the worker performs an action that requires a listen()
call (such as starting an HTTP server), this event will be fired in the master.
The event emits two arguments: a worker object and the address object
containing the address, port, and addressType of the connection.

Chapter 3

[67]

•	 disconnect: This is called whenever a child disconnects, which can happen
either through process exit events or after calling child.kill(). This will
fire prior to the exit event—they are not the same. This receives a worker
object.

•	 exit: Whenever a child dies, this event is emitted. It receives three arguments:
a worker object, the exit code number, and the signal string, such as SIGHUP,
that caused the process to be killed.

•	 setup: This is called after cluster.setupMaster has executed.

worker.id
This is the unique ID assigned to a worker, which also represents the worker's key in
the cluster.workers index.

worker.process
This is a ChildProcess object referencing a worker.

worker.suicide
These workers, that have recently had kill or disconnect called on them, will
have their suicide attribute set to true.

worker.send(message, [sendHandle])
See child_process.fork()in the Scaling vertically across multiple cores section where
I describe the #fork method.

worker.kill([signal])
This kills a worker. The master can check this worker's suicide property in order to
determine whether the death was intentional or accidental. The default signal sent is
SIGTERM.

worker.disconnect()
This instructs a worker to disconnect. Importantly, existing connections to the
worker are not immediately terminated (as with kill) but are allowed to exit
normally prior to the worker fully disconnecting. Because existing connections can
stay in existence for a very long time, it is a good habit to regularly check whether
the worker has actually disconnected, perhaps using timeouts.

Scaling Node

[68]

Workers also emit events:

•	 message: See child_process.fork in the Scaling vertically across multiple
cores section where I describe the #fork method

•	 online: This is identical to cluster.online except that the check is against
only the specified worker

•	 listening: This is identical to cluster.listening except that the check is
against only the specified worker

•	 disconnect: This is identical to cluster.disconnect except that the check is
against only the specified worker

•	 exit: See the exit event for child_process
•	 setup: This is called after cluster.setupMaster has executed

Now that we have a good understanding of how to accomplish vertical scaling with
Node, let's take a look at some ways to handle horizontal scaling

Scaling horizontally across different
machines
Because Node is so efficient, most websites or applications can accommodate all of
their scaling needs in the vertical dimension. As we learned from Eran Hammer's
experiences at Walmart, Node can handle enormous levels of traffic using only a few
CPUs and an unexceptional volume of memory.

Nevertheless, horizontal scaling can still be the right choice, even if only for
architectural reasons. Having one point of failure, no matter how robust, still entails
some risk. The parking lot problem is another consideration that Walmart likely faces—
during shopping holidays, you will need many thousands of parking spots, but
during the rest of the year this investment in empty space is hard to justify. In terms
of servers, the ability to dynamically scale both up and down argues against building
fixed vertical silos. Adding hardware to a running server is also a more complicated
process than spinning up and seamlessly linking another virtual machine to your
application.

In this section, we'll look at a few techniques for horizontal scaling, considering load
balancing using native Node techniques, third-party solutions, and some ideas for
cross-server communication.

Chapter 3

[69]

Using Nginx
Nginx (pronounced Engine X) remains a popular choice for those whose architecture
benefits from hiding Node servers behind a proxy. Nginx is a very popular high-
performance web server that is often used as a proxy server. Given its design,
Nginx is a popular choice with Node developers. According to http://www.
linuxjournal.com/magazine/nginx-high-performance-web-server-and-
reverse-proxy:

"Nginx is able to serve more requests per second with less resources because of its
architecture. It consists of a master process, which delegates work to one or more
worker processes. Each worker handles multiple requests in an event-driven or
asynchronous manner using special functionality from the Linux kernel (epoll/
select/poll). This allows Nginx to handle a large number of concurrent requests
quickly with very little overhead."

Its similarity in design to Node is striking: event delegation across processes and
an evented, asynchronous environment coordinated by the OS delivering high
concurrency.

A proxy is someone or something acting on behalf of another.

A forward proxy normally works on behalf of clients in a private network, brokering
requests to an outside network, such as retrieving data from the Internet. Early web
providers, such as AOL, functioned in this way:

http://www.linuxjournal.com/magazine/nginx-high-performance-web-server-and-reverse-proxy
http://www.linuxjournal.com/magazine/nginx-high-performance-web-server-and-reverse-proxy
http://www.linuxjournal.com/magazine/nginx-high-performance-web-server-and-reverse-proxy

Scaling Node

[70]

Network administrators often use forward proxies when restrictions on access to
the outside world (that is, the Internet) are needed. If malware is downloaded from
a bad website via an e-mail attachment, the administrator might block access to that
location. Restrictions on access to social networking sites might be imposed on an
office network. Some countries even restrict access to the general Internet in this way.

A reverse proxy, not surprisingly, works in the opposite manner, accepting requests
from a public network and servicing those requests within a private network that
the client might not have much visibility into. Direct access to servers by clients is
first delegated to a reverse proxy. This can be shown with the help of the following
diagram:

This is the type of proxy we can use to balance requests from clients across many Node
servers. Client X does not communicate with any given server directly. A broker Y is
the first point of contact that is able to direct X to a server under less load, is located
closer to X, or is, in some other way, the best server for X to access at the time.

Let's take a look at how Nginx can be used as a proxy, in particular, as a load
balancer, by deploying such a system on the cloud hosting service Digital Cloud.

Chapter 3

[71]

Deploying an Nginx load balancer on DigitalOcean
DigitalOcean is a cloud hosting provider that is inexpensive and easy to set up. We
will build an Nginx load balancer on this service.

To sign up, visit http://www.digitalocean.com. The basic package (at the time of
writing this) incurs a $5 fee, but promotion codes are regularly made available—a
simple web search should result in a usable code. Create and verify an account to get
started.

DigitalOcean packages are described as droplets with certain characteristics—the
amount of storage space, transfer limits, and so on. A basic package is sufficient
for our needs. Also, you will indicate a hosting region and the OS to install in your
droplet (in this example, we'll use the latest version of Ubuntu). Create a droplet
and check your e-mail for login instructions. You're done!

You will receive full login information for your instance. You can now open a
terminal and SSH into your box using those login credentials.

On your initial login, you might want to update your packages. For
Ubuntu, you would run apt-get update and apt-get upgrade.
Other package managers have similar commands (such as yum
update for RHEL/CentOS).

Before we begin to install, let's change our root password and create a nonroot user
(it is unsafe to expose the root to external logins and software installs). To change
your root password, type passwd and follow the instructions in your terminal. To
create a new user, enter adduser <new user name> (for example, adduser john).
Follow the instructions mentioned in the upcoming paragraphs.

One more step: we want to give some administrative privileges to our new user as
we'll install software as that user. In Unix parlance, you want to give sudo access
to this new user. Instructions on how to do this are easy to find for whichever
OS you've chosen. Essentially, you will want to change the /etc/sudoers file.
Remember to do this using a command such as visudo—do not edit the sudoers
file by hand! You may also want to restrict root logins and do other SSH access
management at this point.

After successfully executing sudo -i in your terminal, you will be
able to enter commands without prefixing each one with sudo. The
following examples assume that you've done this.

http://www.digitalocean.com

Scaling Node

[72]

We'll now create an Nginx load balancer frontend for two Node servers. This means
that we will create three droplets—one for the balancer and two added droplets as
Node servers. In the end, we will end up with an architecture that looks something
like this:

Installing and configuring Nginx
Let's install Nginx and Node/npm. If you're still logged in as root, log out and
reauthenticate as the new user you've just created. To install Nginx (on Ubuntu),
simply type:

apt-get install nginx

Most other Unix package managers will have Nginx installers. To start Nginx, use:

service nginx start

Full documentation for Nginx can be found at http://wiki.
nginx.org/Configuration.

http://wiki.nginx.org/Configuration
http://wiki.nginx.org/Configuration

Chapter 3

[73]

You should now be able to point your browser to the IP you were assigned (check
your inbox if you've forgotten) and see something like this:

Now, let's set up the two servers that Nginx will balance.

Create an additional two droplets in DigitalOcean. You must not install Nginx on these
servers. Configure permissions on these servers as we did earlier. Now, install Node in
both droplets. An easy way to manage your Node installation is using Tim Caswell's
Node Version Manager (NVM). NVM is essentially a bash script that provides a set of
command-line tools facilitating Node version management and allowing you to easily
switch between versions. To install it, use the following command:

curl -o- https://raw.githubusercontent.com/creationix/nvm/v0.25.4/
install.sh | bash

Now, install your preferred Node version (here we ask for the latest release of the
0.12 version):

nvm install 0.12

You might want to add a command to your .bashrc or .profile file to ensure that
a certain node version is used each time you start a shell:

start with node 0.12

nvm use 0.12

To test our system, we need to set up Node servers on both of these machines. Create
the following program file on each server, changing '**' to something unique on each
(such as one and two):

var http = require('http');

http.createServer(function(req, res) {
 res.writeHead(200, {
 "Content-Type" : "text/html"
 });

Scaling Node

[74]

 res.write('HOST **');
 res.end();
}).listen(8080)

Start this file on each server (node serverfile.js). Each server will now answer on
port 8080.

You should now be able to reach this server by pointing a browser to each droplet's
IP:8080. Once you have two servers responding with distinct messages, we can set
up the Nginx load balancer.

Load balancing across servers is straightforward with Nginx. You need to simply
indicate in the Nginx configuration script which upstream servers should be
balanced. The two Node servers we've just created are the upstream servers.
The following diagram describes how Nginx evenly distributes requests across
upstream servers:

Each request will be handled first by Nginx, which will check its upstream
configuration and, based on how it is configured, will (reverse) proxy requests to
upstream servers that will actually handle the request.

You will find the default Nginx server configuration file on your balancer droplet at
/etc/nginx/sites-available/default. In production, you'll most likely want to
create a custom directory and configuration file, but for our purposes, we'll simply
modify the default configuration file (you might want to make a backup before you
start modifying it).

Chapter 3

[75]

At the top of the Nginx configuration file, we want to define upstream servers that
will be candidates for redirection. This is simply a map with the arbitrary key lb-
servers to be referenced in the server definition that follows:

upstream lb_servers {
 server first.node.server.ip;
 server second.node.server.ip;
}

Now that we've established the candidate map, we need to configure Nginx such
that it forwards requests in a balanced way to each of the members of lb-servers:

server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 #root /usr/share/nginx/html;
 #index index.html index.htm;

 # Make site accessible from http://localhost/
 server_name localhost;

 location / {
 proxy_pass http://lb-servers; # Load balance mapped servers
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection 'upgrade';
 proxy_set_header Host $host;
 proxy_cache_bypass $http_upgrade;
 }

 ... more configuration options not specifically relevant to our
purposes
}

The key line is this one:

proxy_pass http://lb-servers

Note how the name lb-servers matches the name of our upstream definition. This
should make what is happening clear: an Nginx server listening on port 80 will
pass the request on to a server definition contained in lb-servers. If the upstream
definition has only one server in it, that server gets all the traffic. If several servers
are defined, Nginx attempts to distribute traffic evenly among them.

Scaling Node

[76]

It is also possible to balance load across several local servers using
the same technique. One would simply run different Node servers
on different ports, such as server 127.0.0.1:8001; server
127.0.0.1:8002;

Go ahead and change the Nginx configuration (consult the nginx.config file in the
code bundle for this book if you get stuck). Once you've changed it, restart Nginx
with the following command:

service nginx restart

Or, you can use this command:

service nginx stop

service nginx start

Assuming that the other two droplets running Node servers are active, you should
now be able to point your browser to your Nginx-enabled droplet and see messages
from those servers!

Because we will likely want more precise control over how traffic is distributed
across our upstream servers, there are further directives that can be applied to
upstream server definitions.

Nginx balances load using a weighted round-robin algorithm. In order to control the
relative weighting of traffic distribution, we use the weight directive:

upstream lb-servers {
 server first.node.server.ip weight=10;
 server second.node.server.ip weight=20;
}

This definition tells Nginx to distribute twice as much load to the second server
as to the first. Servers with more memory or CPUs might be favored, for example.
Another way to use this system is to create an A/B testing scenario, where one server
containing a proposed new design receives a small fraction of the total traffic such
that metrics on the testing server (sales, downloads, engagement length, and so on)
can be compared against the wider average.

Three other useful directives are available, which work together to manage
connection failures:

•	 max_fails: This is the number of times communication with a server fails
prior to marking that server as inoperative. The period of time within which
these failures must occur is defined by fail_timeout.

Chapter 3

[77]

•	 fail_timeout: This is the time slice during which max_fails must occur,
indicating that a server is inoperative. This number also indicates the amount
of time after a server is marked inoperative that Nginx will again attempt to
reach the flagged server. Here's an example:
upstream lb-servers {
 server first.node.server.ip weight=10 max_fails=2
 fail_timeout=20s;
 server second.node.server.ip weight=20 max_fails=10
 fail_timeout=5m;
}

•	 backup: A server marked with this directive will only be called when and
if all of the other listed servers are unavailable.

Additionally, there are some directives for the upstream definition that add some
control over how clients are directed to upstream servers:

•	 least_conn: This passes a request to the server with the least connections.
This provides a slightly smarter balancing, taking into consideration server
load as well as weighting.

•	 ip_hash: The idea here is to create a hash of each connecting IP and to ensure
that requests from a given client are always passed to the same server.

Another commonly used tool for balancing Node servers is the dedicated
load balancer HAProxy, which is available at http://haproxy.1wt.eu/.

Load balancing with Node
For many years, it was recommended that a web server (such as Nginx) be placed
in front of Node servers. The claim was that mature web servers handle static
file transfers more efficiently. While this may have been true for earlier Node
versions (which did suffer from the bugs that new technologies face), it is no longer
necessarily true in terms of pure speed. Some recent benchmarks bear this out:
http://centminmod.com/siegebenchmarks/2013/020313/index.html.

File serving speeds are, of course, not the only reason you might use a proxy such
as Nginx. It is often true that network topology characteristics make a reverse proxy
the better choice, especially when the centralization of common services, such as
compression, makes sense. The point is simply that Node should not be excluded
solely due to outdated biases about its ability to efficiently serve files. Let's look at one
example of a purely Node-based proxying and balancing solution, node-http-proxy.

http://haproxy.1wt.eu/
http://centminmod.com/siegebenchmarks/2013/020313/index.html

Scaling Node

[78]

Using node-http-proxy
Node is designed to facilitate the creation of network software, so it comes as no
surprise that several proxying modules have been developed. The team at NodeJitsu
has released the proxy they use in production—http-proxy. Let's take a look at how
we would use it to route requests to different Node servers.

Unlike with Nginx, the entirety of our routing stack will exist in Node. Listening on
port 80, one Node server will run our proxy. Three scenarios will be covered: using
a single box to run multiple Node servers on separate ports on the same machine;
using one box as a pure router proxying to external URLs; and creating a basic
round-robin load balancer.

As an initial example, let's look at how to use this module to redirect requests:

var httpProxy = require('http-proxy');

var proxy = httpProxy.createServer({
 target: {
 host: 'www.example.com',
 port: 80
 }
}).listen(80);

By starting this server on port 80 of our local machine, we are able to redirect the
user to another URL.

To run several distinct Node servers, each responding to a different URL, on a single
machine, you simply have to define a router:

var httpProxy = httpProxy.createServer({
 router: {
 'www.mywebsite.com' : '127.0.0.1:8001',
 'www.myothersite.com' : '127.0.0.1:8002',
 }
});
httpProxy.listen(80);

For each of your distinct websites, you can now point your DNS name servers
(via ANAME or CNAME) to the same endpoint (wherever this Node program is
running), and they will resolve to different Node servers. This is handy when you
want to run several websites but don't want to create a new physical server for
each one. Another strategy is to handle different paths within the same website on
different Node servers:

Chapter 3

[79]

var httpProxy = httpProxy.createServer({
 router: {
 'www.mywebsite.com/friends' : '127.0.0.1:8001',
 'www.mywebsite.com/foes' : '127.0.0.1:8002',
 }
});
httpProxy.listen(80);

This allows specialized functionality in your application to be handled by uniquely
configured servers.

Setting up a load balancer is also straightforward. As with Nginx's upstream
directive, we simply list the servers to be balanced and cycle through them:

var httpProxy = require('http-proxy');
var addresses = [
 {
 host: 'one.example.com',
 port: 80
 },
 {
 host: 'two.example.com',
 port: 80
 }
];

httpProxy.createServer(function(req, res, proxy) {
 var target = addresses.shift();
 proxy.proxyRequest(req, res, target);
 addresses.push(target);
}).listen(80);

Unlike with Nginx, we are responsible for doing the actual balancing. In this
example, we treat servers equally, cycling through them in order. After the selected
server is proxied, it is returned to the rear of the list.

It should be clear that this example could be easily extended to accommodate other
directives, such as Nginx's weight.

Another good option for proxying Node is James Halliday's bouncy
module available at https://github.com/substack/bouncy.

https://github.com/substack/bouncy

Scaling Node

[80]

Using message queues
One of the best ways to ensure that distributed servers maintain a dependable
communication channel is to bundle the complexity of remote procedure calls
into a messaging queue. When one server wishes to send a message to another
server, the message can simply be placed on this queue—like a "to-do" list for your
application—with the queue service doing the work of ensuring that messages get
delivered as well as delivering any important replies back to the original sender.

There are a few enterprise-grade message queues available, many of which deploy
the Advanced Message Queuing Protocol (AMQP). We will focus on a very stable
and well-known implementation: RabbitMQ.

To install RabbitMQ in your environment, follow the instructions found
at http://www.rabbitmq.com/download.html. Note that you will
also need to install Erlang (the instructions for which can be found at the
same link).

After installing it, you can start the RabbitMQ server with this command:

service rabbitmq-server start

To interact with RabbitMQ using Node, we will use Theo Schlossnagle's node-amqp
module:

npm install amqp

To use a message queue, one must first create a consumer bound to RabbitMQ that
will listen for messages published to the queue. The most basic consumer will listen
for all messages:

var amqp = require('amqp');

var consumer = amqp.createConnection({ host: 'localhost', port: 5672
});
var exchange;

consumer.on('ready', function() {
 exchange = consumer.exchange('node-topic-exchange', {type:
 "topic"});
 consumer.queue('node-topic-queue', function(q) {

 q.bind(exchange, '#');

http://www.rabbitmq.com/download.html

Chapter 3

[81]

 q.subscribe(function(message) {
 // Messages are buffers
 //
 console.log(message.data.toString('utf8'));
 });
 });
});

We are now listening for messages from the RabbitMQ server bound to port 5672. It
should be obvious that the localhost can be replaced with a proper server address and
bound to any number of distributed servers.

Once this consumer establishes a connection, it will establish the name of the queue
it will listen to and should bind to an exchange. In this example, we create a topic
exchange (the default), giving it a unique name. We also indicate that we would
like to listen for all messages via #. All that is left to do is subscribe to the queue,
receiving a message object. We will learn more about the message object as we
progress. For now, note the important data property containing the sent messages.

Now that we have established a consumer, let's publish a message to the exchange. If
all goes well, we will see the sent message appear in our console:

consumer.on('ready', function() {

 ...

 exchange.publish("some-topic", "Hello!");
});

// Hello!

We have already learned enough to implement useful scaling tools. If we have a
number of distributed Node processes, even on different physical servers, each can
reliably send messages to the others via RabbitMQ. Each process needs to simply
implement an exchange queue subscriber to receive messages and an exchange
publisher when messages need to be sent.

Three types of exchanges exist: direct, fanout, and topic. The differences appear in
the way each type of exchange processes routing keys—the first argument sent to
exchange.publish.

A direct exchange matches routing keys directly. Here's an example of a queue
binding:

queue.bind(exchange, 'room-1');

Scaling Node

[82]

The preceding queue binding will match only messages sent to room-1. Because no
parsing is necessary, direct exchanges are able to process more messages than topic
exchanges in a set period of time.

A fanout exchange is indiscriminate: it routes messages to all of the queues bound to
it, ignoring routing keys. This type of exchange is used for wide broadcasts.

A topic exchange matches routing keys based on the wildcards # and *. Unlike other
types, routing keys for topic exchanges must be composed of words separated by
dots—animals.dogs.poodle, for example. A # matches zero or more words—it will match
every message (as we saw in the previous example) just like a fanout exchange. The
other wildcard is *, and this matches exactly one word.

Direct and fanout exchanges can be implemented using nearly the same code as the
given topic exchange example, requiring only that the exchange type be changed,
and that bind operations be aware of how they will be associated with routing keys
(fanout subscribers receive all messages, regardless of the key; for a direct exchange,
the routing key must match directly).

This last example should drive home how topic exchanges work. We will create three
queues with different matching rules, filtering the messages each queue receives
from the exchange:

consumer.on('ready', function() {

 // When all 3 queues are ready, publish.
 //
 var cnt = 3;
 var queueReady = function() {
 if(--cnt > 0) {
 return;
 }
 exchange.publish('animals.dogs.poodles', 'Poodle!');
 exchange.publish('animals.dogs.dachshund', 'Dachshund!');
 exchange.publish('animals.cats.shorthaired', 'Shorthaired
 Cat!');
 exchange.publish('animals.dogs.shorthaired', 'Shorthaired
 Dog!');
 exchange.publish('animals.misc', 'Misc!');
 }

 var exchange = consumer.exchange('topical', {type: "topic"});

Chapter 3

[83]

 consumer.queue('queue-1', function(q) {

 q.bind(exchange, 'animals.*.shorthaired');
 q.subscribe(function(message) {
 console.log('animals.*.shorthaired -> ' +
 message.data.toString('utf8'));
 });

 queueReady();
 });

 consumer.queue('queue-2', function(q) {
 q.bind(exchange, '#');
 q.subscribe(function(message) {
 console.log('# -> ' + message.data.toString('utf8'));
 });

 queueReady();
 });

 consumer.queue('queue-3', function(q) {
 q.bind(exchange, '*.cats.*');
 q.subscribe(function(message) {
 console.log('*.cats.* -> ' + message.data.toString('utf8'));
 });

 queueReady();
 });
});

// # -> Poodle!
// animals.*.shorthaired -> Shorthaired Cat!
// *.cats.* -> Shorthaired Cat!
// # -> Dachshund!
// # -> Shorthaired Cat!
// animals.*.shorthaired -> Shorthaired Dog!
// # -> Shorthaired Dog!
// # -> Misc!

The node-amqp module contains further methods to control connections, queues,
and exchanges, in particular methods of removing queues from exchanges and
subscribers from queues. Generally, changing the makeup of a running queue on the
fly can lead to unexpected errors, so use these with caution.

Scaling Node

[84]

To learn more about the AMQP (and the options available when
setting up with node-amqp), visit http://www.rabbitmq.com/
tutorials/amqp-concepts.html.

Using Node's UDP Module
User Datagram Protocol (UDP) is a lightweight core Internet messaging protocol,
enabling servers to pass around concise datagrams. UDP was designed with a
minimum of protocol overhead, forgoing delivery, ordering, and duplication
prevention mechanisms in favor of ensuring high performance. UDP is a good choice
when perfect reliability is not required and high-speed transmission is, as found in
networked video games and videoconferencing applications. Logging is another
popular use for UDP.

This is not to say that UDP is normally unreliable. In most applications, it delivers
messages with high probability. It is simply not suitable when perfect reliability is
needed, such as in a banking application. It is an excellent candidate for monitoring
and logging applications and for noncritical messaging services.

Creating a UDP server with Node is straightforward:

var dgram = require('dgram');
var socket = dgram.createSocket('udp4');

socket.on('message', function(msg, info) {
 console.log('socket got: ' + msg + ' from ' +
 info.address + ':' + info.port);
});

socket.bind(41234);

socket.on('listening', function() {
 console.log('Listening for datagrams.');
});

The bind command takes three arguments:

•	 port: This is the integer port number.
•	 address: This is an optional address. If this is not specified, the OS will try

to listen on all addresses (which is often what you want). You might also try
using 0.0.0.0 explicitly.

•	 callback: This is an optional callback, which receives no arguments.

http://www.rabbitmq.com/tutorials/amqp-concepts.html
http://www.rabbitmq.com/tutorials/amqp-concepts.html

Chapter 3

[85]

This socket will now emit a message event whenever it receives a datagram via port
41234. The event callback receives the message itself as the first parameter and a
map of packet information as the second:

•	 address: This is the originating IP
•	 family: This is one of IPv4 or IPv6
•	 port: This is the originating port
•	 size: This is the size of the message in bytes

This map is similar to the map returned when calling socket.address().

In addition to the message and listening events, a UDP socket also emits a close
event and an error event, with the latter receiving an Error object whenever an
error occurs. To close a UDP socket (and trigger the close event), use server.
close().

Sending a message is even easier:

var client = dgram.createSocket('udp4');
var message = new Buffer('UDP says Hello!');
client.send(message, 0, message.length, 41234, 'localhost',
 function(err, bytes) {
 client.close();
});

The send method takes the form client.send(buffer, offset, length, port,
host, callback):

•	 buffer: This is a buffer containing the datagram to be sent
•	 offset: This is an integer indicating the position in the buffer where the

datagram begins
•	 length: This is the number of bytes in a datagram. In combination with

offset, this value identifies the full datagram within the buffer
•	 port: This is an integer identifying the destination port
•	 address: This is a string indicating the destination IP for the datagram
•	 callback: This is an optional callback function called after the send has

taken place.

The size of a datagram cannot exceed 65,507 bytes, which is equal to
2^16-1 (65,535) bytes minus the 8 bytes used by the UDP header minus
the 20 bytes used by the IP header.

Scaling Node

[86]

We now have another candidate for interprocess messaging. It would be rather easy
to set up a monitoring server for our Node application that listens on a UDP socket
for program updates and statistics sent from other processes. The protocol speed is
fast enough for real-time systems, and any packet loss or other UDP hiccups would
be insignificant taken as a percentage of total volume over time.

Taking the idea of broadcasting further, we can also use the dgram module to create
a multicast server. A "multicast" is simply a one-to-many server broadcast. We
can broadcast to a range of IPs that have been permanently reserved as multicast
addresses. The website http://www.iana.org/assignments/multicast-
addresses/multicast-addresses.xhtml has this to say:

"Host Extensions for IP Multicasting [RFC1112] specifies the extensions required
of a host implementation of the Internet Protocol (IP) to support multicasting. The
multicast addresses are in the range 224.0.0.0 through 239.255.255.255."

Additionally, the range between 224.0.0.0 and 224.0.0.255 is further reserved for
special routing protocols.

Also, certain port numbers are allocated for use by UDP (and TCP), a list of which
can be found at https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_
numbers.

The upshot of all this fascinating information is the knowledge that there is a block
of IPs and ports reserved for UDP and/or multicasting, and we are now going to use
some of them to implement multicasting over UDP with Node.

The only difference between setting up a multicasting UDP server and a "standard"
one is the binding of the multicasting server to a special UDP port to indicate
that we'd like to listen to all available network adapters. Our multicasting server
initialization looks like this:

var socket = dgram.createSocket('udp4');

var multicastAddress = '230.1.2.3';
var multicastPort = 5554;

socket.bind(multicastPort);

socket.on('listening', function() {
 this.setMulticastTTL(64);
 this.addMembership(multicastAddress);
});

http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Chapter 3

[87]

After requesting a multicast port binding, we wait for the socket listen event, at
which point we can configure our server.

The most important command is socket.addMembership, which tells the kernel
to join the multicast group at multicastAddress. Other UDP sockets can now
subscribe to the multicast group at this address.

Datagrams hop through networks just like any network packet. The
setMulticastTTL method is used to set the maximum number of hops ("time to
live") a datagram is allowed to make before it is abandoned and not delivered. The
acceptable range is 0–255, with the default being one (1) on most systems. This is
not usually a setting one must worry about, but it is available if deep visibility into
network topology lends relevance to this aspect of packet delivery.

If you'd also like to allow listening on the local interface,
use socket.setBroadcast(true) and socket.
setMulticastLoopback(true). This is normally not necessary.

We are eventually going to use this server to broadcast messages to all UDP listeners
on multicastAddress. For now, let's create two clients that will listen for multicasts:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 console.log('Client1 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, multicastAddress);

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 console.log('Client2 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, multicastAddress);

We now have two clients listening to the same multicast port. All that is left to do is
the multicasting. In this example, we will use setTimeout to send a counter value
every second:

var cnt = 1;
var sender;

Scaling Node

[88]

(sender = function() {
 var msg = new Buffer("This is message #" + cnt);
 socket.send(
 msg,
 0,
 msg.length,
 multicastPort,
 multicastAddress
);

 ++cnt;

 setTimeout(sender, 1000);

})();

The preceding code will produce something like the following:

Client2 received message This is message #1 from 67.40.141.16:5554

Client1 received message This is message #1 from 67.40.141.16:5554

Client2 received message This is message #2 from 67.40.141.16:5554

Client1 received message This is message #2 from 67.40.141.16:5554

Client2 received message This is message #3 from 67.40.141.16:5554

...

We have two clients listening to broadcasts from a specific group. Let's add another
client, listening on a different group—let's say at the multicast address 230.3.2.1:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 console.log('Client3 received message ' + message + ' from ' +
 remote.address + ':' + remote.port);
})
.bind(multicastPort, '230.3.2.1');

Because our server currently broadcasts messages to a different address, we will
need to change our server configuration and add this new address with another
addMembership call:

socket.on("listening", function() {
 this.addMembership(multicastAddress);
 this.addMembership('230.3.2.1');
});

Chapter 3

[89]

We can now send messages to both addresses:

(sender = function() {
 socket.send(
 ...
 multicastAddress
);

 socket.send(
 ...
 '230.3.2.1'
);

 ...
})();

Of course, nothing stops the client from broadcasting to others in its group or even
members of another group:

dgram.createSocket('udp4')
.on('message', function(message, remote) {
 var msg = new Buffer("Calling original group!");
 socket.send(
 msg,
 0,
 msg.length,
 multicastPort,
 '230.1.2.3' // multicastAddress
);
})
.bind(multicastPort, '230.3.2.1');

Any Node process that has an address on our network interface can now listen on
a UDP multicast address for messages, providing a fast and elegant interprocess
communication system.

Scaling Node

[90]

Summary
In this chapter, we looked at ways in which Node applications can be scaled both
vertically and horizontally. We learned how to use spawn on OS processes and to use
fork on new Node processes. The overview of the cluster module demonstrated
how easy it is to scale across cores using Node and efficiently and easily distribute
client connections across workers with built-in messaging channels to the central
(master) hub. We also looked at how horizontally distributed processes and servers
can communicate using message queues and UDP servers and how these servers can
be load balanced and proxied using Nginx or using Node modules designed for that
purpose.

Scaling is not only about servers and load balancing. In the next chapter, we'll look
at how to scale and manage resources, learn about memory management techniques,
synchronize data across distributed services, synchronize data-caching strategies,
and look at how to deal with massive numbers of simultaneous connections.

[91]

Managing Memory
and Space

Today's developer has easy access to surprisingly inexpensive storage solutions.
The movement away from monolithic systems toward composed and distributed
ones has certain advantages, yet inevitably introduces a few new problems. The
availability of cheap storage should not be an excuse to push everything you can
into memory or onto a disk without any limit, for instance. Also, where does
the state reside in such a system? Does a cluster of servers share a common
database connection? How is data synchronized in such a setup? If you are
using a shared-nothing noSQL architecture, how are state changes communicated
across all actors?

There are many considerations. Always seeking to use a minimum of resources is
a good guiding principle. In this chapter, we will look at ways to reduce the cost of
data storage in your Node programs, including tips on writing efficient, optimized
code. Certain strategies for efficiently sharing data across distributed servers will
be discussed, including caching strategies, microservices, interprocess messaging,
and other techniques to keep your systems fast, light, and scalable. Examples
demonstrating how to use tokens to manage user session data efficiently at scale
and storing extensive user activity data compactly using Redis will help you put
these ideas into practice.

Managing Memory and Space

[92]

Dealing with large crowds
Because Node is designed to make the writing of networked applications easier,
those using Node are often building applications composed of many isolated
services that are connected via message queues, sockets, REST APIs, and so on. I will
describe these as distributed applications composed of isolated services coupled and
coordinated through a network into systems that appear integrated to clients. In this
section and the sections that follow, we will consider how isolated services can be
designed to be memory efficient with a small footprint.

For the purposes of this section and what follows, the word microservice will
be used when referring to application architectures composed of many small
cooperating services. Generally, we'll explore ideas around how well-designed
modularization can often help keep a system from becoming inscrutable by helping
maintain expressive, scalable, testable systems that maintain production readiness.

Then, we'll put the microservice theory into practice by using Richard Rogers'
microservice toolkit for Node, Seneca (https://github.com/rjrodger/
seneca). Finally, we'll take a look at how to use Redis pub/sub as a cross-process
communication system, thus demonstrating another way to compose your own
microservice clusters.

Microservices
Any nontrivial, network-based application is composed of several independent
subsystems that must cooperate to fulfill the business or other requirements of the
larger system. For example, many web applications present browser-based interfaces
composed of one or several libraries and/or UI frameworks translating user actions
against JavaScript controllers into formalized network requests issued across several
web protocols. These ultimately communicate with any number of servers running
programs that implement various sorts of business logic—all sharing one or several
databases, perhaps across several data centers. These initiate and coordinate even
longer chains of requests.

Because there is no absolute right way to build software, every design is biased
toward one or a few key principles, in particular, principles guiding how a system
should scale, which normally affects how it is deployed. A few of the key principles
informing the Node community—modular systems composed of small programs
that do one thing well and are event-driven, I/O focused, and network focused—
align closely with those underpinning microservices.

https://github.com/rjrodger/seneca
https://github.com/rjrodger/seneca

Chapter 4

[93]

Microservice architecture designs typically respect the following principles:

•	 A system should be broken down into many small services that each do one
thing and no more. This helps with clarity.

•	 The code-powering services should be short and simple. A common
guideline in the Node community is to limit programs to somewhere near
100 lines of code. This helps with maintainability.

•	 No service should depend on the existence of another service or even know
of the existence of other services. Services are decoupled. This helps with
scalability, clarity, and maintainability.

•	 Data models should be decentralized, with a common (but not required)
microservice pattern—that each service maintains its own database or a
similar model. Services are stateless (this reinforces the previous point).

•	 Independent services are easy to replicate (or cull). Scaling (in both
directions) is a natural feature of microservice architectures as new nodes can
be added or removed as necessary. This also enables easy experimentation,
where prototype services can be tested, new features can be tested or
deployed temporarily, and so on.

•	 Independent, stateless services can be replaced or upgraded (or downgraded)
independently regardless of the state of any system they form a part of. This
opens the possibility of more focused, discrete deployments and refactors.

•	 Failure is unavoidable, so systems should be designed to fail gracefully.
Localize points of failure (the first and second points of this list), isolate
failure (the third and fourth points of this list), and implement recovery
mechanisms (easier when error boundaries are clearly defined, small, and
noncritical). Promote robustness by reducing the scope of unreliability.

•	 Testing is essential to any nontrivial system. Unambiguous and simple
stateless services are easy to test. A key aspect of testing is simulation—
the stubbing or mocking of services in order to test service interoperability.
Clearly delineated services are also easy to simulate and can, therefore, be
intelligently composed into testable systems.

The idea is simple: smaller services are easy to reason about individually,
encouraging correctness of specifications (little or no gray area) and clarity of
APIs (constrained sets of output follow constrained sets of input). Being stateless
and decoupled, services promote system composability, help with scaling and
maintainability, and are easier to deploy. Also, very precise, discrete monitoring
of these sorts of systems is possible.

Managing Memory and Space

[94]

Redis pub/sub
In the previous chapter, we discussed the use of message queues, an excellent
technique for rapid cross-process communication. Redis offers an interface allowing
connected clients to subscribe to a particular channel and broadcast messages to that
channel. This is generally described as a publish/subscribe paradigm. When you
do not need more complex message exchanges and brokers but a simple and fast
notification network, pub/sub works well.

Let's set up a basic pub/sub example and then move on to an example of using
pub/sub to create a microservice architecture where many components doing
a particular job are passed requests for their services and pass back results—all
coordinated via Redis.

First, let's look at the most basic example of pub/sub—a script that demonstrates
how to subscribe to a channel and how to publish to that channel:

var redis = require("redis");

var publisher = redis.createClient();
var subscriber = redis.createClient();

subscriber.subscribe('channel5');

subscriber.on('message', function(channel, message) {
 console.log('channel: ', channel)
 console.log('message: ', message)
})

subscriber.on('subscribe', function() {
 publisher.publish('channel5', 'This is a message')
})

We are using Matt Ranney's Redis npm module. Find out more
at https://github.com/mranney/node_redis.

To create both a publisher and a subscriber, we create two Redis clients. Note that,
once a subscribe or psubscribe (more on psubscribe later) command is issued
to a client, that client will enter subscriber mode, no longer accepting standard Redis
commands. Typically, you will create two clients: one listening for messages on
subscribed channels and the other a standard Redis client used for all other commands.

https://github.com/mranney/node_redis

Chapter 4

[95]

Also note that we must wait for the subscribe event to be fired on the subscriber
client prior to publishing any messages. Redis does not hold a queue of published
messages, which involves waiting for subscribers. A message for which there are no
subscribers is simply dropped. The following is based on the Redis documentation:

"…published messages are characterized into channels, without knowledge of
what (if any) subscribers there may be. Subscribers express interest in one or more
channels, and only receive messages that are of interest, without knowledge of what
(if any) publishers there are. This decoupling of publishers and subscribers can
allow for greater scalability and a more dynamic network topology."

So, we must wait for a subscriber prior to publishing. Once that subscription is made,
we can publish to the channel5 channel, and the subscriber handle listening on
that channel receives our message:

channel: channel5

message: This is a message

Let's take this a little further by creating two distinct Node processes, each
performing a simple (micro) service. We'll build a calculator service with two
operations—add and subtract. A separate, dedicated process will perform each
operation, and the two-way communication between the calculator service and its
helper services will be managed by Redis pub/sub.

First, we design two Node programs, one that adds and one that subtracts. We'll only
show the adder here:

var redis = require("redis");
var publisher = redis.createClient();
var subscriber = redis.createClient();

subscriber.subscribe('service:add');
subscriber.on('message', function(channel, operands) {
 var result = JSON.parse(operands).reduce(function(a, b) {
 return a + b;
 })
 publisher.publish('added', result);
})
subscriber.on('subscribe', function() {
 process.send('ok')
})

The subtraction program is nearly identical, differing only in the channel it listens
on and the calculation it performs. These two services exist in the add.js and
subtract.js files.

Managing Memory and Space

[96]

We can see what this service does. When it receives a message on the service:add
channel, it will fetch the two operands passed to it, add them, and publish the result
to the added channel. As we'll soon see, the calculator service will listen for results on
the added channel. Also, you will notice a call to process.send—this is used
to notify the calculator service that the add service is ready. This will make more
sense shortly.

Now, let's build the calculator.js service itself:

var redis = require("redis");
var publisher = redis.createClient();
var subscriber = redis.createClient();

var child_process = require('child_process');
var add = child_process.fork('add.js');
var subtract = child_process.fork('subtract.js');

add.on('message', function() {
 publisher.publish('service:add', JSON.stringify([7,3]))
})
subtract.on('message', function() {
 publisher.publish('service:subtract', JSON.stringify([7,3]))
})
subscriber.subscribe('result:added')
subscriber.subscribe('result:subtracted')
subscriber.on('message', function(operation, result) {
 console.log(operation + ' = ', result);
});

The main calculator service forks two new processes running the add.js and
subtract.js microservices. Typically, in a real system, the creation of these other
services would be done independently, perhaps even on completely separate
machines. This simplification is useful for our example, but it does demonstrate
a simple way to create vertical scaling across cores. Clearly, each child process in
Node on which fork has been used comes with a communication channel built in,
allowing child processes to communicate with their parents as seen in the calculator
service's use of add.on(…) and substract.on(...) and in our calculation services
with process.send(…).

Chapter 4

[97]

Once the calculator service receives notice that its dependent services are ready, it
publishes a request for work to be done on the service:add and service:subtract
channels by passing operands. As we saw earlier, each service listens on its own
channel and performs the work requested, publishing a result that this calculator
service can then receive and use. When calculator.js is executed, the following
will be displayed in your terminal:

result:subtracted = 4

result:added = 10

Earlier, we mentioned the psubscribe method. The p prefix signifies pattern and
is useful when you want to subscribe to channels using a typical glob pattern. For
example, rather than the calculator service subscribing to two channels with the
common result: prefix, we can simplify it as follows:

subscriber.psubscribe('result:*')
subscriber.on('pmessage', function(operation, result) {
 console.log(operation + ' = ', result);
})

Now, any additional service can publish results with the result: prefix and can
be picked up by our calculator. Note that the p prefix must also be reflected in the
pmessage event listener.

Microservices with Seneca
Seneca is a Node-based microservice construction kit that helps you organize
your code into distinct actions triggered by patterns. Seneca applications are
composed of services that can accept JSON messages and, optionally, return
some JSON. Services register an interest in messages with certain characteristics.
For example, a service might run whenever a JSON message displaying { cmd:
"doSomething" } is broadcast.

To start, let's create a service that responds to two patterns, one pattern returning
"Hello!" and the other returning "Goodbye!". Create a hellogoodbye.js file
containing the following code:

var seneca = require('seneca')();
var client = seneca.client(8080);

require('seneca')()
.add({
 operation:'sayHello'
},
function(args, done) {

Managing Memory and Space

[98]

 done(null, {message: "Hello!"})
})
.add({
 operation:'sayGoodbye'
},
function(args, done) {
 done(null, {message: "Goodbye!"})
})
.listen(8080);

client.act({ operation: "sayHello" }, function(err, result) {
 console.log(result.message);
})

client.act({ operation: "sayGoodbye" }, function(err, result) {
 console.log(result.message);
})

The call to seneca() starts up a service that will listen on port 8080 on localhost
for patterns rendered in the JSON format—one of either { operation: "sayHello"
} or { operation: "sayGoodbye" }. We also create a client object connected to
the Seneca service on 8080 and have that client act against those patterns. When this
program is executed, you will see Hello! and Goodbye! displayed in your terminal.

Because the Seneca service is listening on HTTP by default, you can achieve the same
result by making a direct call over HTTP, operating against the /act route:

curl -d '{"operation":"sayHello"}' http://localhost:8080/act

// {"message":"Hello!"}

Now, let's replicate the calculator application developed earlier, this time using
Seneca. We're going to create two services, each listening on a distinct port, with
one performing addition and the other performing subtraction. As in the previous
calculator example, each will be started as an individual process and called remotely.

Create an add.js file as follows:

require('seneca')()
.add({
 operation:'add'
},
function(args, done) {
 var result = args.operands[0] + args.operands[1];
 done(null, {
 result : result

Chapter 4

[99]

 })
})
.listen({
 host:'127.0.0.1',
 port:8081
})

Next, create a subtract.js file identical to add.js, changing only its operation
parameter and, of course, its algorithm:

...

.add({
 operation:'subtract'
},
...
 var result = args.operands[0] - args.operands[1];
...

Open two terminals, and start both services:

node add.js

...

node subtract.js

To demonstrate the usage of these services, create a calculator.js file that binds
a client to each service on its unique port and acts against them. Note that you must
create distinct Seneca clients:

var add = require('seneca')().client({
 host:'127.0.0.1',
 port:8081
})
var subtract = require('seneca')().client({
 host:'127.0.0.1',
 port:8082
})
add.act({
 operation:'add',
 operands: [7,3]
},
function(err, op) {
 console.log(op.result)
})
subtract.act({
 operation:'subtract',
 operands: [7,3]

Managing Memory and Space

[100]

},
function(err, op) {
 console.log(op.result)
})

Executing this program will result in the following:

10 // adding

4 // subtracting

Just as with the previous example, we can make a direct HTTP call:

curl -d '{"operation":"add","operands":[7,3]}' http://127.0.0.1:8081/act

// {"result":10}

By building out your calculator in this way, each operation can be isolated into its
own service, and you can add or remove functionality as needed without affecting
the overall program. Should a service develop bugs, you can fix and replace it
without stopping the general calculator application. If one operation requires more
powerful hardware or more memory, you can shift it to its own server without
stopping the calculator application or altering your application logic—you only need
to change the IP address of the targeted service. In the same way, it is easy to see
how, by stringing together the database, authentication, transaction, mapping, and
other services, they can be more easily modeled, deployed, scaled, monitored, and
maintained than if they were all coupled to a centralized service manager.

Reducing memory usage
JavaScript was born and raised in the browser environment. For most of its history,
this also implied that JavaScript programs were running on desktop systems with an
enormous pool of available memory. For this reason, many JavaScript programmers
have not traditionally thought much about managing memory in their applications.

In the world of Node, memory is not so cheap. According to Joyent (https://github.
com/joyent/node/wiki/FAQ#what-is-the-memory-limit-on-a-node-process):

"Currently, by default, v8 has a memory limit of 512 MB on 32-bit systems and
1 GB on 64-bit systems. The limit can be raised by setting --max_old_space_size
to a maximum of ~1024 (~1 GB) (32-bit) and ~1741 (~1.7 GiB) (64-bit), but it
is recommended that you split your single process into several workers if you are
hitting memory limits."

Let's go over possible strategies to reduce the amount of memory your Node
programs consume. We'll end with a discussion of how to make use of two
memory-efficient data structures supported by Redis when developing your projects.

https://github.com/joyent/node/wiki/FAQ#what-is-the-memory-limit-on-a-node-process
https://github.com/joyent/node/wiki/FAQ#what-is-the-memory-limit-on-a-node-process

Chapter 4

[101]

Use streams, not buffers
The design and implementation of Node.js native modules follow a simple directive:
keep everything asynchronous. This design ethic, by convention, informs the design
of modules contributed by the Node community.

When a process operates synchronously, it holds, or locks, the total amount of memory
it needs to fully complete, at which point the memory it has held is flushed, usually
returning this result to the calling method or process. For example, the following
operation will load the entirety of a file into the memory prior to returning it:

var http = require('http')
var fs = require('fs')
http.createServer(function(req, res) {
 fs.readFile('./somefile.js', function(err, data) {
 res.writeHead(200);
 res.end(data)
 })
}).listen(8000)

When a request is made to localhost:8000, the somefile.js file is read off the
filesystem in its entirety and returned to the client. That is the desired effect—but
there is a slight problem. Because the entire file is being pushed into a buffer prior
to being returned, an amount of memory equal to the byte size of the file must be
allocated on each request. While the operation is itself asynchronous (allowing other
operations to proceed), just a few requests for a very large file (of several MB, for
example) can overflow the memory and take down the Node process.

Node excels at creating scalable web services. One of the reasons for this is the focus
on providing robust Stream interfaces.

A better strategy is to stream the file directly to the HTTP response object (which is a
writable stream):

http.createServer(function(req, res) {
 fs.createReadStream('./static_buffered.js').pipe(res);
}).listen(8000)

In addition to requiring less code, data is sent (piped) directly to the out stream,
using very little memory.

Managing Memory and Space

[102]

On the other hand, we can use Stream to enable a very nice and composable pipeline
of transformations. There are several ways to achieve this goal (such as with
Transform Stream), but we'll just create our own transformer.

This script will take an input from process.stdin and convert what is received to
uppercase, piping the result back to process.stdout:

var Stream = require('stream')
var through = new Stream;
through.readable = true;
through.writable = true;
through.write = function(buf) {
 through.emit('data', buf.toString().toUpperCase())
}
through.end = function(buf) {
 arguments.length && through.write(buf)
 through.emit('end')
}
process.stdin.pipe(through).pipe(process.stdout);

As much as possible, convert your program logic into discrete stream
transformations, and compose useful pipelines that do good things with
data without touching the memory.

Understanding prototypes
JavaScript is an Object-oriented (OO) prototype-based language. It is important
for you to understand what this means and how this sort of design is more memory
efficient than many traditional OO language designs when used correctly. Because
the storage of state data within Node processes is a common practice (such as
connection data lookup tables within a socket server), we should leverage the
prototypal nature of the language to minimize memory usage. What follows is a brief
but pointed comparison of the classical inheritance-based object model and the object
system that JavaScript provides in terms of memory usage and efficiency.

In class-based systems, a class contains instructions on how to create instances of
itself. In other words, a class describes a set containing objects built according to
a class specification, which includes things such as default values for attributes of
constructed objects. To create an instance of a class, there must be a class definition
that describes how to build that instance. Classes can also inherit properties from
each other, creating new instance blueprints that share characteristics with other
blueprints—an inheritance model describing the provenance of objects.

Chapter 4

[103]

The primary purpose of any OO system is to facilitate the sharing of common
knowledge between related objects. For example, this is how you would create
two Point instances using an inheritance model:

Note that both instances now maintain an identical attribute structure. Additionally,
the property x of both point instances has been copied from the base point class.
Importantly, notice that the value of x has been copied to each instance even though
this attribute value is identical in both instances.

Objects in a prototypal language do not require a class to define their composition.
For example, an object in JavaScript can be created literally:

var myPoint = {
 x : 100,
 y : 50
}

Not requiring the storage of a class definition prior to creating an object instance is
already more memory efficient. Now, consider this use of prototypes to replicate the
inheritance-based example discussed previously. In the following code, we see how a
single object, myPoint, is passed as the first object to Object.create, which returns
a new object with myPoint as its prototype:

 var myPoint = {
 x: 100,
 y: 50
}
var pointA = Object.create(myPoint, {
 y: 100
})
var pointA = Object.create(myPoint, {
 y: 200
})

Managing Memory and Space

[104]

Object.create is the preferred method in modern JavaScript
(ES5+) to create objects. Older browsers will not support this
syntax. For more information on compatibility, visit http://
kangax.github.io/compat-table/es5/#Object.create.

This creates the following object construct:

Note that each point instance does not store copies of attributes, the value of which
is not explicitly declared. Prototypal systems employ message delegation, not
inheritance. When a point instance receives the message give me x, and it cannot
satisfy that request, it delegates the responsibility for satisfying that message to its
prototype (which, in this case, does have a value for x). It should be obvious that,
in real-world scenarios with large and complex objects, the ability to share default
values across many instances without redundantly copying identical bytes will
lead to a smaller memory footprint. Additionally, these instances can themselves
function as prototypes for other objects, continuing a delegation chain indefinitely
and enabling elegant object graphs using only as much memory as necessary to
distinguish unique object properties.

Memory efficiency also speeds up instantiation. As should be clear from the
preceding code, delegating responsibility for messages to a prototype implies that
your extended receiver requires a smaller instance footprint—fewer slots need to be
allocated per object. The following are two construction function definitions:

var rec1 = function() {}
rec1.prototype.message = function() { ... }
var rec2 = function() {
 this.message = function() { ... }
}

http://kangax.github.io/compat-table/es5/#Object.create
http://kangax.github.io/compat-table/es5/#Object.create

Chapter 4

[105]

Even with these simple definitions, many instances built from the first constructor
will consume much less memory than an equal number of instances constructed
from the second—new Rec1() will complete well before new Rec2() due to the
redundant copying seen in the second prototype-less constructor.

You can see a performance comparison of the two instantiation
methods at http://jsperf.com/prototype-speeds.

Use prototypes intelligently to reduce memory usage in your objects and to lower
instantiation times. Determine the static or infrequently changed attributes and
methods of your objects and put those into prototypes. This will allow you to create
thousands of objects quickly, while reducing redundancy.

Memory-efficient data structures with Redis
While you should use the memory allotted to you in each Node process, more
memory will likely be needed. In this section, we will look at Redis, an in-memory,
high-speed database, and how it can be used to efficiently extend the amount of
memory available to your programs.

At its most basic, Redis is a fast key-value store. We'll see later how it can be used
as a cache for commonly used pieces of data. However, it also provides powerful
data structures and an API allowing complex operations on those structures, thus
helping with the modeling of sets of data and the relationships between sets of data.
Here, we will discuss how to use Redis support for Bit Operations (bitops) and
HyperLogLog—two space-efficient and, importantly, space-predictable memory
structures to store and analyze the activity of data.

Using bitwise operations to analyze user actions
over time
One of the more interesting features Redis provides is the ability to store binary
numbers as values for keys. Multiple keys containing binary values can be compared
by using the bitwise operators AND, OR, and XOR. By applying bitmasks mapping
a range of bits to other binary values, you can make very rapid and memory-efficient
analytical comparisons. In this section, we will learn some typical examples of how to
use this technique.

http://jsperf.com/prototype-speeds

Managing Memory and Space

[106]

Any key in a Redis database can store (2^32 - 1) bits or just under 512 MiB. This
means that there are approximately 4.29 billion columns, or offsets, that can be set per
key. This is a large number of data points referenced by a single key. We can set bits
along these ranges to describe the characteristics of an item we would like to track,
such as the number of users who have viewed a given article. Furthermore, we can use
bit operations to gather other dimensions of information, such as what percentage of
viewers of an article are female. Let's look at a few examples.

Setting, getting, and counting bits
Let's assume that we are serving many different articles and each article is assigned a
unique identifier. Also assume that we have 100,000 active members on our website,
and that each user also has a unique identifier—a number between 1 and 100,000.
Using bit operations, we can easily track article view activity on a given day by
creating a key in Redis, which can be done by combining the article's unique key and
a date string and setting bits at that key corresponding to the user ID associated with
an article view. For example:

article:324:01-03-2014 : 00010100111010001001111...

This key represents article 324 on a specific date, efficiently storing the unique user
IDs of viewers on that day by flipping a bit at an offset corresponding to the user's
assigned ID. Whenever a user views an article, fetch that user's ID, use that number
as an offset value, and use the setbit command to set a bit at that offset:

redis.setbit('article:324:01-03-2014', userId, 1)

In what follows, we're going to demonstrate how to use Redis bitops to efficiently
store and analyze data. First, let's create data for three articles:

var redis = require('redis');
var client = redis.createClient();
var multi = client.multi();
// Create three articles with randomized hits representing user views
var id = 100000;
while(id--) {
 multi.setbit('article1:today', id, Math.round(Math.random(1)));
 multi.setbit('article2:today', id, Math.round(Math.random(1)));
 multi.setbit('article3:today', id, Math.round(Math.random(1)));
}
multi.exec(function(err) {
 // done
})

Chapter 4

[107]

Here, we simply created three Redis keys, 'article (1-3):today', and randomly
set 100,000 bits on each key—either 0 or 1. Using the technique of storing user
activity based on user ID offsets, we now have sample data for a hypothetical day of
traffic against three articles.

We're using Matt Ranney's node_redis module (https://
github.com/mranney), which supports the Redis multi construct,
allowing the execution of several instructions in one pipeline rather
than suffering the cost of calling each individually. Always use
multi when performing several operations in order to speed up
your operations. Note also how the ordering guarantees provided by
Redis ensure ordered execution and how its atomicity guarantees that
either all or none of the instructions in a transaction will succeed. See
http://redis.io/topics/transactions.

To count the number of users who have viewed an article, we can use bitcount:

client.bitcount('article1:today', function(err, count) {
 console.log(count)
})

This is straightforward: the number of users who saw the article equals the number
of bits set on the key. Now, let's count the total number of article views:

client.multi([
 ["bitcount", "article1:today"],
 ["bitcount", "article2:today"],
 ["bitcount", "article3:today"]
]).exec(function(err, totals) {
 var total = totals.reduce(function(prev, cur) {
 return prev + cur;
 }, 0);
 console.log("Total views: ", total);
})

Once multi returns an array of results corresponding to the results returned by
Redis for each operation (a count of bits), we reduce the count to a sum representing
the total number of views of all our articles.

If we are interested, instead, in how many articles user 123 has viewed today, we can
use getbit, which simply returns the value (either 0 or 1) at a given offset. The result
will be in the range 0–3:

client.multi([
 ["getbit", "article1:today", 123],
 ["getbit", "article2:today", 123],

https://github.com/mranney
https://github.com/mranney
http://redis.io/topics/transactions

Managing Memory and Space

[108]

 ["getbit", "article3:today", 123]
]).exec(function(err, hits) {
 var total = hits.reduce(function(prev, cur) {
 return prev + cur;
 }, 0);
 console.log(total); // 0, 1, 2 or 3
})

These are very useful and direct ways to glean information from bit representations.
Let's go a little further and learn about filtering bits using bitmasks and the AND,
OR, and XOR operators.

Bitmasks and filtering results
Previously, we learned how to count the number of articles user 123 has seen. What
if we want to check whether user 123 has read both articles? Using the bitop AND,
this is easy to accomplish:

client.multi([
 ['setbit', 'user123', 123, 1],
 ['bitop', 'AND','123:sawboth','user123','article1:today',
 'article3:today'],
 ['getbit', '123:sawboth', 123]
]).exec(function(err, result) {
 var sawboth = result[2];
 console.log('123 saw both articles: ', !!sawboth);
});

First, we create a mask that isolates a specific user stored at the key 'user123',
containing a single positive bit at offset 123 (again, representing the user's ID). The
results of an AND operation on two or more bit representations is not returned as a
value by Redis but rather written to a specified key, which is given in the preceding
example as '123:sawboth'. This key contains the bit representation that answers
the question whether both the article keys contain bit representations that also have a
positive bit at the same offset as the 'user123' key.

What if we wanted to find the total number of users who have seen at least one
article? The bitop OR works well in this case:

client.multi([
 ['bitop', 'OR','atleastonearticle','article1:today',
 'article2:today','article3:today'],
 ['bitcount', 'atleastonearticle']
]).exec(function(err, results) {
 console.log("At least one: ", results[1]);
});

Chapter 4

[109]

Here, the 'atleastonearticle' key flags bits at all offsets that were set in any one
of the three articles.

We can use these techniques to create a simple recommendation engine. For
example, if we are able to determine via other means that two articles are similar
(based on tags, keywords, and so on), we can find all users that have read one and
recommended the other. To do this, we will use XOR in order to find all users that
have read the first article or the second article, but not both. We then break that set
into two lists: those who have read the first article and those who have read the
second article. We can then use these lists to offer recommendations:

client.multi([
 ['bitop','XOR','recommendother','article1:today',
 'article2:today'],
['bitop','AND','recommend:article1','recommendother',
 'article2:today'],
 ['bitop','AND','recommend:article2','recommendother',
 'article1:today'],
 ['bitcount', 'recommendother'],
 ['bitcount', 'recommend:article1'],
 ['bitcount', 'recommend:article2'],
 ['del', 'recommendother', 'recommend:article1',
 'recommend:article2']
]).exec(function(err, results) {
 // Note result offset due to first 3 setup ops
 console.log("Didn't see both articles: ", results[3]);
 console.log("Saw article2; recommend article1: ", results[4]);
 console.log("Saw article1; recommend article2: ", results[5]);
})

While it is not necessary, we also fetch a count of each list and delete the result keys
when we are done.

The total number of bytes occupied by a binary value in Redis is calculated by dividing
the largest offset by 8. This means that storing access data for even 1,000,000 users on
one article requires 125 KB—not a lot. If you have 1,000 articles in your database, you
can store full-access data for 1,000,000 users in 125 MB—again, not a very large amount
of memory or storage to spend in return for such a rich set of analytics data. Also, the
amount of storage needed can be precisely calculated ahead of time.

View the code bundle for an example of building a like this page
service, where we use a bookmarklet to trigger likes on any URL
using bit operations to store the time at which each like occurs
(offsetting by the current second on a given day).

Managing Memory and Space

[110]

Other useful ways to deploy bitwise ideas are easy to find. Consider that if
we allocate 86,400 bits to a key (the number of seconds in a day) and set a bit
corresponding to the current second in the day, whenever a particular action is
performed (such as a login), we have spent 86400 / 8 / 1000 = 10.8 KB to store login
data that can easily be filtered using bitmasks to deliver analytics data.

As an exercise, use bitmasks to demonstrate gender breakdown in article readership.
Assume that we have stored two keys in Redis, one reflecting the user IDs identified
as female and the other as male:

users:female : 00100001011000000011110010101...
users:male : 11011110100111111100001101010...

Using bit operations, we filter articles by gender.

Using HyperLogLog to count unique anonymous
visitors
One of the most common things done with databases is storing and counting unique
things. How many events of a certain type have occurred? How many tags have
been created?

Consider the nearly ubiquitous task of every marketer: counting the number of
unique visitors to a web page. Traditionally, counting is done in databases by
writing a row of data or in logs by writing a line of text whenever a visitor lands
on a page. Each unique visit increments the set length by one. These are simple and
straightforward techniques.

However, there is a problem: what if the same person arrives at the same page
more than once? Whenever the user John lands on a page, some work must be
done to determine whether this is a first-time occurrence (record it), or a repeat
occurrence (don't record it). And there is another problem: the entire sequence of
bytes representing a unique identifier—typically a very long hash—must be stored.
Each unique item adds to the total memory expended in keeping track of item counts
of the cardinality of a set. As we can't know in advance how many unique hits will
occur, we cannot know how much memory will be needed to store this potential
activity; we are, therefore, exposed to the risk of our system being overwhelmed
when one page or another becomes very popular, goes viral, and so on, overnight.

Chapter 4

[111]

HyperLogLog is a probabilistic data structure that allows a nearly infinite number
of unique items to be counted within a fixed memory allocation. As Salvatore
Sanfilippo puts it at http://antirez.com/news/75:

"HyperLogLog is remarkable as it provides a very good approximation of the
cardinality of a set even using a very small amount of memory. In the Redis
implementation it only uses 12kbytes per key to count with a standard error of
0.81%, and there is no limit to the number of items you can count, unless you
approach 2^64 items (which seems quite unlikely)."

In your code bundle, you will find the /hyperloglog folder containing a simple
counting application. Start this application by running server.js, and then, in your
browser, visit localhost:8080. When you get there, click on the Send a specific
value button. You should see the following output:

You have inserted the value 123 into a HyperLogLog key, and the number returned
(1) is the cardinality of that key's set. Click on the same button a few times— given
that this structure maintains a count of unique values, the number should not change.
Now, try adding random values. You will see the numbers returned go up. Regardless
of how many entries you make in the log key, the same amount of memory will be
used. This sort of predictability is great when scaling out your application.

You can find the index.html page describing this client interface in the code
bundle. All that the client needs to do is send an XHR request to localhost:8080/
log/<some value>. Feel free to browse the code. More to the point, let's look at how
the relevant route handler is defined on the server to insert values into HyperLogLog
and retrieve log cardinality:

var http = require('http');
var redis = require('redis');
var client = redis.createClient();
var hyperLLKey = 'hyper:uniques';

...

http.createServer(function(request, response) {

 var route = request.url;

http://antirez.com/news/75

Managing Memory and Space

[112]

 var val = route.match(/^\/log\/(.*)/);

...

 if(val) {
 val = val[1];
 return client.pfadd(hyperLLKey, val, function() {
 client.pfcount(hyperLLKey, function(err, card) {
 respond(response, 200, JSON.stringify({
 count: err ? 0 : card
 }))
 })
 });
 }
}).listen(8080)

After validating that we have received a new value on the /log route, we add that
value to hyperLLKey using the PFADD command (in Redis, if a key does not exist
when performing an insert operation, it is automatically created). Once inserted
successfully, the key is queried for its PFCOUNT, and the updated set's cardinality is
returned to the client.

In addition, the PFMERGE command lets you merge (create the union of) several
HyperLogLog sets and fetch the cardinality of the resulting set. The following code
will result in a cardinality value of 10:

var redis = require('redis');
var client= redis.createClient();
var multi = client.multi();

client.multi([
 ['pfadd', 'merge1', 1, 2, 3, 4, 5, 6, 10],
 ['pfadd', 'merge2', 1, 2, 3, 4, 5, 6, 7, 8, 9],
 ['pfmerge', 'merged', 'merge1', 'merge2'],
 ['pfcount', 'merged'],
 ['del', 'merge1', 'merge2', 'merged']
]).exec(function(err, result) {
 console.log('Union set cardinality', result[3]);
});

The ability to approximate the cardinality of merged sets brings to mind the sort of
efficient analytics possibilities we saw when exploring bitwise operations. Consider
HyperLogLog when counts of many unique values are useful analytically and an
imprecise but very closely approximated count is sufficient (such as tracking the
number of users who logged in today, the total number of pages viewed, and so on).

Chapter 4

[113]

Taming V8 and optimizing performance
V8 manages Node's main process thread. When executing JavaScript, V8 does so in
its own process, and its internal behavior is not controlled by Node. However, we
can write JavaScript in a way that helps V8 achieve optimal compilation results. In
this section, we'll focus on how to write efficient JavaScript and take a look at special
configuration flags we can pass to V8 that help with keeping our Node process fast
and light.

The version of V8 used by your Node installation can be viewed
by typing the following:
node –e "console.log(process.versions.v8)"

Optimizing JavaScript
The convenience of a dynamic language is in avoiding the strictness that compiled
languages impose. For example, you need not explicitly define object property
types and can actually change those property types at will. This dynamism makes
traditional compilation impossible but opens up interesting new opportunities for
exploratory languages, such as JavaScript. Nevertheless, dynamism introduces
a significant penalty in terms of execution speeds when compared to statically
compiled languages. The limited speed of JavaScript has regularly been identified as
one of its major weaknesses.

V8 attempts to achieve the sorts of speeds with JavaScript that one observes for
compiled languages. V8 attempts to compile JavaScript into native machine code
rather than interpreting bytecode or using other just-in-time techniques. Because the
precise runtime topology of a JavaScript program cannot be known ahead of time
(the language is dynamic), compilation consists of a two-stage, speculative approach:

1.	 Initially, a first-pass compiler converts your code into a runnable state
as quickly as possible. During this step, type analysis and other detailed
analysis of the code is deferred, achieving fast compilation—your JavaScript
can begin executing as close to instantly as possible. Further optimizations
are accomplished during the second step.

Managing Memory and Space

[114]

2.	 Once the program is up and running, an optimizing compiler then begins
its job of watching how your program runs and attempting to determine its
current and future runtime characteristics, optimizing and re-optimizing
as necessary. For example, if a certain function is called many thousands
of times with similar arguments of a consistent type, V8 recompiles that
function with optimized code. While the first compile step was conservative
with an as-yet unknown and untyped functional signature, this hot function's
predictable texture impels V8 to assume a certain optimal profile and
recompile based on that assumption.

Assumptions help us make decisions more quickly but can lead to mistakes. What
if the hot function that V8's compiler just optimized against a certain type signature
is now called with arguments violating that optimized profile? V8 has no choice
in that case: it must de-optimize the function—V8 must admit its mistake and roll
back the work it has done. It will re-optimize in the future if a new pattern is seen.
However, if V8 must again de-optimize at a later time and if this binary switching of
optimizing/de-optimizing continues, V8 simply gives up and leaves your code in a
de-optimized state.

Two areas of focus for the V8 team are achieving fast property access and
dynamically creating efficient machine code. Let's look at ways to approach the
design and declaration of arrays, objects, and functions so that you are helping,
rather than hindering, the compiler.

Numbers and tracing optimization/de-optimization
The ECMA-262 specification defines the Number value as a primitive value
corresponding to a double-precision, 64-bit binary format IEEE 754 value. The point is that
there is no integer type in JavaScript; there is a Number type defined as a double-
precision floating-point number.

V8 uses 32-bit numbers for all values internally for performance reasons that are too
technical to discuss here. It can be said that, should greater width be needed, one bit
is used to point to another 32-bit number. Regardless, it is clear that there are two
types of values tagged as numbers by V8 and switching between these types will cost
you something. Try to restrict your needs to 31-bit signed integers where possible.

Because of the type ambiguity of JavaScript, switching the types of numbers assigned
to a slot is allowed. The following code does not throw an error:

var a = 7;
a = 7.77;

Chapter 4

[115]

However, a speculative compiler such as V8 will be unable to optimize this variable
assignment given that its guess that a will always be an integer turned out to be
wrong, forcing de-optimization.

We can demonstrate this using powerful V8 options available to you when executing
code: executing V8 native commands in your Node program and tracing how V8
optimizes/de-optimizes your code.

Consider the following Node program:

var someFunc = function foo(){}
console.log(%FunctionGetName(someFunc));

If you try to run this normally, you receive an Unexpected Token error—the modulo
(%) symbol cannot be used within an identifier name in JavaScript. What is this strange
method with a % prefix? It is a V8 native command, and we can turn to the execution of
these types of functions using the --allow-natives-syntax flag as follows:

node --allow-natives-syntax program.js

// foo

You can learn about the available native functions by browsing
the V8 source at https://code.google.com/p/v8/
source/browse/trunk/src/runtime.cc?r=22500, and
searching for runtime_function.

Now, consider the following code, which uses native functions to assert
information about the optimization status of the square function using the
%OptimizeFunctionOnNextCall native method:

var operand = 3;
function square() {
 return operand * operand;
}
// Make first pass to gather type information
square();
// Ask that the next call of #square trigger an optimization attempt;
// Call
%OptimizeFunctionOnNextCall(square);
square();

Create a file using the preceding code and execute it using the following command:

node --allow-natives-syntax --trace_opt --trace_deopt myfile.js

https://code.google.com/p/v8/source/browse/trunk/src/runtime.cc?r=22500
https://code.google.com/p/v8/source/browse/trunk/src/runtime.cc?r=22500

Managing Memory and Space

[116]

You will see something like the following output returned:

[deoptimize context: c39daf14679]

[optimizing: square / c39dafca921 - took 1.900, 0.851, 0.000 ms]

We can see that V8 has no problem optimizing the square function as the operand is
declared once and never changed. Now, append the following lines to your file and
run it again:

%OptimizeFunctionOnNextCall(square);
operand = 3.01;
square();

On this execution, following the optimization report given earlier, you should now
receive something like the following output:

**** DEOPT: square at bailout #2, address 0x0, frame size 8

[deoptimizing: begin 0x2493d0fca8d9 square @2]

...

[deoptimizing: end 0x2493d0fca8d9 square => node=3, pc=0x29edb8164b46,
state=NO_REGISTERS, alignment=no padding, took 0.033 ms]

[removing optimized code for: square]

This very expressive optimization report tells the story very clearly—the
once-optimized square function was de-optimized following the change we
made in one number's type. You are encouraged to spend time writing code
and to test it using these methods now and as you move through this section.

Objects and arrays
As we learned when investigating numbers, V8 works best when your code is
predictable. The same holds true with arrays and objects. Nearly all of the following
bad practices are bad for the simple reason that they create unpredictability.

Remember that, in JavaScript, an object and an array are very similar under the
hood. We won't be discussing those differences but only the important similarities,
specifically in terms of how both these data constructs benefit from similar
optimization techniques.

Chapter 4

[117]

Avoid mixing types in arrays. It is always better to have a consistent data type,
such as all integers or all strings. Also, avoid changing types in arrays or in property
assignments after initialization, if possible. V8 creates blueprints of objects by creating
hidden classes to track types, and, when those types change, the optimization
blueprints will be destroyed and rebuilt—if you're lucky. See the following link for
more information:

https://developers.google.com/v8/design

Don't create arrays with gaps, an example of which is shown as follows:

var a = [];
a[2] = 'foo';
a[23] = 'bar';

Sparse arrays are bad for this reason: V8 can either use a very efficient linear storage
strategy to store (and access) your array data, or it can use a hash table (which is
much slower). If your array is sparse, V8 must choose the less efficient of the two.
For the same reason, always start your arrays at the zero index. Also, don't ever use
delete to remove elements from an array. You are simply inserting an undefined
value at that position, which is just another way of creating a sparse array. Similarly,
be careful about populating an array with empty values—ensure that the external
data you are pushing into an array is not incomplete.

Try not to pre-allocate large arrays—grow as you go. Similarly, do not pre-allocate
an array and then exceed that size. You always want to avoid spooking V8 into
turning your array into a hash table.

V8 creates a new hidden class whenever a new property is added to an object
constructor. Try to avoid adding properties after an object is instantiated. Initialize
all members in constructor functions in the same order. Same properties + same order =
same object.

Remember that JavaScript is a dynamic language that allows object (and object
prototype) modifications after instantiation. Since the shape and volume of an object
can, therefore, be altered after the fact, how does V8 allocate memory for objects? It
makes certain reasonable assumptions. After a set number of objects is instantiated
from a given constructor (I believe 8 is the trigger number), the largest of these is
assumed to be of the maximum size, and all further instances are allocated that
amount of memory (and the initial objects are similarly resized). A total of 32 fast
property slots is then allocated to each instance based on this assumed maximum size.
Any extra properties are slotted into a (slower) overflow property array that can be
resized to accommodate any further new properties.

https://developers.google.com/v8/design

Managing Memory and Space

[118]

With objects, just as with arrays, try as much as possible to define the shape of your
data structures in a futureproof manner, with a set number of properties, types, and
so on.

Functions
Functions are typically called often and should be one of your prime optimization
focuses. Functions containing try-catch constructs are not optimizable, nor are
functions containing other unpredictable constructs, such as with and eval. If, for
some reason, your function is not optimizable, keep its use to a minimum.

A very common optimization error involves the use of polymorphic functions.
Functions that accept variable function arguments will be de-optimized. Avoid
polymorphic functions.

Caching strategies
Caching, generally, is the strategy of creating easily accessible intermediate versions
of assets. When retrieving an asset is expensive—in terms of time, processor cycles,
memory, and so on—you should consider caching that asset. For example, if a list
of Canadian provinces must be fetched from your database each time a person from
that country visits, it is a good idea to store that list in a static format, obviating
the expensive operation of running a database query on each visit. A good caching
strategy is essential to any web-based application that serves large numbers of
rendered data views, be they HTML pages or JSON structures. Cached content can
be served cheaply and quickly.

Whenever you deploy content that doesn't change often, you most likely want to
cache your files. Two general types of static assets are commonly seen. Assets such
as a company logo, existing as-is in a content folder, will change very rarely. Other
assets do change more often but much less frequently than on every request of the
asset. This second class encompasses such things as CSS style sheets, lists of user
contacts, latest headlines, and so on. Creating a reliable and efficient caching system
is a nontrivial problem:

"There are only two hard things in Computer Science: cache invalidation and
naming things."

 – Phil Karlton

Chapter 4

[119]

In this section, we'll look at two strategies to cache your application content. First,
we'll look at using Redis as an in-memory key-value cache for regularly used JSON
data, learning about the Redis key expiry and key scanning. Finally, we'll investigate
how to manage your content using the CloudFlare content delivery network (CDN),
in the process learning something about using Node to watch for file changes and
then invalidating a CDN cache when change events are detected.

Using Redis as a cache
In the example session-store implemented earlier, cookie values were stored in Redis
and matched against incoming values to provide simple session management. This
sort of regular checking of small, in-memory values is a common pattern in multiuser
environments, for which technologies such as memcached were developed.

Redis is fully capable of functioning as a similar in-memory caching system. Let's
implement a simple caching layer using Redis that intelligently manages key
association and expiry.

Because many types of information will be cached, it is a good idea to namespace
your cache keys. We'll structure our cache library such that individual namespace-
aware cache APIs can be instantiated:

var redis = require('redis');
var util = require('util');
var Promise = require('bluebird');
var Cache = function(config) {
 config = config || {};
 this.prefix = config.prefix ? config.prefix + ':' : 'cache:';

 var port = config.port || 6379;
 var host = config.host || 'localhost';

 this.client = redis.createClient(port, host, config.options ||
 {});

 config.auth && this.client.auth(config.auth);
};

Typically, our caching layer will be decoupled from any given server, so here we
design a constructor that expects Redis's connection and authentication information.
Note the prefix argument. To instantiate a cache instance, use the following code:

var cache = new Cache({ prefix: 'articles:cache' });

Managing Memory and Space

[120]

Also note that we're going to implement the cache API using Promises via the
bluebird library (https://github.com/petkaantonov/bluebird).

Getting a cached value is straightforward:

Cache.prototype.get = function(key) {
 key = this.prefix + key;
 var client = this.client;
 return new Promise(function(resolve, reject) {
 client.hgetall(key, function(err, result) {
 err ? reject() : resolve(result);
 });
 });
};

All cache keys will be implemented as Redis hashes, so a GET operation will involve
calling hmget on a key. The Promises-powered API now enables the following easy-
to-follow syntax:

cache.get('sandro').then(function(val) {
 console.log('cached: ' + val);
}).catch() {
 console.log('unable to fetch value from cache');
})

Setting a value is simply a matter of passing an object:

Cache.prototype.set = function(key, val, ttl) {
 var _this = this;
 var pkey = this.prefix + key;
 var client = this.client;
 var setArr = [];

 for(var k in val) {
 setArr[k] = val[k];
 }
 return new Promise(function(resolve, reject) {
 client.hmset(pkey, setArr, function(err) {
 err ? reject() : resolve();
 ttl && _this.expire(key, ttl);
 });
 });
};

https://github.com/petkaantonov/bluebird

Chapter 4

[121]

When val is received, we reflect its key-value map in the Redis hash stored at key.
The optional third argument, ttl, allows a flag to be set in Redis to expire this key
after a number of seconds, flagging it for deletion. The key bit of code in this.
expire is the following:

client.expire(key, ttl, function(err, ok) { // ...flagged for
 removal }

For more information on Redis expire, visit http://redis.io/commands/expire.

The remove method is simply a del operation on the Redis keyspace, so there is no
need to explain it here. More interesting is the implementation of the clear method
to remove all keys with a given prefix from Redis:

Cache.prototype.clear = function() {
 var prefixMatch = this.prefix + '*';
 var client = this.client;
 return new Promise(function(resolve, reject) {
 var multi = client.multi();
 (function scanner(cursor) {
 client.scan([+cursor, 'match', prefixMatch], function(err, scn) {
 if(err) {
 return reject();
 }
 // Add new delete candidates
 multi.del(scn[1]);
 // More? Continue scan.
 if(+scn[0] !== 0) {
 return scanner(scn[0]);
 }
 // Delete candidates, then resolve.
 multi.exec(resolve);
 })
 })(0);
 });
};

Note the scan method we are using to target and delete keys matching our cache
prefix. Redis is designed for efficiency, and, as much as possible, its designers aim
to avoid adding slow features. Unlike other databases, Redis has no advanced find
method of searching its keyspace, with developers limited to keys and basic glob
pattern matching. Because it's common to have many millions of keys in a Redis
keyspace, operations using keys, unavoidably or through sloppiness, can end up
being punitively expensive because a long operation blocks other operations—
transactions are atomic, and Redis is single-threaded.

http://redis.io/commands/expire

Managing Memory and Space

[122]

The scan method allows you to fetch limited ranges of the keyspace in an iterative
manner, enabling (nonblocking) asynchronous keyspace scanning. The scan object
itself is stateless, passing only a cursor indicating whether there are further records
to be fetched. Using this technique, we are able to clean out all keys prefixed with
our target cache key (pattern: this.prefix + '*'). On each scan iteration, we
queue up any returned keys for deletion using the multi.del function, continuing
until the scanner returns a zero value (indicating that all sought keys have been
returned), at which point we delete all those keys in one command.

Tie these methods together:

cache.set('deploying', { foo: 'bar' })
.then(function() {
 return cache.get('deploying');
})
.then(function(val) {
 console.log(val); // foo:bar
 return cache.clear();
})
.then(cache.close.bind(cache));

This is a simple caching strategy to get you started. While managing key expiration
yourself is a perfectly valid technique, as you move into larger production
implementations, consider configuring Redis's eviction policies directly. For example,
you will want to set the maxmemory value in redis.conf to some maximum upper
bound for the cache memory and configure Redis to use one of the six documented
eviction policies when memory limits are reached, such as Least Recently Used (LRU).
For more information, visit: http://redis.io/topics/lru-cache.

Deploying CloudFlare as a CDN
A CDN is typically a globe-spanning network of servers leased out to companies
unable to fund and build their own network. A CDN is set up to ensure that your
application or other content remains available to anyone who wishes to access it,
wherever they choose to access it in the world, and that your content is delivered
quickly. Akamai is perhaps the most famous CDN, and CloudFlare is a recent arrival
with a particular focus on security and "attack proofing" networks.

Usefully for our purposes, CloudFlare provides a free tier of service that satisfies the
needs of most deployed applications. In the example that follows, you'll learn how
to enable caching with CloudFlare. We'll then use the cloudflare module to purge
your domain files when they change, in the process learning how to use Node's
fs.watch method to watch for file changes.

http://redis.io/topics/lru-cache

Chapter 4

[123]

CloudFlare has also embarked on an ambitious effort to host
all the JS on its CDN at https://cdnjs.com/. Unlike other
popular hosting services that only host the most popular
JavaScript libraries, CloudFlare hosts all projects represented in
the open GitHub project at https://github.com/cdnjs/
cdnjs. Consider deploying your JavaScript files via this service.

To start, visit https://www.cloudflare.com/sign-up and set up a free account.
You will need a domain to host files on—follow the instructions to configure your
name servers and other DNS information. Once signed up, you will receive an
authentication token and will use this to add CDN support to your application.
CloudFlare does not cache HTML files by default. To enable HTML caching, visit
your dashboard, locate your domain, open the options menu, and select Page rules.
If your domain is foo.com, the following page rule will enable full caching: *foo.
com/*. Finally, locate the Custom Caching dropdown on the page rules admin page
and select Cache everything.

Now, let's establish a connection with CloudFlare:

var http = require('http');
var fs = require('fs');
var cloudflare = require('cloudflare');
var config = {
 "token": "your token",
 "email": "your account email",
 "domain": "yourdomain.com",
 "subdomain": "www",
 "protocol": "http"
};
var cloudflareClient = cloudflare.createClient({
 email: config.email,
 token: config.token
});

In our example, we will serve (and modify) a single index.html file. For this
example, we will create a simple server:

var indexFile = './index.html';
http.createServer(function(request, response) {
 var route = request.url;
 if(route === "/index.html") {
 response.writeHead(200, {
 "content-type": "text/html",
 "cache-control": "max-age=31536000"

https://cdnjs.com/
https://github.com/cdnjs/cdnjs
https://github.com/cdnjs/cdnjs
https://www.cloudflare.com/sign-up

Managing Memory and Space

[124]

 });
 return fs.createReadStream(indexFile).pipe(response);
 }
}).listen(8080);

Note how max-age is set on the cache-control header. This will indicate to
CloudFlare that we want this file cached.

With the server set up, we will now add the following purge method:

function purge(filePath, cb) {
 var head = config.protocol + '://';
 var tail = config.domain + '/' + filePath;
 // foo.com && www.foo.com each get a purge call
 var purgeFiles = [
 head + tail,
 head + config.subdomain + '.' + tail
];
 var purgeTrack = 2;
 purgeFiles.forEach(function(pf) {
 cloudflareClient.zoneFilePurge(config.domain, pf,
 function(err) {
 (--purgeTrack === 0) && cb();
 });
 });
};

When this method is passed a file path, it asks CloudFlare to purge its cache of this
file. Note how we must use two purge actions to accommodate subdomains.

With purging set up, all that is left to do is watch the filesystem for changes. This can
be accomplished via the fs.watch command:

fs.watch('./index.html', function(event, filename) {
 if(event === "change") {
 purge(filename, function(err) {
 console.log("file purged");
 });
 }
});

Chapter 4

[125]

Now, whenever the index.html file is changed, our CDN will flush its
cached version. Create that file, start up the server, and point your browser to
localhost:8080, bringing up your index file. In your browser's developer console,
inspect the response headers—you should see a CF-Cache-Status: MISS record.
This means that CloudFlare (CF) has fetched and served the original file from your
server—on the first call, there is no cached version yet, so the cache was missed.
Reload the page. The same response header should now read CF-Cache-Status:
HIT. Your file is cached!

Go ahead and change the index file in some way. When you reload your browser,
the changed version will be displayed—its cached version has been purged, the file
has been fetched once again from your server, and you will see the MISS header
value again.

You will want to expand this functionality to include a larger group of files
and folders. To learn more about fs.watch, go to http://nodejs.org/api/
fs.html#fs_fs_watch_filename_options_listener.

Managing sessions
The HTTP protocol is stateless. Any given request has no information about previous
requests. For a server, this means that determining whether two requests originated
from the same browser is not possible without further work. That's fine for general
information, but targeted interactions require a user to be verified via some sort of
unique identifier. A uniquely identified client can then be served targeted content—
from lists of friends to advertisements.

This semipermanent communication between a client (often a browser) and a server
persists for a period of time—at least until the client disconnects. That period of time
is understood as a session. An application that manages sessions must be able to
create a unique user session identifier, track the activity of an identified user during
that session, and disconnect that user when requested or for some other reason, such
as on reaching a session limit.

In this section, we'll implement a JSON Web Token (JWT) system for session
management. JWT's have an advantage over traditional cookie-based sessions in that
they do not require the server to maintain a session store as JWTs are self-contained.
This greatly helps with deployments and scaling. They are also mobile friendly and
can be shared between clients. While a new standard, JWTs should be considered as
a simple and scalable session storage solution for your applications.

http://nodejs.org/api/fs.html#fs_fs_watch_filename_options_listener
http://nodejs.org/api/fs.html#fs_fs_watch_filename_options_listener

Managing Memory and Space

[126]

JSON Web Token authentication and sessions
A basic authentication system might require a client to send a username and
password on each request. To initiate a token-based authenticated session, a client
sends credentials just once, receives a token in exchange, and then sends only that
token on subsequent requests, gaining any access that token provides. Incessantly
passing around sensitive credentials is no longer required, as the following diagram
demonstrates:

One particular advantage of JWTs is that servers are no longer responsible for
maintaining access to a common database of credentials as only the issuing authority
needs to validate an initial signin. There is no need to maintain a session store when
you are using JWTs. The issued token (think of it as an access card) can, therefore,
be used within any domain (or server) that recognizes and accepts it. In terms of
performance, the cost of a request is now the cost of decrypting a hash versus the
cost of making a database call to validate credentials. We also avoid the problems we
can face using cookies on mobile devices, such as cross-domain issues (cookies are
domain-bound), certain types of request forgery attacks, and so on.

Let's look at the structure of a JWT and build a simple example demonstrating how
to issue, validate, and otherwise use JWTs to manage sessions.

A JWT token has the following format:

<base64-encoded header>.<base64-encoded claims>.<base64-encoded
 signature>

Each segment is described in the JSON format.

Chapter 4

[127]

A header simply describes the token—its type and encryption algorithm. Take the
following code as an example:

{
 "typ":"JWT",
 "alg":"HS256"
}

Here, we declare that this is a JWT token, which is encrypted using HMAC SHA-256.

See http://nodejs.org/api/crypto.html for more
information about encryption and how to perform encryption
with Node. The JWT specification itself can be found at http://
self-issued.info/docs/draft-ietf-oauth-json-web-
token.html. Note that the JWT specification is in a draft state at
the time of writing this, so changes may be made in the future.

The claims segment outlines security and other constraints that should be checked
by any service receiving the JWT. Check the specification for a full accounting.
Typically, a JWT claims manifest will want to indicate when the JWT was issued,
who issued it, when it expires, who the subject of the JWT is, and who should accept
the JWT:

{
 "iss" : "http://blogengine.com",
 "aud" : ["http://blogsearch.com", "http://blogstorage"],
 "sub" : "blogengine:uniqueuserid",
 "iat" : "1415918312",
 "exp" : "1416523112",
 "sessionData" : "<some data encrypted with secret>"
}

The iat (issued-at) and exp (expires) claims are both set to numeric values indicating
the number of seconds since the Unix epoch. The iss (issuer) should be a URL
describing the issuer of the JWT. Any service that receives a JWT must inspect the
aud (audience), and that service must reject the JWT if it does not appear in the
audience list. The sub (subject) of the JWT identifies the subject of the JWT, such as
the user of an application—a unique value that is never reassigned, such as the name
of the issuing service and a unique user ID.

Finally, useful data is attached using a key-value pairing of your choice. Here,
let's call the token data sessionData. Note that we need to encrypt this data—the
signature segment of a JWT prevents tampering with session data, but JWTs are not
themselves encrypted (you can always encrypt the entire token itself though).

http://nodejs.org/api/crypto.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html

Managing Memory and Space

[128]

The last step is to create a signature, which, as mentioned, prevents tampering—a
JWT validator specifically checks for mismatches between the signature and the
packet received.

What follows is a scaffold server and client example demonstrating how to
implement a JWT-driven authentication system. Rather than implementing the
various signing and validation steps by hand, we'll use the jwt-simple package.
Feel free to browse the /jwt folder in your code bundle, which contains the full
code we'll be unpacking next.

To ask for a token, we will use the following client code:

var token;

function send(route, formData, cb) {
 if(!(formData instanceof FormData)) {
 cb = formData;
 formData = new FormData();
 }
 var caller = new XMLHttpRequest();
 caller.onload = function() {
 cb(JSON.parse(this.responseText));
 };
 caller.open("POST", route);
 token && caller.setRequestHeader('Authorization', 'Bearer ' +
 token);
 caller.send(formData);
}
// ...When we have received a username and password in some way
formData = new FormData();
formData.append("username", username);
formData.append("password", password);

send("/login", formData, function(response) {
 token = response.token;
 console.log('Set token: ' + token);
});

We'll implement the server code next. For now, note that we have a send method
that expects, at some point, to have a global token set for it to pass along when
making requests. The initial /login is where we ask for that token.

Chapter 4

[129]

Using the Express web framework, we create the following server and /login route:

var express = require('express');
...
var jwt = require('jwt-simple');
var app = express();

app.set('jwtSecret', 'shhhhhhhhh');

app.post('/login', auth, function(req, res) {
 var nowSeconds = Math.floor(Date.now()/1000);
 var plus7Days = nowSeconds + (60 * 60 * 24 * 7);
 var token = jwt.encode({
 "iss" : "http://blogengine.com",
 "aud" : ["http://blogsearch.com", "http://blogstorage"],
 "sub" : "blogengine:uniqueuserid",
 "iat" : nowSeconds,
 "exp" : plus7Days
 }, app.get('jwtSecret'));

 res.send({
 token : token
 })
})

Note that we store jwtsecret on the app server. This is the key that is used when
we are signing tokens. When a login attempt is made, the server will return the result
of jwt.encode, which encodes the JWT claims discussed previously. That's it. From
now on, any client that mentions this token to the correct audience will be allowed
to interact with any services those audience members provide for a period expiring
7 days from the date of issue. These services will implement something like the
following code:

app.post('/someservice', function(req, res) {
 var token = req.get('Authorization').replace('Bearer ', '');
 var decoded = jwt.decode(token, app.get('jwtSecret'));
 var now = Math.floor(Date.now()/1000);
 if(now > decoded.exp) {
 return res.end(JSON.stringify({
 error : "Token expired"
 }));
 }
 res.send(<some sort of result>);
})

Managing Memory and Space

[130]

Here, we are simply fetching the Authorization header (stripping out Bearer) and
decoding via jwt.decode. A service must at least check for token expiry, which we
do here by comparing the current number of seconds from the epoch to the token's
expiry time.

Using this simple framework, you can create an easily scalable authentication/session
system using a secure standard. No longer required to maintain a connection to a
common credentials database, individual services (deployed perhaps as microservices)
can use JWTs to validate requests, incurring little CPU latency or memory cost.

Summary
We covered a lot of ground in this chapter. Best practices for writing efficient
JavaScript that the V8 interpreter can handle properly were outlined, including
an exploration of garbage collection, the advantages of Node streams, and how
JavaScript prototypes should be deployed in order to save memory. Continuing with
the theme of reducing storage costs, we explored various ways in which Redis can
help with storing large amounts of data in a space-efficient way.

Additionally, we looked at strategies to build composable, distributed systems. In the
discussion on microservices, we touched on approaches to network many individual
services and build the networks they can use to communicate with each other—from
pub/sub to Seneca's pattern and action models. Joined with the examples of caching
techniques, a reasonably complete picture of the issues you might want to consider
when planning out resource management in your application was established.

After you build up a reasonably sophisticated architecture, it becomes more and
more necessary to build probes and other monitoring tools to stay on top of what
is going on. In the next chapter, we'll build tools to help you trace the changing
topology of running applications.

[131]

Monitoring Applications
Distributed systems fail often. Worse, they often fail partially. When failures occur
during operations responsible for altering a system's state (for instance, a write or
delete operation), how can the correct state be recovered, especially when these
operations are concurrent? To make matters even worse, some operations fail
silently. Partial failures, then, can put applications in an indeterminate state. It is
difficult to predict how an opaque system will behave.

Consider this quote from The Datacenter as a Computer: An Introduction to the Design of
Warehouse-Scale Machines:

"Suppose a cluster has ultra-reliable server nodes with a stellar mean time between
failures (MTBF) of 30 years (10,000 days)—well beyond what is typically possible
to achieve at a realistic cost. Even with these ideally reliable servers, a cluster
of 10,000 servers will see an average of one server failure per day. Thus, any
application that needs the entire cluster to be up to work will see an MTBF of no
better than 1 day."

Failure, especially on a large scale, is indifferent to the quality of your staff or your
hardware. The point is that numerical ratios that seem large in common usage are
less so in network environments where billions of transactions can happen in a
matter of minutes or seconds and where hundreds or more separate systems are
interacting. How failure evolves is often counterintuitive. It is a good idea, then, to
prepare for failure, and, among other things, this means reducing the ability of any
one failure to take down an entire system.

Typically, distributing the workload for a single user also requires distributing user
data across many independent processes. Also, when a piece of the system fails, it
must be restored in order to maintain two characteristics of the system—its capacity
and any data or transactions that were in flight when the failure occurred.

Monitoring Applications

[132]

In this chapter, I'll outline certain tools and tricks used to monitor what is going
on across your application. We'll look at ways in which you can build your own
monitoring and logging tools and discuss third-party tools. Along the way, you'll
learn about the following:

•	 Remotely controlling Node processes
•	 Using New Relic to monitor servers
•	 Catching errors
•	 Other options for tracking and logging activity in your application

Dealing with failure
As we outlined in Chapter 4, Managing Memory and Space, isolating operations and
intelligently monitoring an applications help to minimize the chances of one failed
subsystem taking down the larger system. In this section, we'll look at how to catch
errors and exceptions within a Node program and how to gracefully shut down
and/or restart a process that has become unstable individually and within clusters.

The following comprehensive article on handling errors with Node.js
is recommended:
http://www.joyent.com/developers/node/design/errors

Peppering a codebase with try/catch blocks and trying to anticipate all errors can
become unmanageable and unwieldy. Additionally, what if an exception you didn't
anticipate occurs? How do you pick up where you left off?

Node does not yet have a good built-in way to handle uncaught critical exceptions.
This is a weakness of the platform. An exception that is uncaught will continue
to bubble up through the execution stack until it hits the event loop where, like a
wrench in the gears of a machine, it will take down the entire process.

One option is to attach an uncaughtException handler to the process itself, as
shown in the following code:

process.on('uncaughtException', function(err) {
 console.log('Caught exception: ' + err);
});
setTimeout(function() {
 console.log("The exception was caught and this can run.");
}, 1000);
throwAnUncaughtException();

http://www.joyent.com/developers/node/design/errors

Chapter 5

[133]

The output of the preceding code will be as follows:

> Caught exception: ReferenceError: throwAnUncaughtException is not
defined

> The exception was caught and this can run.

While nothing that follows our exception code will execute, the timeout will still fire
as the process managed to catch the exception, thus saving itself. However, this is a
very clumsy way of handling exceptions.

The domain module makes a good attempt at fixing this hole in Node's design. We
will discuss the domain module next as a better tool to handle exceptions.

The 'domain' module
Error handling in asynchronous code is also difficult to trace:

function f() {
 throw new error("error somewhere!")
}
setTimeout(f, 1000*Math.random());
setTimeout(f, 1000*Math.random());

Which function caused the error? It is difficult to say. It is also difficult to
intelligently insert exception management tools. It is difficult to know what to
do next. Node's domain module attempts to help with this and other exception
localization issues. In this way, code can be tested and errors can be handled with
more precision.

At its simplest, a domain sets up a context within which a function or other "chunk" of
code can be run such that any errors occurring within that implicit domain binding will
be routed to a specific domain error handler. Take the following code as an example:

var domain = require('domain');
var dom = domain.create();
dom.on('error', function(err) {
 console.error('error', err.stack);
});

dom.run(function() {
 throw new Error("my domain error");
});
// error Error: my domain error
// at /js/basicdomain.js:10:8
// ...

Monitoring Applications

[134]

Here, we establish a domain and execute code within that domain via the run
command within the context of that domain. This enables us to intelligently catch
those exceptions, implicitly binding all event emitters, timers, and other requests
created within that context.

Sometimes, a method might be created elsewhere (not within the implicit context
of a given domain.run function call) but is nevertheless best associated with an
external domain. The add method exists for just such explicit binding, as shown in
the following code:

var dom = domain.create();
dom.on("error", function(err) {
 console.log(err);
});

var somefunc = function() {
 throw new Error('Explicit bind error');
};
dom.add(somefunc);
dom.run(function() {
 somefunc();
});
// [Error: Explicit bind error]

Here, we see how a function that is not implicitly bound within the run context
can still be added to that context explicitly. To remove an execution context from a
domain, use domain.remove. An array of all timers, functions, and other emitters
added explicitly or implicitly to a domain is accessible via domain.members.

In the same way that JavaScript's bind method binds a function to a context, the
domain.bind method similarly allows an independent function to be bound to a
domain. This is shown in the following code:

var domain = require('domain');
var fs = require('fs');
var dom = domain.create();
dom.on("error", ...);
fs.readFile('somefile', dom.bind(function(err, data) {
 if(err) { throw new Error('bad file call'); }
}));
// { [Error: bad call]
// domain_thrown: true,
// ...

Chapter 5

[135]

Here, we see how any function can be wrapped by a particular error domain inline,
a feature especially useful to manage exceptions in callbacks. Error objects emitted
from a domain have the following special properties

•	 error.domain: This is the domain that handled the error.
•	 error.domainEmitter: If EventEmitter fires an error event within a

domain, this will be flagged.
•	 error.domainBound: This is the callback that passed an error as its

first argument.
•	 error.domainThrown: This is a Boolean indicating whether the error was

thrown or not. For example, the following callback will pass an ENOENT
error as its first argument, so domainThrown would be false:

fs.createReadStream('nofile', callback)

Another method, domain.intercept, functions similarly to domain.
bind but simplifies error handling in callbacks such that the developer
will no longer need to repetitively check (or even set) the first argument
of every callback, cb(err, data), for errors. An example can be found
in the js/domainintercept.js file in your code bundle.

You may also need to move between domains, entering and exiting them as needed.
For this, we use the domain.enter and domain.exit methods. Assuming that we
have set up two domains, dom1 and dom2, the first emitting domain 1 error and the
second domain 2 error, we can move between domain contexts, as shown here:

dom1.add(aFuncThatThrows);
dom1.run(function() {
 dom1.exit();
 dom2.enter();
 aFuncThatThrows();
});
// domain 2 error

Any number of enter and exit events can be used. Note that no changes are made
to the domain objects themselves—exit does not close the domain or do any such
thing. If a domain needs to be destroyed, you should use the domain.dispose
method, which will also try to clean up any inflight domain I/O—aborting streams,
clearing timers, ignoring callbacks, and so on.

js/domainintercept.js

Monitoring Applications

[136]

Catching process errors
Process-oriented designs are common in Node.js applications, where independent
processes communicate with each other through evented streams. Errors in these
channels, and in the processes themselves, must be tracked. In this section, we'll look
at how to track and how to properly throw errors related to process events.

We covered the child_process module in Chapter 3, Scaling Node. Here, we will go
into a little more detail about how to handle errors in child processes and their parents.

To spawn a Node program, use the fork method of the child_process module.
This creates a new child process under the calling parent. Also, an IPC channel is
automatically set up between the two processes, where the child calls process.send
to send messages to its parent, and the parent can listen to child.on('message').
Create two files, the first named parent.js and the other named child.js:

// parent.js
var fork = require('child_process').fork;
var proc = fork('./child.js');

proc.on('message', function(msg) {
 console.log("Child sent: " + msg);
});
// Keeps the parent running even if no children are alive.
process.stdin.resume();

// child.js
var cnt = 0;
setInterval(function() {
 process.send(++cnt);
}, 1000);

The child process upon which fork has been used by the parent will increment and
emit a value at a 1-second interval, which the parent will listen for and echo to your
console. How do we catch an error in the child process from the parent process?

Let's cause an error in our child process by making it throw. Add the following line
to child.js:

...
process.send(++cnt);
throw new Error('boom!');

Chapter 5

[137]

Running the parent process again will result in an error, and the message we set will
be displayed. Typically, the parent will want to act when a child dies—such as using
fork on a new child or logging the error, or both. To catch child errors in the parent,
add the following line to parent.js:

proc.on('exit', function() {
 console.log("Child exited: ", arguments);
});

Running the parent script again will result in the following being displayed in
addition to the original error:

Child exited: { '0': 1, '1': null }

The first argument received is the exit code passed by the child process when
it is terminated (if the parent had sent a kill signal, for example, child.
kill('SIGTERM'), the second argument here would contain 'SIGTERM').

In addition to handling child errors from within a parent process, using the Domain
module to catch and handle errors within the child process itself is recommended.
In this way, you properly clean up after a child error and use process.send() to
broadcast any additional error information to the parent.

The exit codes that Node will return when a process exits abnormally
can be found at https://github.com/joyent/node/blob/
master/doc/api/process.markdown#exit-codes. (Note that
this is for Node 0.11.x—earlier versions always return exit code 8.)

A child process can also be created via spawn, which differs from fork in that it is
not Node-specific; any OS process can be started by using spawn. For example, this
is a roundabout way of executing the ls command; you should receive a directory
listing when this runs:

var spawn = require('child_process').spawn;
var proc = spawn('ls',['-l']);
proc.stdout.setEncoding('utf8');
proc.stdout.on('data', function(data) {
 console.log(data)
});

https://github.com/joyent/node/blob/master/doc/api/process.markdown#exit-codes
https://github.com/joyent/node/blob/master/doc/api/process.markdown#exit-codes

Monitoring Applications

[138]

Note the differences from fork. The first argument is an OS command, and the
second argument is an array of options passed to that command—the equivalent of
> ls -l. Secondly, we do not have access to a custom IPC (as with fork—no send or
on('message')), but we do have access to the standard process pipes: stdin, stdout,
and stderr. Because pipes will default to speaking in buffers, we have set the desired
encoding and simply display any data that the spawned process writes to stdout.

Another way to catch subprocess errors should be clear to you. Modify the preceding
code with the following:

var spawn = require('child_process').spawn;
var proc = spawn('ls',['-l', '/nonexistent/directory']);
proc.stderr.setEncoding('utf8');
proc.stderr.on('data', function(err) {
 console.log("Error", err)
});

When this attempt to list the contents of a nonexistent directory is executed, you
should see the following:

Error ls: /nonexistent/directory: No such file or directory

By listening on the stderr pipe, errors in child processes can be caught. We can also
change the stdio settings such that errors are automatically logged to a file. Rather
than catching the child output in the parent, we use spawn on the child using a
customized stdio option, redirecting the child's stdout directly to a file:

var spawn = require('child_process').spawn;
// This will be the file we write to
var out = require('fs').openSync('./out.log', 'w+');
var proc = spawn('node', ['./spawn_child.js'], {
 // The options are: 0:stdin, 1:stdout, 2:stderr
 stdio : ['pipe', out, 'pipe']
});

Next, we'll go a little deeper into logging strategies.

Chapter 5

[139]

Logging
Why log data? One answer might be that the amount of activity data a modern
application produces exceeds the capacity of any one person's analytical abilities. We
can't react to that much information usefully in real time. It is, therefore, necessary
to store, or log, the mass of details and use smart tools to slice and sort that data into
forms that we humans can comprehend. We can look for patterns in the logs and
perhaps find bottlenecks or even bugs in our application, helping us improve the
design of our system. We can garner business intelligence from logs, discovering
usage patterns that help us understand customer preferences or ones that can help us
design new features or enhance existing ones.

In what follows, I'll take you through some of the information available to all Node
processes, how those might be logged using UDP, and how to use Morgan for simple
request logging.

A popular open source project from the Etsy team for logging and
statistical reporting is StatsD (https://github.com/etsy/
statsd), for which there is a good Node client at https://
github.com/sivy/node-statsd.

Let's create a logging module that uses UDP. Detailed information on how UDP
works was provided in Chapter 3, Scaling Node—go ahead and refresh your memory
if necessary. The important concept to remember is that UDP achieves extremely
high performance by making no guarantee that messages will arrive. Note that in
99 percent of cases, very few messages will drop, making UDP an excellent balance
of speed and accuracy for applications that do not need perfect fidelity, such as
logging applications.

Logging with UDP
The goal of our UDP logging module is to have a straightforward interface for any
Node program to do logging. Also, we'll want to allow many independent processes
to write to the same log file. The full code for this module can be found in the udp/
logger folder of your code bundle.

https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/sivy/node-statsd
https://github.com/sivy/node-statsd

Monitoring Applications

[140]

Starting from the end, let's go over the client code first before diving into the logger
itself. All clients will send (at least) a log file path, optional information about the
port or host, a few handler functions if necessary, and the system will just work:

var dgram = require('dgram');
var Logger = require('./logger');

logger = new Logger({
 file : './out.log',
 port : 41234,
 host : 'localhost',
 encoding : 'utf8',
 onError : function(err) {
 console.log("ERROR: ", err);
 },
 onReady : function() {
...
 }
});

We can see that our module starts a server on the port provided and is configured to
notify the client of any errors as well as its ready state. By fleshing out the remaining
code for onReady, we can also see the ways that we expect clients to hit the UDP logger:

console.log("READY");
var client = dgram.createSocket("udp4");
var udpm;
// Flood it a bit.
for(var x=0; x < 10000; x++) {
 udpm = new Buffer("UDP write #" + x);
 logger.log('Test write #' + x);
 client.send(udpm, 0, udpm.length, 41234, "localhost");
}

The client will be able to either call the module's log function or send a UDP
message directly. Also, we expect that it is possible to receive many messages.
Besides, we expect that any number of processes could be logging to the same file,
so we must deal with managing a flood of messages.

Chapter 5

[141]

The logging module is as follows:

var dgram = require('dgram');
var fs = require('fs');

module.exports = function(opts) {

 opts = opts || {};

 var file = opts.file;
 var host = opts.host || 'localhost';
 var port = opts.port || 41234;
 var encoding = opts.encoding || 'utf8';
 var onError = opts.onError || function() {};
 var onReady = opts.onReady || function() {};
 var socket = dgram.createSocket("udp4");
 var writeable = true;
 var _this = this;
 var stream;

 if(!file) {
 throw new Error("Must send a #file argument");
 }

 stream = fs.createWriteStream(file, {
 flags : 'a+'
 });
 stream.setMaxListeners(0);

 socket.bind(port, host);

 socket.on("listening", onReady);
 socket.on("error", onError);
 socket.on("message", function(msg) {
 this.log(msg.toString());
 });

 this.log = function(msg) {
 if(!stream) {
 throw new Error('No write stream available for logger.');
 }

 try {

Monitoring Applications

[142]

 if(typeof msg !== 'string') {
 msg = JSON.stringify(msg);
 }
 } catch(e) {
 return onError("Illegal message type sent to #log. Must be a
 string, or JSON");
 };

 // You'll likely want to create retry limits here.
 //
 var writer = function() {
 if(!stream.write(msg + '\n', encoding)) {
 stream.once('drain', writer);
 }
 }
 writer();
 };
};

This is all the code necessary to manage the setting up of a UDP server and our client
interface. Note how the log function will either be called directly by a client or will
be called via the on('message') handler of our UDP binding. This allows clients the
flexibility of calling our logging server from any environment—using this module,
using another language, using another server, without using this module, and so on.

The last important bit is the management of backpressure in log. Because many
independent sources may be hitting our log file, the write stream managing that
resource could be at its high watermark (full) when we try to use write. When that
happens, a call to stream.write will return false, which the caller should take as
a signal to stop sending data. When that happens, we bind to the drain event (only
once—see http://nodejs.org/api/events.html#events_emitter_once_event_
listener), which is fired when the consumer (the write manager for our log file) is
ready to accept more data.

Logging with Morgan
Morgan (https://github.com/expressjs/morgan) is an HTTP logger for the
Express framework. If logging HTTP connection data for a server is all you need,
it serves very well and is easy to use. We'll close out this section with a few short
examples using Express.

http://nodejs.org/api/events.html#events_emitter_once_event_listener
http://nodejs.org/api/events.html#events_emitter_once_event_listener
https://github.com/expressjs/morgan

Chapter 5

[143]

The following is the most basic usage of Morgan:

var express = require('express')
var morgan = require('morgan')
var app = express()
app.use(morgan('combined'))
app.get('/', function (req, res) {
 res.send('hello, world!')
});
app.listen(8080);

This code will create a server listening on port 8080 and will dump a log entry
in Apache Combined Log Format (httpd.apache.org/docs/1.3/logs.
html#combined) to stdout:

127.0.0.1 - - [20/Nov/2014:23:02:58 +0000] "GET / HTTP/1.1" 200 13 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/39.0.2171.99 Safari/537.36"

In addition to the format parameter, Morgan also accepts various options. For
example, to stream log data to a file, use the stream option. For this example, replace
the app.use declaration with the following:

app.use(morgan('combined', {
 stream : require('fs').createWriteStream('./out.log')
}));

Log entries will now be written to out.log.

The combined argument reflects one of the built-in Morgan log formatters. These
formatters are composed of tokenized strings, with several tokens available by
default. For example, the combined formatter interpolates the following string:

:remote-addr - :remote-user [:date[clf]] ":method :url HTTP/:http-
version" :status :res[content-length] ":referrer" ":user-agent"

It should be clear how the preceding fully qualified output is generated via the given
formatter with tokens mapping to the standard properties of the ClientRequest and
ClientResponse objects managed by Node's http module.

httpd.apache.org/docs/1.3/logs.html#combined
httpd.apache.org/docs/1.3/logs.html#combined

Monitoring Applications

[144]

Morgan logs data reflecting the states of the ClientRequest and ClientResponse
objects. The skip option allows you to filter logging based on the state of these
objects. By default, Morgan logs every request. To only log errors, you would add
the following to your middleware definition:

skip: function(req, res) {
 return res.statusCode < 400;
}

You can also add new tokens. Here, we create one named 'cache':

morgan.token('cache', function(req, res) {
 return req.headers['cache-control'];
});

This new token (and/or existing tokens) can be used in custom formatters:

app.use(morgan('cache-control is :cache'))

Morgan is now initialized with a custom formatter that will write something like
cache-control is max-age=0 to your log.

For more information on additional built-in formatters and other advanced options,
visit the project page. Given its flexibility, Morgan can be customized to satisfy many
logging needs.

Other popular options are available for consideration:

•	 Bunyan (https://github.com/trentm/node-bunyan): Bunyan is a simple
but sufficiently powerful logging tool for most needs.

•	 Winston (https://github.com/flatiron/winston): The key selling point
of Winston is the number of logging transport plugins it supports—you can
configure it to log to Redis, a file, or a third-party service, such as loggly.com.

Modifying behavior in changing
environments
Modifying application data in a running system has been compared to changing the
engine of a jet while it is in flight. Luckily, we developers work in a virtual world
where the laws of physics are more forgiving. In this section, we will learn how to
create a remote control for your Node applications using examples demonstrating
how to monitor processes remotely.

https://github.com/trentm/node-bunyan
https://github.com/flatiron/winston
loggly.com

Chapter 5

[145]

Node REPL
Node's Read-Eval-Print-Loop (REPL) represents the Node shell. To enter the shell
prompt, enter Node via your terminal without passing a filename:

> node

You now have access to a running Node process and can pass JavaScript commands
to this process. For example, after entering 2+2, the shell would send 4 to stdout.
Node's REPL is an excellent place to try out, debug, test, or otherwise play with
JavaScript code.

Because REPL is a native object, programs can also use instances as a context in
which to run JavaScript interactively. For example, here, we create our own custom
function sayHello, add it to the context of an REPL instance, and start REPL,
emulating a Node shell prompt:

require('repl').start("> ").context.sayHello = function() {
 return "Hello"
};

Entering sayHello() at the prompt will result in Hello being sent to stdout.

What this also means is that your Node process can expose an REPL instance to the
outside world that can access that process in some way, providing a backdoor through
which you can connect to a process, modify its context, change its behavior, or even
shut it down if it has gone bad in some way. Let's explore possible applications
related to monitoring processes.

Create two files, repl_client.js and repl_server.js, using the following code,
and run each in its own terminal window so that both terminal windows are visible
to you:

/* repl_client.js */
var net = require('net');
var sock = net.connect(8080);
process.stdin.pipe(sock);
sock.pipe(process.stdout);

Monitoring Applications

[146]

The repl_client file simply creates a new socket connection to port 8080 through
net.connect and pipes any data coming from stdin (your terminal) through
that socket. Similarly, any data arriving from the socket is piped to stdout (your
terminal). It should be clear that we have created a way to take input and send it via
a socket to port 8080, listening for any data that the socket may send back to us. The
following code shows this:

/* repl_server.js */
var repl = require('repl')
var net = require('net')
net.createServer(function(socket) {
 var inst = repl.start({
 prompt : 'repl_server> ',
 input : socket,
 output : socket,
 terminal : true
 })

 inst.on('exit', function () {
 socket.end()
 })
}).listen(8080)

The repl_server file closes the loop. We will first create a new Transmission
Control Protocol (TCP) server with net.createServer, binding to port 8080 via
.listen. The callback passed to net.createServer will receive a reference to the
bound socket. Within the enclosure of that callback, we instantiate a new REPL
instance, giving it a nice prompt ('repl_server>' in this case, but it could be any
string), indicating that it should both listen for input from, and broadcast output
to, the passed socket reference, indicating that the socket data should be treated as
terminal data (which has special encoding).

We can now type something, such as console.log("hello"), in the client terminal,
and see hello displayed—the REPL server has executed the command we sent via
our REPL client and sent back the evaluated response.

To confirm that the execution of our JavaScript commands is occurring in the
repl_server process, type process.argv in the client terminal, and the server will
display an object containing the current process path, which will be /.../repl_
server.js.

Chapter 5

[147]

Additionally, we can add custom methods to the REPL context that are then
accessible through clients. For example, add the following line to repl_server.js:

 inst.context.sayHello = function() {
 return "Hello";
 }

Restart the server and the client, and enter sayHello() in the client terminal. You
will see Hello displayed. It should be clear from this demonstration that we have
created a way to remotely monitor Node processes.

Finally, REPL provides custom commands, in particular .save and .load (the dot
(.) prefix is intentional). The .save command will save the current REPL session to
a file—all the commands you have sent to REPL will be written to a specified file,
meaning that they can be replayed. To see this in action, open an REPL session and
run some commands, building up a session history. Then, enter the following two
commands:

.save test.js

.load test.js
// Session saved to:test.js
// ... the output of the session commands, replayed

Now, let's create a demonstration module, which, when included in a process, opens
it up to remote management via REPL.

Remotely monitoring and managing Node
processes
In your code bundle, you will find the repl-monitor package. This module will
expose a server on a given port, which will provide the current process memory
usage, allowing a remote process to read this information and send instructions
to the monitored process. For this example, we'll be able to tell the process to stop
storing things in memory when the process heap exceeds a limit and to start storing
things again when it is back below the given threshold.

We'll also demonstrate the usefulness of .load to create highly dynamic monitoring
solutions that can be adjusted without restarting targeted processes.

Monitoring Applications

[148]

Note that creating this sort of access point in the internals of your application should
be done with caution. While these techniques are very useful, you must take care to
secure access to the various ports, and so on, primarily by limiting access to those
within a properly secured private network.

The monitor code is as follows:

var repl = require('repl');
var net = require('net');
var events = require('events');
var Emitter = new events.EventEmitter();

module.exports = function(port) {
 net.createServer(function(socket) {
 var inst = repl.start({
 prompt : '',
 input : socket,
 output : socket,
 terminal : false
 })

 inst.on('exit', function () {
 socket.end();
 })

 inst.context.heapUsed = function() {
 return process.memoryUsage().heapUsed;
 }

 inst.context.send = function(msgType, msg) {
 Emitter.emit(msgType, msg);
 }

 }).listen(port);

 return Emitter;
};

Chapter 5

[149]

This module creates REPL on a specified port and exposes two custom methods
via the REPL context that clients can use. The heapUsed method returns a specific
memory reading, and send is used by connecting clients to broadcast messages to
monitored processes via the returned EventEmitter instance. It is important to note
that the output pipe for this REPL is the connecting socket (identical to the input
pipe). As we discussed earlier, this means that the calling process will receive the
results of executing the JavaScript code it sends. We will provide more information
on this later.

Next, we will create a process to be monitored, which will require the monitoring
module:

var listener = require('./monitor')(8080);

store = true;
var arr = [];

listener.on('stop', function() {
 console.log('stopped');
 store = false;
})

listener.on('start', function() {
 store = true;
})

var runner = function() {
 if(store === true) {
 arr.push(Math.random()*1e6);
 process.stdout.write('.');
 }
 setTimeout(runner, 100);
};

runner();

Here, we have a process that keeps adding to an array. Via the monitor module, a
client can connect to this process, check memory usage, and broadcast either a start
or a stop message, which this process will listen for and act upon.

Monitoring Applications

[150]

The last step is to create a client that does remote process management. The control
client is straightforward. We connect to REPL via a TCP (net) connection and
periodically poll the memory state of the targeted process:

var net = require('net');
var sock = net.connect(8080);

var threshold = 0;
var stopped = false;
sock.on('end', function() {
 clearInterval(writer);
 console.log('**** Process ended ****');
});
// Keep checking for memory usage, stringifying the returned
 object
var writer = setInterval(function() {
 sock.write('heapUsed()\n');
}, 1000);

Recalling how we added the heapUsed method to the monitor's REPL context, we
should expect some value back when we write to the REPL input socket. This means
that we must add a data listener to sock:

sock.setEncoding('ascii');
sock.on('data', function(heapUsed) {

 // Convert to number
 heapUsed = +heapUsed;

 // Responses from commands will not be numbers
 if(isNaN(heapUsed)) {
 return;
 }

 if(!threshold) {
 threshold = heapUsed;
 console.log("New threshold: " + threshold)
 }

 console.log(heapUsed);

 // If heap use grows past threshold, tell process to stop
 if((heapUsed - threshold) > 1e6) {
 !stopped && sock.write('.load stop_script.js\n');
 stopped = true;

Chapter 5

[151]

 } else {
 stopped && sock.write('.load start_script.js\n');
 stopped = false;
 }
});

When we receive a memory probe reading, it is converted to an integer and checked
against the threshold value (based on whatever the first reading was). If the reading
exceeds a predetermined limit, we tell the process to stop allocating memory; when
the memory frees up, the process is told to resume.

Importantly, the particular opportunity afforded by REPL is the ability to run a script
in the context of a remote process. Note the commands sent to socket.write, each
of which loads an external file containing JavaScript:

// Stop script
send("stop")
// Start script
send("start")

While these one-liners simply exercise the messaging interface we discussed earlier,
there is nothing that stops your implementation from using a much longer list
of commands in the service of more realistic deployment needs. Crucially, this
decoupling of process control facilitates dynamic process management as the script
that you use .load on today can be changed in the future without requiring any
alteration of the target process.

Now, let's take a look at more comprehensive techniques for deep analysis of
application performance.

Profiling processes
When tracing memory leaks and other hard-to-find bugs, it is useful to have profiling
tools at the ready. What we will look at in this section is how to take snapshots of
running processes and how to draw useful information out of them.

Node already provides some process information natively. Basic tracking of
how much memory your Node process is using is easy to fetch with process.
memoryUsage():

{ rss: 12361728, heapTotal: 7195904, heapUsed: 2801472 }

Monitoring Applications

[152]

There are also modules available to track a little more information on processes.
For example, the usage module (github.com/arunoda/node-usage) delivers
straightforward memory and CPU usage information. To probe the current process,
use the following code:

var usage = require('usage');
usage.lookup(process.pid, function(err, result) {
 console.log(result);
});

This delivers the following result:

{ memory: 15093760,

 memoryInfo: { rss: 15093760, vsize: 3109531648 },

 cpu: 3.8 }

Here, we see the total process memory usage in bytes and the CPU usage percentage.

A good resource to learn about JavaScript memory profiling can
be found at https://developer.chrome.com/devtools/
docs/javascript-memory-profiling.

It is more interesting to be able to get a look into what V8 sees when it is running
your process. Any node process can have v8.log generated simply by passing the
--prof (for profile) flag. Let's create a log reader and check its performance using the
tick module (https://github.com/sidorares/node-tick), which will read v8
logs and generate a breakdown of the execution profile.

To begin with, install the package globally:

npm install -g tick.

In your code bundle, under the /profiling directory for this chapter, there will
be a file called logreader.js. This simply reads the dummy.log file (also in that
folder) and dumps its contents to the console. It's a good example of how to use a
Transform stream to process log files:

var fs = require('fs');
var stream = require('stream');
var lineReader = new stream.Transform({
 objectMode: true
});
lineReader._transform = function $transform(chunk, encoding, done)
 {
 var data = chunk.toString()
 if(this._lastLine) {

github.com/arunoda/node-usage
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://developer.chrome.com/devtools/docs/javascript-memory-profiling
https://github.com/sidorares/node-tick

Chapter 5

[153]

 data = this._lastLine + data;
 }
 var lines = data.split('\n');
 this._lastLine = lines.pop();
 lines.forEach(this.push.bind(this));
 done();
}

lineReader._flush = function $flush(done) {
 if(this._lastLine) {
 this.push(this._lastLine);
 }
 this._lastLine = null;
 done();
}
lineReader.on('readable', function $reader() {
 var line;
 while(line = lineReader.read()) {
 console.log(line);
 }
});
fs.createReadStream('./dummy.log').pipe(lineReader);

The important thing to note is that the main functions have been named and prefixed
with $. This is good practice generally—you should always name your functions.
The reason is specifically relevant to debugging. We want those names to show up in
the reports we're about to generate.

To generate a v8 log, run this script using the –-prof (profile) argument and
–-nologfile-per-isolate to suppress default log file generation:

node --prof logreader --nologfile-per-isolate > v8.log

You should now see a log file in the current working directory with the name
v8.log. Go ahead and take a look at it—the log is somewhat intimidating. This is
where the tick module comes into play:

node-tick-processor > profile

Monitoring Applications

[154]

This command will generate a more readable profile and dump that to the profile
file. Open that file and take a look. There is a lot of information and doing a deep
dive into what it all means is well beyond the scope of this chapter. However, it is
very clear how many ticks are being consumed by various functions in our script,
such as $transform, and we can also see whether or not the functions are optimized.
For example:

16 21.6% 0 0.0% LazyCompile: ~$transform /Users/sandro/
profiling/logreader.js:8

Here, we see that $transform occupied 16 ticks and was lazily compiled, and the
tilde (~) indicates that the function is not optimized—if it was optimized, you would
see an asterisk (*) prefix.

As an experiment, create a script with the following code and run it with the
--prof flag:

while((function $badidea() {
 return 1;
})());

Let this endless loop run for a while and then terminate the process by using Ctrl +
C. Create a profile file, as we did previously, and view it. It should be clear how easy
it would be to catch an expensive function using these profiling tools.

An extremely useful visualization tool available to those running the latest
Node.js build (0.11.x or higher and io.js) is accessible simply by running the
following in a version of the Chrome browser—chrome://tracing/:

Chapter 5

[155]

Once you have this ready in your browser, click on the Load button and upload
your v8.log file. The execution timeline is laid out across the top, and, by clicking
on the link (V8: V8 PC) on the left, you can access the starburst navigation tool.
Starbursts radiate call stacks, nicely visualizing where the work in our application
is being done. Note how our $transform function is listed to the right—name your
functions!

These are a few helpful links if you'd like to learn more about profiling v8:

•	 https://developers.google.com/v8/profiler_example

•	 https://groups.google.com/forum/#!msg/nodejs/oRbX5eZvOPg/
jM6TINytVhoJ

Using third-party monitoring tools
Node is a new technology for which there are few mature application monitoring
tools. Some independent developers, along with established companies in the
application monitoring space, have jumped in to fill this gap. In this section, we'll
look at PM2 as a process manager and monitor and also have a look at Nodetime.

PM2
PM2 is designed to be an enterprise-level process manager. As discussed elsewhere,
Node runs within a Unix process, and its child_process and cluster modules
are used to spawn further processes, typically when scaling an application across
multiple cores. PM2 can be used to implement the deployment and monitoring of
your Node processes both via the command line and programmatically. Here, I will
focus on programmatically using PM2 for process management and show you how
to use it to monitor and display process activity.

Install PM2 globally:

npm install pm2 -g

The most straightforward way to use PM2 is as a simple process runner. The
following program will increment and log a value every second:

// script.js
var count = 1;
function loop() {
 console.log(count++);
 setTimeout(loop, 1000);
};
loop();

https://developers.google.com/v8/profiler_example
https://groups.google.com/forum/#!msg/nodejs/oRbX5eZvOPg/jM6TINytVhoJ
https://groups.google.com/forum/#!msg/nodejs/oRbX5eZvOPg/jM6TINytVhoJ

Monitoring Applications

[156]

Here, we use fork on a new process from script.js, running it in the background
forever, until we stop it. This is a great way to run a daemonized process:

pm2 start script.js

// [PM2] Process script.js launched

Once the script launches, you should see something like this in your terminal:

The meaning of most of the values should be clear, such as the amount of memory
your process is using, whether or not it is online, how long it has been up, and so on
(the mode and watching fields will be explained shortly). The process will continue
to run until it is stopped or deleted.

To set a custom name for your process when you start it, pass the --name argument
to PM2 as follows: pm2 start script.js --name 'myProcessName'.

This overview of all running PM2 processes can be brought up at any time via the
pm2 list command. PM2 offers other straightforward commands:

•	 pm2 stop <app_name | id | all>: This is used to stop a process by name
or ID or stop all processes. A stopped process remains in the process list and
can be restarted later.

•	 pm2 restart <app_name | id | all>: This is used to restart a process.
The number of process restarts is displayed under restarted in all process
lists. To automatically restart a process when it reaches a maximum memory
limit (say, 15 M), use the pm2 start script.js --max-memory-restart
15M command.

•	 pm2 delete <app_name | id | all>: This deletes a process. This process
cannot be restarted.

•	 pm2 info <app_name | id >: This provides detailed information on a
process, as shown here:

Chapter 5

[157]

Note the paths given for error and other logs. Remember that our script increments
an integer by one every second and logs that count. If you use cat /path/to/
script/ out/log, your terminal will show what has been written to the out log,
which should be a list of incrementing numbers. Errors are similarly written to a
log. Furthermore, you can stream the output logs in real time with pm2 logs. For
example, our script.js process is still pumping out incremented values:

PM2: 2014-07-19 23:20:51: Starting execution sequence in -fork mode- for
app name:script id:1

PM2: 2014-07-19 23:20:51: App name:script id:1 online

script-1 (out): 2642

script-1 (out): 2643

script-1 (out): 2644

...

To clear all logs, use pm2 flush.

You can also use PM2 programmatically. First, you will need to install PM2 locally
in your application's package.json file with the standard npm install pm2
command. To replicate the steps we took to run scripts.js with PM2, first create
the programmatic.js script as follows:

// programmatic.js
var pm2 = require('pm2');
pm2.connect(function(err) {
 pm2.start('script.js', {
 name: 'programmed script runner',
 scriptArgs: [
 'first',

Monitoring Applications

[158]

 'second',
 'third'
],
 execMode : 'fork_mode'
 }, function(err, proc) {
 if(err) {
 throw new Error(err);
 }
 });
});

This script will use the pm2 module to run script.js as a process. Go ahead and run
it with node programmatic.js. Executing a PM2 list should show that programmed
script runner is alive. To make sure this is so, try pm2 logs—you should see
numbers being incremented, just as before.

Monitoring
PM2 makes process monitoring easy. To view real-time statistics on the CPU and
memory usage for your processes, simply enter the command pm2 monit:

Here, we see a constantly updated graph of the CPU and memory usage for our
process. What could be easier?

PM2 also makes it easy to create web-based monitoring interfaces—it's as simple as
running pm2 web. This command will start a monitored process listening on port
9615—running pm2 list will now list a process named pm2-http-interface. Run
the web command and then navigate to localhost:9615 in your browser. You will
see a detailed snapshot of your processes, OS, and so on, as a JSON object:

...
 "monit": {
 "loadavg": [
 1.89892578125,
 1.91162109375,
 1.896484375
],
 "total_mem": 17179869184,
 "free_mem": 8377733120,
...

Chapter 5

[159]

"pm_id": 1, // our script.js process
 "monit": {
 "memory": 19619840,
 "cpu": 0
 }
...

Creating a web-based UI that polls your server every few seconds, fetches process
information, and then graphs it is made much simpler due to this built-in feature
of PM2.

PM2 also has an option to set a watcher on all managed scripts so that any changes
to the watched script will cause an automatic process restart. This is very useful
when developing. As a demonstration, let's create a simple HTTP server and run it
through PM2:

// server.js
var http = require('http');
http.createServer(function(req, resp) {
 if(req.url === "/") {
 resp.writeHead(200, {
 'content-type' : 'text/plain'
 });
 return resp.end("Hello World");
 }
 resp.end();
}).listen(8080);

This server will echo "Hello World" whenever localhost:8080 is hit. Start it using
pm2 start server.js --watch --name 'watchedHTTPServer'. Note that if
you now list the running processes, our named process will show enabled in the
watching column. Bring up this server in your browser. You should see "Hello
World". Now, navigate to the server.js script and change "Hello World" to
"Hello World, I've changed!". Reload your browser. Note the change. Run a
process list, and you'll see that this server process indicates a restart. Do it a few more
times. Live development of your server applications just got easier thanks to PM2.

A process management tool with features similar to those of PM2 that
is more focused on delivering a full-featured web UI out of the box is
Guvnor: https://github.com/tableflip/guvnor. Other popular
process monitors can be found at https://github.com/remy/
nodemon and https://github.com/foreverjs/forever.

We will talk about application deployment strategies using PM2 in Chapter 7,
Deploying and Maintaining, including using PM2's cluster mode.

https://github.com/tableflip/guvnor
https://github.com/remy/nodemon
https://github.com/remy/nodemon
https://github.com/foreverjs/forever

Monitoring Applications

[160]

Nodetime
Nodetime is an easy-to-use Node-monitoring tool. Visit www.nodetime.com and
sign up. Once you do so, you will be presented with a page containing code to
include in your application. Keep this page open as it will update when we start
our application.

To begin with, we'll create a simple HTTP server application that returns "Hello
World" for every request:

"use strict";
require('nodetime').profile({
 accountKey: 'your_account_key',
 appName: 'monitoring'
});

var http = require('http');

http.createServer(function(request, response) {

 response.writeHead(200, {
 "content-type" : "text/html"
 });
 response.end('Hello World');

}).listen(8080)

Save this as server.js. Execute it:

node server.js

www.nodetime.com

Chapter 5

[161]

Note how, on the Nodetime page in your browser, you will see monitoring show
up under the Applications section. Click on that link—you will now see Nodetime's
monitoring interface:

Go ahead and hit the server by visiting localhost:8080 in your browser. After
doing that a number of times, go back to your Nodetime interface and use the
dropdown listing OS / Load average, selecting other useful metrics. Try Process/V8
heap total (MB) to see how V8 is allocating memory. Other metrics allow you to
check the profile of the machine executing this server process, and so on.

Monitoring Applications

[162]

Using New Relic for monitoring
New Relic is a well-known tool to monitor servers and applications that has been
upgraded to support Node. It is intended to be used by those looking to monitor the
memory and CPU usage as well as things such as network activity and the health of
your Node processes. In this section, we'll look into how to install it on your server
and provide examples of its use.

Installation involves applying for a license key from the New Relic website at
newrelic.com. Setting up your account is straightforward. After signing up, you'll
be presented with a list of monitoring tools that New Relic provides—you'll want to
select New Relic Servers. In the next steps, you'll select Node.js as your development
environment and the OS you'll be working within. I'll use CentOS. After selecting
your OS, you should see the installation instructions generated for you, with your
license key included—just cut and paste.

You are installing and starting a server that will probe system processes and report
results to New Relic. This server must authenticate with New Relic by using your
license key, and that means you must store that key in an accessible location.
For this reason, a configuration file will be stored on your system. For most Unix
installs, this file will be stored in /etc/newrelic/nrsysmond.cfg. Read through the
configuration options described in that file, such as the location of log files.

Many third-party deployment environments/hosts often provide easy integration with New
Relic, such as Heroku (https://devcenter.heroku.com/articles/newrelic).

Once New Relic is running, a log file will be created, and if all goes well, that file should
contain a line similar to the following, indicating that New Relic is now tracking:

{
 "v": 0,
 "level": 30,
 "name": "newrelic",
 "hostname": "your.server.net",
 "pid": 32214,
 "time": "2015-02-16T19:52:20.295Z",
 "msg": "Connected to collector-114.newrelic.com:443 with agent
 run ID 39366519380378313.",
 "component": "collector_api"
}

newrelic.com
https://devcenter.heroku.com/articles/newrelic

Chapter 5

[163]

We'll connect to this server via the newrelic package. Once that package is installed
into your application directory, you will need to configure it. Somewhat awkwardly,
this means copying the newrelic.js file from node_modules/newrelic into your
application's root folder, modifying its contents, and adding your license key and a
name for your application. The log level field corresponds to the log levels used by
Bunyan, so you may want to visit the project page for more information: https://
github.com/trentm/node-bunyan.

You'll want to avoid storing your license key in the newrelic.js file when you
go into production. You can pass configuration parameters to New Relic via
environment variables rather than hardcoding them via environment variables.
For example, you can pass your license key via the NEW_RELIC_LICENSE_KEY
environment variable.

The newrelic package repository can be found at https://github.com/newrelic/
node-newrelic. This project page contains extensive information on New Relic's
usage and configuration, environment variables, and so on. Also, there are examples
for setting up client-side monitoring.

Let's add New Relic monitoring to an example application. Create the following
Express server:

var newrelic = require('newrelic');
var express = require('express');

var app = express();

app.get('/', function(req, res) {
 res.send('Hello World');
});

app.get('/goodbye', function(req, res) {
 res.send('Goodbye World');
});
app.listen(3000);
console.log('Server started on port 3000');

You can add additional routes or change the route names if you'd like. What we're
going to do is run this server, hit it a few times, and then check with New Relic to see
what it has picked up. Start the server and make some requests.

https://github.com/trentm/node-bunyan
https://github.com/trentm/node-bunyan
https://github.com/newrelic/node-newrelic
https://github.com/newrelic/node-newrelic

Monitoring Applications

[164]

Once you've exercised the server a bit, head over to newrelic.com and log in. Across
the top of the page, you will see a navigation menu, and you'll be in the APM section.
Here is where you can access various monitoring tools for you applications. You
should see a list including the application name you set earlier. Click on that name,
and you'll be brought to a dashboard overview (there won't be much information yet).
You should, however, see some information about the server route activity:

Along the left-hand side, there will be a more detailed navigation pane. Go to
Reports | Web transactions, and you'll see more detailed information on the routes
you've set up. If you navigate to the SERVERS section, you'll see a dashboard for
your host containing detailed system information.

Now, let's create server load and see how New Relic does with monitoring. If you
have a favorite load stress tool, go ahead and send some traffic to your application.
If you'd like to learn a simple and common stress-testing tool, learn and use the
Apache Bench tool (http://httpd.apache.org/docs/2.2/programs/ab.html).
There are also free online stress-testing services, such as http://loader.io and
https://loadimpact.com.

Once you've started the stress test, return to the New Relic dashboard for your
application and host server. You'll see regularly updated statistics as the New Relic
monitor reports the effect of requests on the memory, CPU load, and other key metrics.

http://httpd.apache.org/docs/2.2/programs/ab.html
http://loader.io
https://loadimpact.com

Chapter 5

[165]

Summary
In this chapter, we engaged with one of the most important aspects of deployment—
monitoring running processes. Starting at the most basic and necessary level—
catching errors—you learned how to trap errors at the individual process level and
across processes. After discussing techniques to log errors with both UDP and third-
party tools, we looked at how to build remote process monitors using Node's REPL,
leading to a deeper discussion on how to do extensive application profiling and
memory analysis. Finally, we looked at how to deploy the PM2 process runner in an
effort to manage processes and visualize their activity. We also looked at how to use
the cloud-based Nodetime and New Relic services to monitor your applications.

Direct monitoring provides crucial real-time insights into any potential threats, but
we must also try to limit the possibility of future errors by writing resilient code that
we can be confident of. In the next chapter, we will look at how to build and test
our applications such that they inspire confidence. Advice on how best to build and
organize your applications so that their design is clear will be presented. This way,
applying the remaining chapter content on testing strategies to your application can
flow naturally with your ongoing development.

[167]

Building and Testing
Perfect code is a unicorn; what good developers do is introduce the smallest amount
of bad code. Any code is, therefore, somewhat flawed, so errors and inefficiency are
an inescapable pathology in software development. Accordingly, technical debt
naturally compounds as more code is written. Some of the more expensive technical
realities of modern application development are listed here:

•	 There are rigidly coupled components that do not easily allow change at
either the technical level or the business level. Allowing such unprincipled
interpenetration leads to complex capillary networks growing throughout
the body of your code. The edges of these networks are nearly impossible to
trace, concretizing entanglements that obscure how a change in one function
might affect other functions.

•	 Poor gatekeeping allows untested code to enter production, often leading to
quick fixes, which, in turn, can lead to intractable patches and bridge code as
well as relentless bugs that regularly resurface.

•	 There are code units built in isolation in parallel without objective big
picture guidelines that are merged into a single codebase sloppily and joined
together by undocumented, ad hoc bindings.

•	 The need for refactoring reaches a critical point, and further development, in
any sense, becomes nearly impossible. Scaling ceilings typify this situation,
and wholesale rewrites are inevitable and nearly always doomed.

Debt accumulates interest. Software, like many long-term pursuits, requires constant
debt management. It is in your interest to reduce debt. In the previous chapter, we
learned how to profile deployed applications at a level of detail sufficient to expose
errors, weaknesses, and other unwanted characteristics. In this chapter, we will
explore strategies that help software developers and teams catch errors before the
membranes of their applications are breached. We will also explore workflows to
manage the integration of independently written programs.

Building and Testing

[168]

Building with Gulp, Browserify, and
Handlebars
The JavaScript you are working on will likely be transformed and augmented
before it makes it to production. At the very least, it will be checked for errors,
minified, packaged, and so on. It will be deployed only after that. Deployment,
therefore, follows a build step and how each step in the build is instrumented
must be clearly defined.

Over time, certain patterns of development have emerged within the Node
community. Many of these patterns map to other environments, while others are
unique to the full-stack JavaScript Node.js world. The ability to run identical code
on the client and server is perhaps the most prominent example. Because deployed
codebases often contain the end result of transpilation (for example, CoffeeScript,
and SASS), deployment workflows are assembled to run preprocessors, concatenate
files, create source maps, compress images, and so on.

In this section, we will look at three technologies that are regularly seen in the Node
build/deploy process. We'll use Gulp to create a build system, using Browserify to
bundle application code and Handlebars as a templating language for compiling
static pages. Finally, we'll look at how to improve our development experience by
using BrowserSync

Using Gulp
Create a new folder and initialize a package.json file in that folder with npm init.
When this is done, you'll end up with a package.json file that looks somewhat like
the following:

{
 "name": "building",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "",
 "license": "ISC"
}

Chapter 6

[169]

This basic scaffold will be fleshed out and explained as we proceed. The point
is simply that you will now hang the modules and other dependencies of your
application on this scaffold, using npm, neatly describing dependencies, test
harnesses, and more. Since we'll use the Gulp build system, it is reasonable to install
the Gulp module first and to assert that it is a dependency of this package. Run these
two commands:

npm install gulp --global

npm install gulp --save-dev

The first command installs Gulp globally, meaning that you can now use the gulp
command directly from the command line (you can also abbreviate --global with
-g). The next command installs Gulp locally, adding the following new property to
the package.json file:

 "devDependencies": {
 "gulp": "^3.8.10"
 }

Gulp has been installed and saved as a dependency. We are prepared to construct a
build system.

One goal of a build system is the instrumentation of your development environment
such that you can work naturally with uncompressed, unminified code while
developing and, later, issue commands to convert your raw code and assets into an
optimized state suitable for staging environments, production environments, and so
on. Providing developers with an expressive and simple syntax for describing how
to convert source code into deployable code is what Gulp aims to provide.

Create two new folders in your working directory: a /source folder and a
/build folder. We're going to create a set of instructions for transforming the
files in source/ into files in /build. This set of instructions is stored in a file that
is specifically called gulpfile.js. Create that file and insert the following code:

"use strict";
var fs = require('fs');
var gulp = require('gulp');
var buildDirectory = './build';
gulp.task('default', function(cb) {
 fs.exists(buildDirectory, function(yes) {

Building and Testing

[170]

 if(yes) {
 return cb();
 }
 fs.mkdirSync(buildDirectory);
 cb();
 });
});

Gulp works on the idea of running a number of tasks in a certain order. The general
format is gulp.task(<task name>, <task runner>). A Gulpfile is typically
extended with several such task definitions. As we'll see, tasks can be named
anything you'd like, but there must always be a default task named default, and the
preceding code establishes such a task to do one simple thing: ensure that a /build
folder exists, and, if not, to create one.

One thing to notice is the first argument a task runner function receives: a callback
function, here named cb. Because Node programs customarily run asynchronous code,
it is important to have a mechanism to tell gulp that a task is finished. We're running
asynchronous code to check for the existence of a folder, so we use this callback
system, but note that, if your code either runs synchronously or if the moment of task
completion is irrelevant to subsequent tasks, you can skip running a callback, and
Gulp will simply continue with the next task as soon as the task runner exits.

Go ahead and run the gulp command in the folder containing your Gulpfile. You
should see something like the following:

Using gulpfile ~/building/gulpfile.js

Starting 'default'...

Finished 'default' after 720 μs

To check that the task is doing its job correctly, delete the /build folder and run
gulp again. You'll see that the folder is recreated.

Given that Gulp expects its Gulpfile to contain a default task, the
gulp command is simply a shortcut for gulp default. You
can execute a specific task by running gulp <taskname>.

In a typical build, many tasks will be run. Each task should be as simple and specific
as possible, and the Gulpfile should neatly organize them so that they execute in
a certain order. For this reason, the default task, typically, doesn't do much on its
own but is used as a way to hint at the list of tasks that will be run. Let's rewrite the
preceding code in a more directed way:

gulp.task('initialize',function(cb) {
 fs.exists(buildDirectory, function(yes) {

Chapter 6

[171]

 ...
 cb();
 });
});

gulp.task('default', ['initialize'], function() {
 console.log('Build is complete');
});

Here, we see more clearly how gulp works. A second array argument is passed to
the gulp task's definition, listing other tasks on which the current task depends—a
task will not run until all of its dependencies have completed. Let's add another task
to this execution chain that copies files in the /source folder to the /build folder.
Add the following to your Gulpfile:

gulp.task('move', function() {
 gulp
 .src('./source/**')
 .pipe(gulp.dest('./build'))
});

Now, tell gulp about this new task:

gulp.task('default', ['initialize', 'move'], function() ...)

In addition to task, you will use the src, pipe, and dest Gulp commands
frequently. Gulp is a streaming build system—within a task, you will normally
identify a collection of files, run a chain of transformations against them, and put
the transformed files somewhere useful, typically the folder containing a deployable
application. The src command is used to identify this collection and convert the
contained files into streamable objects such that pipe can be used on them to gulp
plugins. We will provide more information on this later.

Arguments to Gulp's src command often contain globs (for example,
/source/**), flavors of pattern matching that are useful when we
target files within folders. More on how they work can be found at
https://github.com/isaacs/node-glob#glob-primer.

https://github.com/isaacs/node-glob#glob-primer

Building and Testing

[172]

The preceding code creates a collection of files in the /source directory and pipes
them to the (built-in) dest gulp plugin, which writes them to /build. Run gulp
again. You will see something like the following:

Starting 'initialize'...
Starting 'move'...
Finished 'move' after 3.66 ms
Finished 'initialize' after 4.64 ms
Starting 'default'...
Build is complete
Finished 'default' after 19 μs

Did you see anything problematic? The move task ran prior to the completion of
initialize, which creates a race condition—will the /build directory be created
before move tries to add files to it? A build should be as fast as possible, and, to that
end, Gulp aims for maximum concurrency—unless you specify otherwise, Gulp will
run all of its tasks concurrently. As illustrated in the preceding code, initialize
and move start simultaneously. How can a specific ordering be enforced?

The ordering of the dependency list passed to default does not reflect their
execution order. However, it does represent a list of tasks that must complete prior
to the execution of default. To ensure that move follows initialize, simply make
initialize a dependency of move:

gulp.task('move', ['initialize'], function() {
 ...
});

Erecting a build scaffold
Now that you have an idea of how Gulp works, let's build a representative build
process. We'll develop a Gulpfile step by step. To start with, use the following code:

"use strict";

// npm install coffee-script -> this is used for test task
require('coffee-script/register');

var path = require('path');
var mkdirp = require('mkdirp');
var del = require('del');
var source = require('vinyl-source-stream');
var buffer = require('vinyl-buffer');

Chapter 6

[173]

var browserSync = require('browser-sync');
var gulp = require('gulp');
var coffee = require('gulp-coffee');
var coffeelint = require('gulp-coffeelint');
var sourcemaps = require('gulp-sourcemaps');
var changed = require('gulp-changed');
var concat = require('gulp-concat');
var handlebars = require('gulp-handlebars');
var browserify = require('browserify');
var sass = require('gulp-sass');
var wrap = require('gulp-wrap');
var mocha = require('gulp-mocha');
var uglify = require('gulp-uglify');
var minifyHTML = require('gulp-minify-html');

// A map of relevant source/build folders
var buildDir = './build';
var sourceDir = './source';
var s_scriptsDir = './source/scripts';
var b_scriptsDir = './build/js';
var s_stylesDir = './source/styles';
var b_stylesDir = './build/css';
var s_templatesDir = './source/templates';
var b_templatesDir = './build/templates';
var s_testsDir = './source/tests';

// Clean out build directories before each build
gulp.task('clean', function(cb) {
 del([
 path.join(b_scriptsDir, '**/*.js'),
 path.join(b_stylesDir, '**/*.css'),
 path.join(b_templatesDir, '*.js'),
 path.join(buildDir, '*.html')
], cb);
});
gulp.task('scaffold', ['clean'], function() {
 mkdirp.sync(s_scriptsDir);
 mkdirp.sync(b_scriptsDir);
 mkdirp.sync(s_stylesDir);
 mkdirp.sync(b_stylesDir);
 mkdirp.sync(s_templatesDir);

Building and Testing

[174]

 mkdirp.sync(b_templatesDir);
 mkdirp.sync(s_testsDir);
});

...

gulp.task('default', [
 'clean',
 'scaffold',
 'lint',
 'scripts',
 'styles',
 'templates',
 'browserify',
 'views',
 'test',
 'watch',
 'server'
]);

At the head of this file, you'll see a lot of require statements. Excepting path,
they will all be used as either Gulp plugins or helpers. You can just copy the
package.json file found in the /building folder of you code bundle for this
chapter, or go ahead and install them using the --save-dev directive: npm install
--save-dev gulp-coffee gulp-changed [...].

Also, install the jquery and handlebars npm modules as dependencies using npm
install --save jquery handlebars. We will provide more information on why
we do this when we discuss Browserify.

The clean and scaffold tasks exist to build a folder structure for your app and to
clean the relevant build directories whenever a new build happens (making room for
newly built files without leaving the residue of old ones). Take a look at those tasks;
they ultimately ensure the following folder structure:

build
 css
 js
 templates
source
 scripts
 styles
 templates
tests

Chapter 6

[175]

In the following demonstration, we'll write our JavaScript in CoffeeScript, storing
.coffee files in the source/scripts directory, which will be compiled and moved
to the build/js directory. The build/css directory will receive transformed .scss
files contained in source/styles. Handlebars templates will be precompiled and
moved from source/templates to build/templates. Finally, the .html files
forming the main "pages" of our application will be located in /source and moved to
the root /build folder. Later on, we will add tasks to expose these HTML views via a
web server.

At the bottom of the snippet, you will see the list of tasks that we'll define bound as
dependencies of the default Gulp task. Let's go over those one by one.

Linting files involves running a syntax checker on your scripts, enforcing various
rules, such as indentation, whether or not certain constructs are allowed, whether to
force the use of the semicolon, and so on. We'll use CoffeeScript exclusively, so we
implement a lint task using the gulp-coffeelint plugin:

gulp.task('lint', ['scaffold'], function() {
 return gulp.src(path.join(s_scriptsDir, '**/*.coffee'))
 .pipe(coffeelint('./coffeelint.json'))
 .pipe(coffeelint.reporter('default'))
});

We're simply checking the syntax of the CoffeeScript files that will be transpiled into
JavaScript files residing in the /js build folder. Any discrepancies will be reported to
stdout but will not stop the build. A coffeelint.json file containing syntax rules
is applied. You should investigate this file and modify it to fit your needs—more
information can be found at http://www.coffeelint.org.

The next step is to build these newly linted scripts:

gulp.task('scripts', ['lint'], function() {
 return gulp.src(path.join(s_scriptsDir, '**/*.coffee'))
 .pipe(changed(b_scriptsDir, {extension: '.js'}))
 .pipe(sourcemaps.init())
 .pipe(coffee({bare: true}))
 .pipe(sourcemaps.write())
 .pipe(gulp.dest(b_scriptsDir))
});

http://www.coffeelint.org

Building and Testing

[176]

There are several build steps happening here. We could simply transform
CoffeeScript files to JavaScript files and copy them to the build/scripts folder.
However, as the transpiled JavaScript file is not the original source file, we need
to create a sourcemap—an essential tool that will map errors in JavaScript to the
original CoffeeScript source that generated the said JavaScript. This is invaluable when
we are debugging in a browser. As you saw in the code, we simply use the gulp-
sourcemaps plugin to track the compilation step, and it automatically appends a
sourcemap to the generated JavaScript file, which looks somewhat like the following:

//# sourceMappingURL=data:application/json;base64,
 eyJ2ZXJzaW9uIjozLCJzb3VyY2VzIjpbInNhbXBsZS5jb2ZmZWUiXS
 wibmFtZXMiOltdLCJtYXBwaW5ncyI6IkFBQUEsSUFBQSxJQUFBOztBQUFBL
 ElBQUEsR0FBTyxxQkFBUCxDQUFBIiwiZmlsZSI6InNhbXBsZS5qcyIsInNvdX
 JjZVJvb3QiOiIvc291cmNlLyIsInNvdXJjZXNDb250ZW50IjpbImRheXMgPSB
 bMS4uN11cbiJdfQ==

The gulp-changed plugin intelligently tracks whether any targeted files have
changed, and, if they have not, the plugin removes them from processing. This
plugin can drastically reduce the execution time of any task processing a large
numbers of files. Note that we set the extension argument to .js as an option as the
original file extension (.coffeescript) will be changed and the plugin must be told
about this naming change.

We will create styles in our system using the Sass CSS preprocessor (http://sass-
lang.com/) denoted by their .scss extension. In the following task definition, they
are converted to standard CSS. In addition, they are bundled up into a single output
file (app.css) using the gulp-concat plugin:

gulp.task('styles', function() {
 return gulp.src(path.join(s_stylesDir, '**/*.scss'))
 .pipe(sass())
 .pipe(concat('app.css'))
 .pipe(gulp.dest(b_stylesDir));
});

Bundled into a single file at the build step, global styles can be added to any view
with a single <link> tag, while maintaining the necessary separation of style
documents during development.

The next step is slightly more complicated. We are going to use Handlebars
templates, which (might) look like this:

 {{#each days}}
 {{this}}
 {{/each}}

http://sass-lang.com/
http://sass-lang.com/

Chapter 6

[177]

For Handlebars to feed the preceding iterator some JSON to process, the template
must be compiled into a JavaScript function via the Handlebars.template method.
While this could be done on the client side, it is much more efficient to simply
precompile our templates at the build step. So, what we're going to do is export each
template as an individual Node module such that they can be used as one normally
uses modules. To accomplish this, we'll use the gulp-wrap plugin:

gulp.task('templates', function () {
 return gulp.src(path.join(s_templatesDir, '/**/*.hbs'))
 .pipe(handlebars())
 .pipe(wrap('var Handlebars = require
 ("handlebars/runtime")["default"];module.exports =
 Handlebars.template(<%= contents %>);'))
 .pipe(gulp.dest(b_templatesDir));
});

This task wraps each source file in code that will use the Handlebars runtime to
compile the source code into an exportable JavaScript function. Now, the template
can be used in your client code without the overhead of loading Handlebars at
runtime or using it for compilation. For example, use the following code:

var myTemplate = require("build/templates/myTemplate.js");
$(document.body).append(myTemplate({days:
 ['mon','tue','wed'...]}));

You might be saying to yourself, "But wait...client-side JavaScript doesn't have a
require statement!"...and you'd be right! Enter the power of Browserify:

gulp.task('browserify', ['scripts', 'templates', 'views'],
 function() {
 return browserify(b_scriptsDir + '/app.js')
 .bundle()
 // Converts browserify out to streaming vinyl file object
 .pipe(source('app.js'))
 // uglify needs conversion from streaming to buffered vinyl file
 object
 .pipe(buffer())
 .pipe(uglify())
 .pipe(gulp.dest(b_scriptsDir));
});

As mentioned at http://browserify.org/:

"With Browserify, you can write code that uses require in the same way that you
would use it in Node."

http://browserify.org/

Building and Testing

[178]

This allows us to write our client application code as if it was running within Node,
with a DOM document thrown in. In the preceding task, Browserify automatically
fetches all app.js dependencies (instances of require), bundles them up into a
file that will run on the client, runs the gulp-uglify plugin to minify the resulting
JavaScript, and replaces the old file with the Browserified bundle. The app.js file
can contain all of the code we need, in one file, thus simplifying and standardizing
client integration.

Browserify isn't just about concatenation, however. The point is that, with
Browserify, we can use npm modules on both the client and the server, normalizing
our process, and, therefore, leveraging intelligent package management for client-
side JavaScript. This is new and important: we have gained the power of package
management and its standardized loading system on the client side. While some
client frameworks provide something resembling module management systems,
none of these hacks can replace the solid npm system. Consider this example source/
scripts/app.coffee file:

$ = require("jquery")
days = require("../../build/js/sample.js")
complimentTemplate = require("../../build/templates/compliment.js")
helloTemplate = require("../../build/templates/hello.js")
daysTemplate = require("../../build/templates/days.js")
$ ->
 $("#hello").html helloTemplate(name: "Dave")
 $("#compliment").html complimentTemplate(compliment: "You're
great!")
 $("#days").html daysTemplate(days: days)

If you check your code bundle, you will find this file. Notice how we require the
npm module version of jQuery, as well as the precompiled templates we created
previously from Handlebars templates. Yet, we are running in the client, so we can
use jQuery operations to add HTML to the DOM—the best of both worlds.

The task for views is very simple:

gulp.task('views', ['scaffold'], function() {
 return gulp.src(path.join(sourceDir, '*.html'))
 .pipe(minifyHTML({
 empty: true
 }))
 .pipe(gulp.dest(buildDir))
});

We're just compressing HTML and moving the file, with no further changes, to the
build directory.

Chapter 6

[179]

Running and testing your build
At this point, we have all the tasks set up to manage the key files for our repository.
Let's use browser-sync to automatically spawn a server and a browser window that
will load the index.html file from our build directory:

gulp.task('server', ['test','watch'], function() {
 browserSync({
 notify: false,
 port: 8080,
 server: {
 baseDir: buildDir
 }
 });
});

The test and watch tasks will be explained next. For now, notice how easy it is to
add a server to your build process. This task starts a server on the provided port and
automatically loads index.html found in baseDir onto an automatically spawned
browser window. The notify option tell BrowserSync not to display debugging
notifications in connected browsers. Now, every time we run Gulp, our app will load
up in a browser. Your terminal should display information similar to the following:

BrowserSync allows multiple clients to view your build, so an external access URL is
provided. Additionally, they will see your interactions. For example, if you scroll the
page, the pages of connected clients will also scroll. Additionally, the UI URL will
expose a sort of dashboard for your build, allowing you to control connected clients,
reload their views, and so on. This is a great tool when you are doing demonstrations
for your team or for a client. To learn more about BrowserSync and its configuration,
visit http://www.browsersync.io/.

http://www.browsersync.io/

Building and Testing

[180]

A good build system should provide a testing harness as the final arbiter of whether
the build should be certified. We'll do a deep dive into testing with Mocha, Chai, and
Sinon later in this chapter, so here we'll just demonstrate a very simple testing stub
that you can build on when designing your Gulp workflow:

gulp.task('test', ['browserify'], function() {
 return gulp.src(path.join(s_testsDir, '**/*.coffee'), {
 read: false
 })
 .pipe(coffee({bare: true}))
 .pipe(mocha({
 reporter: 'spec'
 }));
});

There is a test file written in CoffeeScript within the tests directory:

days = require('../../build/js/sample.js')
assert = require("assert")
describe "days() data", ->
 it "should have a length of 7", ->
 assert.equal days().length, 7

This test will load one of our template modules, which exports an array with seven
members—the days of the week. The test uses Node's core assert library (discussed
in detail later in this chapter) to test whether this array has the correct length of seven
characters. Mocha provides the testing harness, via describe and it, allowing you
to design tests that read like a natural language. When you run through Gulp, you
should see something like this (if everything goes right):

The final task is provided by another native Gulp method: watch. The purpose of
watch is to bind file watchers to certain directories such that any file change will
automatically trigger a rerun of the relevant build tasks. For example, you might
want to run the scripts task again if any file in source/scripts changes. The
following code demonstrates how (changes in) certain folders automatically trigger a
number of build tasks:

gulp.task('watch', ['scaffold'], function() {
 gulp.watch(path.join(s_scriptsDir, '**/*'), [
 'browserify', browserSync.reload

Chapter 6

[181]

]);
 gulp.watch(path.join(s_templatesDir, '**/*'), [
 'browserify', browserSync.reload
]);
 gulp.watch(path.join(s_stylesDir, '**/*'), [
 'styles', browserSync.reload
]);
 gulp.watch(path.join(sourceDir, '*.html'), [
 'views', browserSync.reload
]);
});

You will notice that BrowserSync is bound to changes as well, thus creating a
very natural development process. Once you have a running build displayed in a
browser, any change you make to, for example, index.html, will be automatically
reflected in that view. As you change the CSS, you will see the change immediately,
and so on. There will be no more constant reloading when you are developing;
BrowserSync pushes changes for you.

There are many other things you might need to do. For example, you might want
to compress images before pushing them to production. As a practice, create the
relevant image folders in your source and build directory and implement an images
task using gulp-imagemin (https://github.com/sindresorhus/gulp-imagemin).

The people behind Gulp provide a good collection of suggested patterns
to implement common build tasks at https://github.com/gulpjs/
gulp/tree/master/docs/recipes.

Here's a final note: you will regularly hand-code these sorts of build systems, typically
reusing the same patterns. For this reason, certain automated tools have been created
that can often reduce the creation of boilerplate build code to a few commands. A
popular one is Yeoman (http://yeoman.io/), which makes it easy to construct
common "stacks" of build steps, databases, servers, and frameworks. Other notable
solutions are Brunch (http://brunch.io/) and Mimosa (http://mimosa.io/).

Using Node's native testing tools
Testing is simply the act of checking whether your assumptions about the state of
something are false. In this way, testing software follows the scientific method in that
you will express a theory, make a prediction, and run an experiment to see whether
the data matches your prediction.

https://github.com/sindresorhus/gulp-imagemin
https://github.com/gulpjs/gulp/tree/master/docs/recipes
https://github.com/gulpjs/gulp/tree/master/docs/recipes
http://yeoman.io/
http://brunch.io/
http://mimosa.io/

Building and Testing

[182]

Unlike scientists, software developers can change reality—Einstein's joke about
changing the facts if they don't fit the theory actually applies, without irony, to
the testing process. In fact, it is required! When your tests (theories) fail, you must
change "the world" until the tests do not fail.

In this section, you will learn how to use Node's native debugger for live code
testing and how to use the assert module to make predictions, run experiments,
and test results.

The Node debugger
Most developers have used an IDE for development. A key feature of all good
development environments is access to a debugger, which allows breakpoints
to be set in a program in places where the state or other aspects of the runtime
need to be checked.

V8 is distributed with a powerful debugger (commonly seen powering the Google
Chrome browser's developer tools panel), and this is accessible to Node. It is invoked
using the debug directive, as shown here:

> node debug somescript.js

Simple stepthrough and inspection debugging can now be achieved within a Node
program. Consider the following program:

myVar = 123;
setTimeout(function () {
 debugger;
 console.log("world");
}, 1000);
console.log("hello");

Note the debugger directive. Executing this program without using the debug
directive will result in "hello" being displayed, followed by "world" one second
later. When using the directive, you will see this:

> node debug somescript.js

< debugger listening on port 5858

connecting... ok

break in debug-sample.js:1

 1 myVar = 123;

 2 setTimeout(function () {

 3 debugger;

debug>

Chapter 6

[183]

Once a breakpoint is hit, we are presented with a CLI to the debugger itself, from
within which we can execute standard debugging and other commands:

•	 cont, c: This continues execution from the last breakpoint until the
next breakpoint

•	 step, s: Step in—this keeps running until a new source line (or breakpoint)
is hit; after that, return control to the debugger

•	 next, n: This is like the preceding command, but function calls made on the
new source line are executed without stopping

•	 out, o: Step out—this executes the remainder of the current function and
back out to the parent function

•	 backtrace, bt: This traces the steps to the current execution frame in a
manner similar to the following:
...
#3 Module._compile module.js:456:26
#4 Module._extensions..js module.js:474:10
#5 Module.load module.js:356:32
... etc.

•	 setBreakpoint(), sb(): This sets a breakpoint on the current line
•	 setBreakpoint(Integer), sb(Integer): This sets a breakpoint on the

specified line
•	 clearBreakpoint(), cb(): This clears a breakpoint on the current line
•	 clearBreakpoint(Integer), cb(Integer): This clears a breakpoint on the

specified line
•	 run: If the debugger's script has terminated, this will start it again
•	 restart: This terminates and restarts the script
•	 pause, p: This pauses the running code
•	 kill: This kills the running script
•	 quit: This exits the debugger
•	 version: This displays the V8 version
•	 scripts: This lists all loaded scripts

To repeat the last debugger command, simply hit
Enter on your keyboard.

Building and Testing

[184]

Returning to the script we are debugging, entering cont in the debugger results in
the following output:

debug> cont

< hello // ... a pause of 1000 ms will now occur, then...

break in debug-sample.js:3

 1 myVar = 123;

 2 setTimeout(function () {

 3 debugger;

 4 console.log("world");

 5 }, 1000);

debug>

Notice how "hello" was not printed when we started the debugger even though you
would expect the console.log('hello') command to execute prior to the breakpoint
being reached in the setTimeout callback. The debugger does not execute at runtime;
it is evaluating at compile time as well as at run time, giving you deep visibility into how
the bytecode for your program is being assembled and, eventually, will be executed,
not simply a postcompilation printout, which console.log gives.

It is normally useful at a breakpoint to do some inspection, such as of the value of
variables. There is an additional command available to the debugger, repl, which
enables this. Currently, our debugger has stopped after having successfully parsed
the script and executed console.log('hello'), the first function pushed into the
event loop. What if we wanted to check the value of myVar? Use repl:

debug> repl

Press Ctrl + C to leave debug repl

> myVar

123

Play around with REPL here, experimenting with how it might be used.

At this point, our program has a single remaining instruction to execute—printing
"world". An immediate cont command will execute this last command, the event
loop will have nothing further to do, and our script will terminate:

debug> cont

< world

program terminated

debug>

Chapter 6

[185]

As an experiment, run the script again, using next instead of cont just before the
execution of this final context. Keep hitting Enter and try to follow the code that is
being executed. You will see that, after "world" is printed, the timers.js script will
be introduced into this execution context as Node cleans up after firing a timeout.
Run the scripts command in the debugger at this point. You will see something
like this:

debug> next

break in timers.js:125

 123

 124 debug(msecs + ' list empty');

 125 assert(L.isEmpty(list));

 126 list.close();

 127 delete lists[msecs];

debug> scripts

* 37: timers.js

 46: debug-sample.js

debug>

It will be useful to experiment with various methods, learning about what happens
when Node executes scripts at a deep level as well as about Node helping with your
debugging needs.

It can be useful to read the following document, describing how the
Google Chrome debugger interface is used: https://developers.
google.com/chrome-developer-tools/docs/javascript-
debugging#breakpoints.
Miroslav Bajtos's node-inspector module is strongly recommended for
debugging, allowing a developer to remotely debug a Node application
from the Chrome browser. You can find more information on this at
https://github.com/node-inspector/node-inspector.

https://developers.google.com/chrome-developer-tools/docs/javascript-debugging#breakpoints
https://developers.google.com/chrome-developer-tools/docs/javascript-debugging#breakpoints
https://developers.google.com/chrome-developer-tools/docs/javascript-debugging#breakpoints
https://github.com/node-inspector/node-inspector

Building and Testing

[186]

The 'assert' module
Node's assert module is used for simple unit testing. In many cases, it suffices as a
basic scaffolding for tests or is used as the assertion library for testing frameworks
(such as Mocha, as we'll see later). Its usage is straightforward; we want to assert the
truth of something and throw an error if our assertion is not true. For example, use
the following commands:

> require('assert').equal(1,2,"Not equal!")

AssertionError: Not equal!

 at repl:1:20

 ...

If the assertion was true (both values are equal), nothing would be returned:

> require('assert').equal(1,1,"Not equal!")

undefined

Following the UNIX Rule of Silence, when a program has nothing surprising, interesting,
or useful to say, it should say nothing, assertions only return a value when the assertion
fails. The value returned can be customized by using an optional message argument,
as seen in the preceding code.

The assert module API is composed of a set of comparison operations with
identical call signatures—the actual value, the expected value, and an optional
message to display when comparison fails. Alternate methods functioning as
shortcuts or handlers for special cases are also provided.

A distinction must be made between identity comparison (===) and equality
comparison (==); the former is often referred to as strict equality comparison (as is
the case of the assert API). Because JavaScript employs dynamic typing, when two
values of different types are compared using the equality operator ==, an attempt
is made to coerce (or cast) one value into the other—a sort of common denominator
operation. For example, use the following code:

1 == "1" // true
false == "0" // true
false == null // false

As you might expect, these sorts of comparisons can lead to surprising results.
Notice the more predictable results when identity comparison is used:

1 === "1" // false
false === "0" // false
false === null // false

Chapter 6

[187]

The thing to remember is that the === operator does not perform type coercion
prior to the comparison, while the equality operator compares after type coercion.
Additionally, because objects in JavaScript are passed by reference, the identity of
two objects with the same values is distinct—for objects, identity requires that both
operands refer to the same object:

var a = function(){};
var b = new a;
var c = new a;
var d = b;
console.log(a == function(){}) // false
console.log(b == c) // false
console.log(b == d) // true
console.log(b.constructor === c.constructor); // true

Finally, the concept of deep equality is used for object comparisons where identity need
not be exact. Two objects are deeply equal if they both posses the same number of
owned properties, the same prototype, the same set of keys (though not necessarily in
the same order), and equivalent (not identical) values for each of their properties:

var a = [1,2,3];
var b = [1,2,3];
assert.deepEqual(a, b); // passes
assert.strictEqual(a, b); // throws AssertionError: [1,2,3] ===
 [1,2,3]

It is useful to test your assumptions about how values are understood in comparison
to each other by designing assertion tests. The results may surprise you.

The following rounds out the assertions you can make using this module:

•	 assert.equal(actual, expected, [message]): This is used to test
coerced equality with ==.

•	 assert.notEqual(actual, expected, [message]): This is used to test
coerced equality with !=.

•	 assert.deepEqual(actual, expected, [message]): This is used to test
for deep equality.

•	 assert.notDeepEqual(actual, expected, [message]): This is used to
test for deep inequality.

•	 assert.strictEqual(actual, expected, [message]): This is used to test
identity equivalence ===.

•	 assert.notStrictEqual(actual, expected, [message]): This is used to
test for identity mismatch !==.

Building and Testing

[188]

•	 assert(value, [message]): This throws an error if the sent value is not
truthy.

•	 assert.ok(value, [message]): This is identical to assert(value).
•	 assert.ifError(value): This throws an error if the value is truthy.
•	 assert.throws(block, [error], [message]): This is used to test whether

or not the supplied code block throws. The optional error value can be an
error constructor, regular expression, or a validation function returning a
Boolean value.

•	 assert.doesNotThrow(block, [error], [message]): This is used to test
whether the supplied code block does not throw an error.

•	 assert.fail(actual, expected, message, operator): This throws an
exception. This is most useful when the exception is trapped by a try/catch
block.

A shortcut method to log assertion results is available in the console API:

> console.assert(1 == 2, "Nope!")

AssertionError: Nope!

For a more detailed explanation of how comparison is done in JavaScript,
consult https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Comparison_Operators.

Now, let's look at testing with more advanced testing frameworks and tools.

Testing with Mocha, Chai, Sinon, and
npm
One of the great benefits of writing tests for your code is that you will be forced to
think through how what you've written works. A test that is difficult to write might
indicate code that is difficult to understand. On the other hand, comprehensive
coverage with good tests helps others (and you) understand how an application works.

There are at least three notions to consider when setting up your test environment.

The purpose of testing is to make comparisons between the value of what is received
and what is expected by your application code. As we saw earlier, Node's assert
module is designed for this purpose, but its functionality is limited to individual,
isolated assertions. We'll use the Chai library (http://chaijs.com), which provides
you with a richer choice of languages and idioms to make assertions with.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
http://chaijs.com

Chapter 6

[189]

It is not unusual for an application to be covered by several hundred tests. When
assertions are grouped, say by feature or business unit, these groups can provide a
clearer picture of your application's state. Designing and instrumenting tools to do
this grouping, especially with asynchronous code, is difficult. Thankfully, several
well-known, well-designed test runners exist for you to use. We'll use Mocha
(http://mochajs.org), which makes it easier to organize, control, and display the
results of your tests.

Testing is normally done on development boxes and not in live production
environments. How can you write tests for code that does not run in a real
environment? For example, how do I test my code's ability to handle responses from
a network endpoint that I cannot connect to locally? How do I check the arguments
a function is being sent without rewriting the function? We'll use Sinon (http://
sinonjs.org/), which lets you create synthetic methods and other simulations.

Other popular test runners are Jasmine (https://github.com/
jasmine/jasmine) and Vows (https://github.com/vowsjs/
vows). Should (https://github.com/shouldjs/should.js) is
a popular assertion library.

To start with, set up a folder containing the following structure:

scripts
spec
 helpers

The /scripts folder contains the JavaScript we'll test. The /spec folder contains
configuration and test files.

Now, initialize a package.json file with npm init. You can just hit Enter at the
prompts, but when you are asked for a test command, enter the following:

mocha ./spec --require ./spec/helpers/chai.js --reporter spec

This will make more sense as we move forward. For now, recognize that this
assignation to npm's test attribute asserts that we will use Mocha for testing.
Mocha's test report will be of the spec type and that test will exist in the /spec
directory. We will also require a configuration file for Chai, which will be explained
in one of the following sections. Importantly, this has now created a script
declaration in npm that will allow you to run your test suite with the npm test
command. Use that command whenever you need to run the Mocha tests we'll be
developing in the following section.

http://mochajs.org
http://sinonjs.org/
http://sinonjs.org/
https://github.com/jasmine/jasmine
https://github.com/jasmine/jasmine
https://github.com/vowsjs/vows
https://github.com/vowsjs/vows
https://github.com/shouldjs/should.js

Building and Testing

[190]

If you haven't already, install Mocha globally with npm install mocha -g. Also,
install the local modules that we'll need for testing using the npm install mocha
chai sinon redis --save-dev command.

Mocha
Mocha is a test runner that does not concern itself with test assertions themselves.
Mocha is used to organize and run your tests, primarily through the use of the
describe and it. operators. The following code shows this:

 describe("Test of Utility Class", function() {
 it("Running #date should return a date", function(){
 // Test date function
 });
 it("Running #parse should return JSON", function() {
 // Run some string through #parse
 });
});

As illustrated, the Mocha harness leaves open how the tests are described and
organized and makes no assumptions about how test assertions are designed.

You can set up tests that run synchronously, as described in the preceding code, or
asynchronously, using the completion handler passed to all it callbacks:

describe("An asynchronous test", function() {
 it("Runs an async function", function(done) {
 // Run async test, and when finished call...
 done();
 });
});

Blocks can also be nested:

describe("Main block", function() {
 describe("Sub block", function() {
 it("Runs an async function", function() {
 // A test running in sub block
 });
 });
 it("Runs an async function", function() {
 // A test running in main block
 });
});

Chapter 6

[191]

Finally, Mocha offers hooks that enable you to run code before and/or after tests:

•	 beforeEach() runs before each test in a describe block
•	 afterEach() runs after each test in a describe block
•	 before() runs code once prior to any test—prior to any run of beforeEach
•	 after() runs code once after all tests have run—after any run of afterEach

Usually, these are used to set up test contexts, such as creating variables before
certain tests and cleaning those up prior to certain other tests.

This simple collection of tools is expressive enough to handle most testing needs.
Additionally, Mocha provides various test reporters that offer differently formatted
results. We'll see those in action later as we build realistic test scenarios.

Chai
As we saw earlier with Node's native assert module, at its base, testing involves
asserting what we expect a chunk of code to do, executing that code, and checking
whether our expectations were met. Chai is an assertion library with a more
expressive syntax, offering three assertion styles: expect, should, and assert. We will
use Chai to provide the assertions (tests) to be wrapped within Mocha it statements,
favoring the expect style of assertion.

Note that while Chai.assert is modeled after the core
Node assert syntax, Chai augments the object with
additional methods.

To begin with, we are going to create a configuration file called chai.js:

var chai = require('chai');
chai.config.includeStack = true;
global.sinon = require('sinon');
global.expect = chai.expect;
global.AssertionError = chai.AssertionError;
global.Assertion = chai.Assertion;

Place this file in the /spec/helpers folder. This will tell Chai to display the
full-stack trace of any errors and to expose the expect assertion style as a global
variable. Similarly, Sinon is also exposed as a global variable. This file will augment
the Mocha test run context such that we can use these tools without having to
redeclare them in each test file.

Building and Testing

[192]

The expect style of assertion reads like a sentence, with sentences composed from
words like to, be, is, and more. Take the following code as an example:

expect('hello').to.be.a('string')
expect({ foo: 'bar' }).to.have.property('foo')
expect({ foo: 'bar' }).to.deep.equal({ foo: 'bar' });
expect(true).to.not.be.false
expect(1).to.not.be.true
expect(5).to.be.at.least(10) // fails

To explore the extensive list of words available when you are creating expect test
chains, consult the full documentation at http://chaijs.com/api/bdd/.

As stated earlier, Mocha does not have an opinion on how you create assertions. We
will use expect to create assertions in the tests that follow.

Consider testing the capitalize function in the following object:

var Utils = function() {
 this.capitalize = function(str) {
 return str.split('').map(function(char) {
 return char.toUpperCase();
 }).join('');
 };
};

We might do something like this:

describe('Testing Utils', function() {
 var utils = new Utils();
 it('capitalizes a string', function() {
 var result = utils.capitalize('foobar');
 expect(result).to.be.a('string').and.equal('FOOBAR');
 });
});

This Chai assertion will be true and Mocha will report the same results. This is
shown in the following screenshot:

Next, we'll look at how to add Sinon to our test process.

http://chaijs.com/api/bdd/

Chapter 6

[193]

Sinon
Within a testing environment, you typically emulate the realities of a production
environment as access to real users, data, or other live systems is unsafe or otherwise
undesirable. Being able to simulate environments is, therefore, an important part of
testing. Also, you will often want to inspect more than just call results—you might
want to test whether a given function is being called in the right context or with the
right examples. Sinon is a tool that helps you to simulate external services, emulate
functions, track function calls, and so on.

The sinon-chai module extends Chai with Sinon assertions.
For more information on sinon-chai, visit https://
github.com/domenic/sinon-chai.

The key Sinon technologies are spies, stubs, and mocks. Additionally, you can set
fake timers, create fake servers, and more (see http://sinonjs.org/). This section
focuses on the first three. Let's go over examples of each.

Spies
Take a look at this text from the Sinon documentation that defines a test spy:

"A test spy is a function that records arguments, return value, the value of this and
exception thrown (if any) for all its calls. A test spy can be an anonymous function
or it can wrap an existing function."

A spy gathers information on the function it is tracking. For example:

var sinon = require('sinon');
var argA = "foo";
var argB = "bar";
var callback = sinon.spy();

callback(argA);
callback(argB);

console.log(
 callback.called,
 callback.callCount,
 callback.calledWith(argA),
 callback.calledWith(argB),
 callback.calledWith('baz')
);

https://github.com/domenic/sinon-chai
https://github.com/domenic/sinon-chai
http://sinonjs.org/

Building and Testing

[194]

This will log the following:

true 2 true true false

The spy was called twice, once with foo, once with bar, and never with baz.

Let's suppose we wanted to test whether our code properly connects to the pub/sub
functionality of Redis:

var redis = require("redis");
var client1 = redis.createClient();
var client2 = redis.createClient();

// Testing this
function nowPublish(channel, msg) {
 client2.publish(channel, msg);
};
describe('Testing pub/sub', function() {
 before(function() {
 sinon.spy(client1, "subscribe");
 });
 after(function() {
 client1.subscribe.restore();
 });
 it('tests that #subscribe works', function() {
 client1.subscribe("channel");
 expect(client1.subscribe.calledOnce);
 });
 it('tests that #nowPublish works', function(done) {
 var callback = sinon.spy();
 client1.subscribe('channel', callback);
 client1.on('subscribe', function() {
 nowPublish('channel', 'message');
 expect(callback.calledWith('message'));
 expect(client1.subscribe.calledTwice);
 done();
 });
 });
});

In this example, we do more with spy and with Mocha. We deploy spy to proxy the
native subscribe method of client1, importantly setting up and tearing down
the spy proxy (restoring original functionality) within Mocha's before and after
methods. The Chai assertions prove that both subscribe and nowPublish are
functioning correctly and receiving the right arguments.

Chapter 6

[195]

More information on spies can be found at http://sinonjs.org/
docs/#spies.

Stubs
A stub, when used as a spy, can be wrapped around an existing function such that
it can fake the behavior of that function (rather than simply recording function
execution as we saw earlier). Take a look at this definition of test stubs taken from
the Sinon documentation:

"Test stubs are functions (spies) with pre-programmed behavior. They support
the full test spy API in addition to methods which can be used to alter the stub's
behavior."

Let's assume that you have a functionality in your application that makes calls to an
HTTP endpoint. The code may be something like the following:

http.get("http://www.example.org", function(res) {
 console.log("Got status: " + res.statusCode);
}).on('error', function(e) {
 console.log("Got error: " + e.message);
});

When it's successful, the call will log Got status: 200. Should the endpoint be
unavailable, you'll see something like Got error: getaddrinfo ENOTFOUND.

It is likely that you will need to test the ability of your application to handle
alternate status codes, and, of course, explicit errors. It may not be in your power
to force endpoints to emit these, yet you must prepare for them should they
occur. Stubs are useful here to create synthetic responses such that your response
handlers can be comprehensively tested.

We can use stubs to emulate a response without actually calling the
http.get method:

var http = require('http');
var sinon = require('sinon');
sinon.stub(http, 'get').yields({
 statusCode: 404
});
// This URL is never actually called
http.get("http://www.example.org", function(res) {
 console.log("Got response: " + res.statusCode);
 http.get.restore();
});

http://sinonjs.org/docs/#spies
http://sinonjs.org/docs/#spies

Building and Testing

[196]

This stub yields a simulated response by wrapping the original method, which
is never called, resulting in a 404 error being returned from a call that would
normally return a status code of 200. Importantly, note how we restore the
stubbed method to its original state when we are done with it.

For example, the following pseudo code describes a module that makes HTTP
calls, parses the response, and responds with 'handled' if everything went OK
and 'not handled' if the HTTP response was unexpected:

var http = require('http');
module.exports = function() {
 this.makeCall = function(url, cb) {
 http.get(url, function(res) {
 cb(this.parseResponse(res));
 }.bind(this))
 }
 this.parseResponse = function(res) {
 if(!res.statusCode) {
 throw new Error('No status code present');
 }
 switch(res.statusCode) {
 case 200:
 return 'handled';
 break;
 case 404:
 return 'handled';
 break;
 default:
 return 'not handled';
 break;
 }
 }
}

The following Mocha test ensures that the Caller.parseReponse method can
handle all response codes we need handled using stubs to simulate the entire
expected response range:

var Caller = require('../scripts/Caller.js');

describe('Testing endpoint responses', function() {
 var caller = new Caller();
 function setTestForCode(code) {
 return function(done) {
 sinon.stub(caller, 'makeCall').yields(caller.parseResponse({

Chapter 6

[197]

 statusCode: code
 }));
 caller.makeCall('anyURLWillDo', function(h) {
 expect(h).to.be.a('string').and.equal('handled');
 done();
 });
 }
 }
 afterEach(function() {
 caller.makeCall.restore();
 });
 it('Tests 200 handling', setTestForCode(200));
 it('Tests 404 handling', setTestForCode(404));
 it('Tests 403 handling', setTestForCode(403));
});

By proxying the original makeCall method, we can test parseResponse against a
range of status codes without the difficulty of forcing remote network behavior.
Noting that the preceding test should fail (there is no handler for 403 codes), the
output of this test should look something like the following:

The full API for stubs can be seen at http://sinonjs.org/docs/#stubs.

Mocks
Rather than checking expectations after the fact, mocks can be used to check whether
the unit under test is being used correctly—they enforce implementation details.
Take a look at this definition of mocks taken from the Sinon documentation:

"Mocks (and mock expectations) are fake methods (like spies) with pre-programmed
behavior (like stubs) as well as pre-programmed expectations. A mock will fail your
test if it is not used as expected."

http://sinonjs.org/docs/#stubs

Building and Testing

[198]

In the following example, we check not only the number of times a specific
function is called (easy with spies) but also whether it is called with specific,
expected arguments. Specifically, we again test the capitalize method of
Utils, this time using mocks:

var sinon = require('sinon');
var Utils = require('./Utils.js');
var utils = new Utils();
var arr = ['a','b','c','d','e'];
var mock = sinon.mock(utils);

// Expectations
mock.expects("capitalize").exactly(5).withArgs.apply(sinon,arr);

arr.map(utils.capitalize);
console.log(mock.verify());

After setting up a mock on utils, we map a five-element array to capitalize,
expecting capitalize to be called exactly five times, with the array's elements as
arguments (using apply to spread the array into individual arguments). The well-
named mock.verify function is then checked to see whether our expectations were
satisfied. As usual, when we are done with it, we unwrap the utils object with
mock.restore. You should see true logged to your terminal.

Now, remove one element from the tested array, frustrating expectations. When you
run the test again, you should see the following near the top of the output:

ExpectationError: Expected capitalize([...]) 5 times (called 4 times)

This should clarify the type of test results that mocks are designed to produce.

Note that mocked functions do not execute—mock overrides
its target. In the preceding example, no array members are
ever run through capitalize.

Let's revisit our earlier example, this time testing Redis pub/sub using mocks:

var redis = require("redis");
var client = redis.createClient();

describe('Mocking pub/sub', function() {
 var mock = sinon.mock(client);
 mock.expects('subscribe').withExactArgs('channel').once();
 it('tests that #subscribe is being called correctly', function()
 {

Chapter 6

[199]

 client.subscribe('channel');
 expect(mock.verify()).to.be.true;
 });
});

Rather than checking for conclusions, here we assert our expectation that the mocked
subscribe method will receive the exact argument channel only once. Mocha
expects mock.verify to return true. To make this test fail, add one more client.
subscribe('channel') line, producing something like the following:

ExpectationError: Unexpected call: subscribe(channel)

More information on how to use mocks can be found at
http://sinonjs.org/docs/#mocks.

Automated browser testing with
PhantomJS and CasperJS
One way to test whether a UI is working is to pay several people to interact with
a website via a browser and report any errors they find. This can become a very
expensive and ultimately unreliable process. Also, it requires putting potentially failing
code into production in order to test it. It is better to test whether application views are
rendering correctly from within the build process itself prior to releasing any views
"into the wild". PhantomJS was created to address this need, among others.

A browser, stripped of its buttons and other controls, is, at its heart, a program that
validates and runs JavaScript, HTML, and CSS. That the validated HTML is rendered
visually on your screen is simply a consequence of humans being able to see only
with their eyes. A server can interpret the logic of compiled code and see the results
of interactions with that code without a visual component. Perhaps because eyes are
usually found in one's head, a browser running on a server is typically referred to
as a headless browser. PhantomJS provides a headless version of the WebKit engine
that is scriptable via a JavaScript API.

Headless testing with PhantomJS
PhantomJS (http://phantomjs.org/build.html) allows you to create scripts that
can be executed in a headless browser context. It allows you to capture a browser
context within a scriptable environment, enabling various operations, such as
loading an HTML page into that context. This allows you to perform operations on
that browser context, such as manipulating the DOM of a loaded page.

http://sinonjs.org/docs/#mocks
http://phantomjs.org/build.html

Building and Testing

[200]

For example, fetching a Twitter user's recent tweets can be accomplished by hitting
the following endpoint in your browser: http://mobile.twitter.com/<twitter
user>. We can also use PhantomJS to do the same thing within a headless, scriptable
environment and then write code to fetch those tweets. Create a phantom-twitter.
js file containing the following code:

var page = require('webpage').create();
var system = require('system');
var fs = require('fs');
var twitterId = system.args[1];

page.open(encodeURI("http://mobile.twitter.com/" + twitterId),
function(status) {
 if(!status) {
 throw new Error("Can't connect to Twitter!");
 }
 var tweets = page.evaluate(function() {
 var _tweets = [];
 var coll = Array.prototype.slice.call(document.query
 SelectorAll('div.tweet-text'))
 coll.forEach(function(tweet) {
 _tweets.push(tweet.innerText);
 });
 return _tweets
 });
 fs.write(twitterId + '.json', JSON.stringify(tweets));
 phantom.exit();
});

Now, use the CLI to pass that script to PhantomJS, sending the Twitter handle of the
person you'd like to read as an argument:

phantomjs phantom-twitter.js kanyewest

A new file called kanyewest.json will be created, containing recent tweets in the
JSON format. Let's examine the code.

We first require some of PhantomJS's core modules, importantly the page library that
allows us to load pages, and the system and fs modules (which resemble Node's
process and fs modules, respectively). We'll use system to fetch command-line
arguments and fs to write fetched tweets to the filesystem.

Chapter 6

[201]

The page.open command does what you would expect—loading a web page into
the PhantomJS context. We can now perform operations on the rendered DOM.
In this case, we are going to use evaluate on JavaScript within the context of that
page, fetching the elements containing tweets identified by the div.tweet-text CSS
selector and stripping out innerText. Because evaluate is running in the context of
a headless WebKit, there is no way for us to access the outer PhantomJS scope, so we
simply return what we find within the evaluation scope to the outer scope, where a
file can be generated using fs.

PhantomJS offers an extensive API to interact with WebKit (http://phantomjs.
org/api/), allowing script injection, creating screen captures, navigating rendered
pages, and so on. A whole range of client tests can be created using these tools.

When writing server tests, you will probably not want to use PhantomJS from the
CLI. For this reason, various Node-PhantomJS bridges have been written that let you
interact with PhantomJS via a Node module. A good one is phantomjs (https://
github.com/sgentle/phantomjs-node). For example, the following will load a
page, as shown earlier, and execute JavaScript to fetch the page's title attribute:

var phantom = require('phantom');
phantom.create(function(ph) {
 ph.createPage(function(page) {
 page.open("http://www.example.org", function(status) {
 page.evaluate(function() {
 return document.title;
 }, function(title) {
 console.log('Page title: ' + title);
 ph.exit();
 });
 });
 });
});

Running the preceding code should result in something like the following
being logged:

Page title: Example Domain

http://phantomjs.org/api/
http://phantomjs.org/api/
https://github.com/sgentle/phantomjs-node
https://github.com/sgentle/phantomjs-node

Building and Testing

[202]

Navigation scenarios with CasperJS
Because PhantomJS is not specifically designed to be a test runner, others have
created tools to simplify testing with PhantomJS. CasperJS (http://casperjs.
org/) is a navigation and testing utility for PhantomJS and SlimerJS (which uses
the Gecko engine that powers Firefox).

CasperJS offers an extensive toolkit to create complex chains of interactions using an
expressive Promises-like interface. Describing page interaction tests with CasperJS
requires much less code and is clearer. For example, the earlier phantom example
demonstrating how to fetch a page title can be simplified:

casper.start('http://example.org/', function() {
 this.echo('Page title: ' + this.getTitle());
});
casper.run();

If the preceding code were saved as a file called pagetitle.js and run with the
casperjs test pagefile.js command, you would see the following logged:

Page title: Example Domain

A much terser syntax produces identical results. Let's look at another example that
demonstrates how to fetch one page, click on a link on that page, and read some
information from the resulting page:

casper.start('http://google.com/', function() {
 this
 .thenEvaluate(function(term) {
 document.querySelector('input[name="q"]').setAttribute
 ('value', term);
 document.querySelector('form[name="f"]').submit();
 }, 'node.js')
 .then(function() {
 this.click('h3.r a');
 })
 .then(function() {
 this.echo('New location: ' + this.getCurrentUrl());
 });
});
casper.run();

http://casperjs.org/
http://casperjs.org/

Chapter 6

[203]

Here, we can see how a Promise-like chaining of interactions results in clear and
expressive code. After fetching Google's search page, we will evaluate a piece of
JavaScript that inserts the node.js string into its famous search box and submit the
search form. Then, CasperJS is asked to click on the first result link (h3.r a) and to
finally display the current URL:

New location: http://nodejs.org/

This demonstrates that a full-page navigation has occurred, at which point we can
chain even more interaction steps.

Finally, let's use some of the CasperJS test assertions and demonstrate how to take
snapshots of web pages while testing Google's translation service:

casper.start('http://translate.google.com/', function() {
 this
 .sendKeys('#source', 'Ciao')
 .waitForText('Hello')
 .then(function() {
 this.test.assertSelectorHasText('#result_box', 'Hello');
 })
 .then(function() {
 this.capture('snapshot.png');
 });
});
casper.run();

Google's translation page is dynamic. As you type into the translation box, the
service detects keyboard events, attempts to infer the language you are using
based on any available text, and, in "real time", provides a translation, all without
refreshing the page. In other words, we are not submitting a form and waiting for the
resulting page.

Therefore, once we have the page loaded, we send keystrokes (sendKeys) into the
#source input box with the Italian word "Ciao". Testing that this results in the
correct translation, we wait for "Hello" to arrive—waitForText fires when the text
passed appears on a page. To ensure that the text has arrived in the right place, we
assert that the element with the #result_box selector contains "Hello". If all is well,
you will see the following logged:

PASS Find "Hello" within the selector "#result_box"

Building and Testing

[204]

Additionally, within the same folder, you will find the snapshot.png image
visualizing the DOM-based interactions just executed:

Hopefully, this demonstrates how CasperJS can be used to harness the power of
PhantomJS when you're writing client tests. If you'd like to use CasperJS as a Node
module, give SpookyJS (https://github.com/SpookyJS/SpookyJS) a try.

https://github.com/SpookyJS/SpookyJS

Chapter 6

[205]

Summary
In this chapter, we took a look at testing and building your application such that you
can get a good sense of its ability to stand up in production. We worked through a
representative build system that used Gulp and Browserify, along with some other
tools, to show how a codebase can be optimized and packaged for deployment. Also,
you learned about Node's native debugging tools and assertion library.

The Node community has embraced testing from the beginning, and many testing
frameworks and native tools are made available to developers. You learned how
to set up a proper test system using Gulp, Mocha, Chai, and Sinon, in the process
experimenting with headless browser testing.

The next chapter will be focused on taking the builds you have tested and deploying
them to production servers. You'll learn about setting up local development
environments on virtual machines, provisioning remote servers, setting up
continuous integration with webhooks and Jenkins, maintaining your application
dependencies and, generally, keeping your applications running smoothly as
changes are made.

[207]

Deploying and Maintaining
In this book, we have seen the advantages of composing applications out of well
defined components. This assembly process involves the installation of many
support systems, from the operating system your application will run on, to the
version of Node you will support, to the various npm modules, testing frameworks,
profiling tools, and other subsystems that power an application. It is likely that
you have been doing all this on a single machine—manually starting and stopping
servers, updating configurations, and altering application code. Are you adding a
new module? Stop the server, add the module, and restart the server.

In a production environment, this sort of ad hoc development is almost impossible,
and it remains tedious regardless. How can this process be automated and
streamlined so that altering the number of servers being balanced or incrementally
pushing out new deployments can be done with minimum work, thus making life
simpler for the folks responsible for operations?

In this chapter, we will learn about the following:

•	 Automating the deployment of applications, including a look at the
differences between continuous integration, delivery, and deployment

•	 Using Git to track local changes and triggering deployment actions via
webhooks when appropriate

•	 Using Vagrant to synchronize your local development environment with a
deployed production server

•	 Provisioning a server with Ansible
•	 Implementing continuous integration and deployment using Jenkins and

working through a complete example of how to automate builds and deploys
when the source code changes

•	 Maintaining npm packages and dependency trees, outlining how to track
version changes, and keeping your deployed applications up to date

Deploying and Maintaining

[208]

Note that application deployment is a complex topic with many dimensions that
are often considered within unique sets of needs. This chapter is intended as an
introduction to some of the technologies and themes you will encounter. Also, note
that the scaling issues discussed in Chapter 3, Scaling Node, are part and parcel of
deployment. Also, our discussion in Chapter 2, Installing and Virtualizing Node Servers,
is relevant here. You may want to revisit those topics while working through the
following deployment scenarios.

Using GitHub webhooks
At the most basic level, deployment involves automatically validating, preparing,
and releasing new code into production environments. One of the simplest ways to
set up a deployment strategy is to trigger releases whenever changes are committed
to a Git repository through the use of webhooks. Paraphrasing the GitHub
documentation, webhooks provide a way for notifications to be delivered to an external
web server whenever certain actions occur on a repository.

In Chapter 2, Installing and Virtualizing Node Servers, we saw a simplified example of
this process, where pushing changes to a Heroku instance caused your production
build to automatically update. One problem with this simple solution is that no
validation was performed—if you pushed bad code, your production server would
blindly run bad code. In this section, we'll use GitHub webhooks to create a simple
continuous deployment workflow, adding more realistic checks and balances.

We'll build a local development environment that lets developers work with a clone
of the production server code, make changes, and see the results of those changes
immediately. As this local development build uses the same repository as the
production build, the build process for a chosen environment is simple to configure,
and multiple production and/or development boxes can be created with no special
effort.

The first step is to create a GitHub (www.github.com) account if you don't already
have one. Basic accounts are free and easy to set up.

Now, let's look at how GitHub webhooks work.

Enabling webhooks
Create a new folder and insert the following package.json file:

{
 "name": "express-webhook",
 "main": "server.js",
 "dependencies": {

www.github.com

Chapter 7

[209]

 "express": "~4.0.0",
 "body-parser": "^1.12.3"
 }
}

This ensures that Express 4.x is installed and includes the body-parser package,
which is used to handle POST data. Next, create a basic server called server.js:

var express = require('express');
var app = express();
var bodyParser = require('body-parser');
var port = process.env.PORT || 8082;

app.use(bodyParser.json());
app.get('/', function(req, res) {
 res.send('Hello World!');
});
app.post('/webhook', function(req, res) {
 // We'll add this next
});
app.listen(port);
console.log('Express server listening on port ' + port);

Enter the folder you've created, and build and run the server with npm install; npm
start. Visit localhost:8082/ and you should see "Hello World!" in your browser.

Whenever any file changes in a given repository, we want GitHub to push
information about the change to /webhook. So, the first step is to create a GitHub
repository for the Express server mentioned in the code. Go to your GitHub account
and create a new repository with the name 'express-webhook'. The following
screenshot shows this:

Deploying and Maintaining

[210]

Once the repository is created, enter your local repository folder and run the
following commands:

git init

git add .

git commit -m "first commit"

git remote add origin git@github.com:<your username>/express-webhook

You should now have a new GitHub repository and a local linked version. The next
step is to configure this repository to broadcast the push event on the repository.
Navigate to the following URL:

https://github.com/<your_username>/express-webhook/settings

From here, navigate to Webhooks & Services | Add webhook (you may need to
enter your password again). You should now see the following screen:

This is where you set up webhooks. Note that the push event is already set as
default, and, if asked, you'll want to disable SSL verification for now. GitHub needs
a target URL to use POST on change events. If you have your local repository in a
location that is already web accessible, enter that now, remembering to append the
/webhook route, as in http://www.example.com/webhook.

http://www.example.com/webhook

Chapter 7

[211]

If you are building on a local machine or on another limited network, you'll need to
create a secure tunnel that GitHub can use. A free service to do this can be found at
http://localtunnel.me/. Follow the instructions on that page, and use the custom
URL provided to configure your webhook.

Other good forwarding services can be found at
https://forwardhq.com/ and https://meetfinch.com/.

Now that webhooks are enabled, the next step is to test the system by triggering a
push event. Create a new file called readme.md (add whatever you'd like to it), save
it, and then run the following commands:

git add readme.md

git commit -m "testing webhooks"

git push origin master

This will push changes to your GitHub repository. Return to the Webhooks &
Services section for the express-webhook repository on GitHub. You should see
something like this:

This is a good thing! GitHub noticed your push and attempted to deliver information
about the changes to the webhook endpoint you set, but the delivery failed as we
haven't configured the /webhook route yet—that's to be expected. Inspect the failed
delivery payload by clicking on the last attempt—you should see a large JSON file. In
that payload, you'll find something like this:

 "committer": {
 "name": "Sandro Pasquali",
 "email": "spasquali@gmail.com",
 "username": "sandro-pasquali"
 },
 "added": [
 "readme.md"
],
 "removed": [],
 "modified": []

http://localtunnel.me/
https://forwardhq.com/ and https://meetfinch.com/

Deploying and Maintaining

[212]

It should now be clear what sort of information GitHub will pass along whenever a
push event happens. You can now configure the /webhook route in the demonstration
Express server to parse this data and do something with that information, such as
sending an e-mail to an administrator. For example, use the following code:

app.post('/webhook', function(req, res) {
 console.log(req.body);
});

The next time your webhook fires, the entire JSON payload will be displayed.

Let's take this to another level, breaking down the autopilot application to see how
webhooks can be used to create a build/deploy system.

Implementing a build/deploy system using
webhooks
To demonstrate how to build a webhook-powered deployment system, we're going to
use a starter kit for application development. Go ahead and use fork on the repository
at https://github.com/sandro-pasquali/autopilot.git. You now have a copy of
the autopilot repository, which includes scaffolding for common Gulp tasks, tests, an
Express server, and a deploy system that we're now going to explore.

The autopilot application implements special features depending on whether you are
running it in production or in development. While autopilot is a little too large and
complex to fully document here, we're going to take a look at how major components
of the system are designed and implemented so that you can build your own or
augment existing systems. Here's what we will examine:

•	 How to create webhooks on GitHub programmatically
•	 How to catch and read webhook payloads
•	 How to use payload data to clone, test, and integrate changes
•	 How to use PM2 to safely manage and restart servers when code changes

If you haven't already used fork on the autopilot repository, do that now. Clone the
autopilot repository onto a server or someplace else where it is web-accessible. Follow
the instructions on how to connect and push to the fork you've created on GitHub, and
get familiar with how to pull and push changes, commit changes, and so on.

PM2 delivers a basic deploy system that you might consider for your
project (https://github.com/Unitech/PM2/blob/master/
ADVANCED_README.md#deployment).

https://github.com/sandro-pasquali/autopilot.git
https://github.com/Unitech/PM2/blob/master/ADVANCED_README.md#deployment
https://github.com/Unitech/PM2/blob/master/ADVANCED_README.md#deployment

Chapter 7

[213]

Install the cloned autopilot repository with npm install; npm start. Once npm
has installed dependencies, an interactive CLI application will lead you through
the configuration process. Just hit the Enter key for all the questions, which will set
defaults for a local development build (we'll build in production later). Once the
configuration is complete, a new development server process controlled by PM2 will
have been spawned. You'll see it listed in the PM2 manifest under autopilot-dev in
the following screenshot:

You will make changes in the /source directory of this development build. When
you eventually have a production server in place, you will use git push on the local
changes to push them to the autopilot repository on GitHub, triggering a webhook.
GitHub will use POST on the information about the change to an Express route that we
will define on our server, which will trigger the build process. The build runner will
pull your changes from GitHub into a temporary directory, install, build, and test the
changes, and if all is well, it will replace the relevant files in your deployed repository.
At this point, PM2 will restart, and your changes will be immediately available.

Schematically, the flow looks like this:

Deploying and Maintaining

[214]

To create webhooks on GitHub programmatically, you will need to create an access
token. The following diagram explains the steps from A to B to C:

We're going to use the Node library at https://github.com/mikedeboer/node-
github to access GitHub. We'll use this package to create hooks on GitHub using
the access token you've just created.

Once you have an access token, creating a webhook is easy:

var GitHubApi = require("github");

github.authenticate({
 type: "oauth",
 token: <your token>
});
github.repos.createHook({
 "user": <your github username>,
 "repo": <github repo name>,
 "name": "web",
 "secret": <any secret string>,
 "active": true,
 "events": [
 "push"
],
 "config": {
 "url": "http://yourserver.com/git-webhook",
 "content_type": "json"
 }
}, function(err, resp) {
 ...
});

https://github.com/mikedeboer/node-github
https://github.com/mikedeboer/node-github

Chapter 7

[215]

Autopilot performs this on startup, removing the need for you to manually create
a hook.

Now, we are listening for changes. As we saw previously, GitHub will deliver a
payload indicating what has been added, what has been deleted, and what has
changed. The next step for the autopilot system is to integrate these changes.

It is important to remember that, when you use webhooks, you do not have control
over how often GitHub will send changesets—if more than one person on your
team can push, there is no predicting when those pushes will happen. The autopilot
system uses Redis to manage a queue of requests, executing them in order. You will
need to manage multiple changes in a way. For now, let's look at a straightforward
way to build, test, and integrate changes.

In your code bundle, visit autopilot/swanson/push.js. This is a process runner
on which fork has been used by buildQueue.js in that same folder. The following
information is passed to it:

•	 The URL of the GitHub repository that we will clone
•	 The directory to clone that repository into

(<temp directory>/<commit hash>)
•	 The changeset
•	 The location of the production repository that will be changed

Go ahead and read through the code. Using a few shell scripts, we will clone the
changed repository and build it using the same commands you're used to—
npm install, npm test, and so on. If the application builds without errors, we
need only run through the changeset and replace the old files with the changed files.

The final step is to restart our production server so that the changes reach our users.
Here is where the real power of PM2 comes into play.

When the autopilot system is run in production, PM2 creates a cluster of servers
(similar to the Node cluster module). This is important as it allows us to restart the
production server incrementally. As we restart one server node in the cluster with
the newly pushed content, the other clusters continue to serve old content. This is
essential to keeping a zero-downtime production running.

Hopefully, the autopilot implementation will give you a few ideas on how to
improve this process and customize it to your own needs.

Deploying and Maintaining

[216]

Synchronizing local and deployed builds
One of the most important (and often difficult) parts of the deployment process is
ensuring that the environment an application is being developed, built, and tested
within perfectly simulates the environment that application will be deployed into.
In this section, you'll learn how to emulate, or virtualize, the environment your
deployed application will run within using Vagrant. After demonstrating how this
setup can simplify your local development process, we'll use Ansible to provision a
remote instance on DigitalOcean.

Developing locally with Vagrant
For a long while, developers would work directly on running servers or cobble
together their own version of the production environment locally, often writing
ad hoc scripts and tools to smoothen their development process. This is no longer
necessary in a world of virtual machines. In this section, we will learn how to use
Vagrant to emulate a production environment within your development environment,
advantageously giving you a realistic box to work on testing code for production
and isolating your development process from your local machine processes.

By definition, Vagrant is used to create a virtual box emulating a production
environment. So, we need to install Vagrant, a virtual machine, and a machine
image. Finally, we'll need to write the configuration and provisioning scripts for
our environment.

Go to http://www.vagrantup.com/downloads and install the right
Vagrant version for your box. Do the same with VirtualBox here at
https://www.virtualbox.org/wiki/Downloads.

You now need to add a box to run. For this example, we're going to use
Centos 7.0, but you can choose whichever you'd prefer. Create a new folder
for this project, enter it, and run the following command:

vagrant box add chef/centos-7.0

Usefully, the creators of Vagrant, HashiCorp, provide
a search service for Vagrant boxes at
https://atlas.hashicorp.com/boxes/search.

You will be prompted to choose your virtual environment provider—select
virtualbox. All relevant files and machines will now be downloaded. Note that
these boxes are very large and may take time to download.

http://www.vagrantup.com/downloads
https://www.virtualbox.org/wiki/Downloads
https://atlas.hashicorp.com/boxes/search

Chapter 7

[217]

You'll now create a configuration file for Vagrant called Vagrantfile. As with npm,
the init command quickly sets up a base file. Additionally, we'll need to inform
Vagrant of the box we'll be using:

vagrant init chef/centos-7.0

Vagrantfile is written in Ruby and defines the Vagrant environment. Open it up
now and scan it. There is a lot of commentary, and it makes a useful read. Note
the config.vm.box = "chef/centos-7.0" line, which was inserted during the
initialization process.

Now you can start Vagrant:

vagrant up

If everything went as expected, your box has been booted within Virtualbox. To
confirm that your box is running, use the following code:

vagrant ssh

If you see a prompt, you've just set up a virtual machine. You'll see that you are in
the typical home directory of a CentOS environment.

To destroy your box, run vagrant destroy. This deletes the virtual machine by
cleaning up captured resources. However, the next vagrant up command will
need to do a lot of work to rebuild. If you simply want to shut down your machine,
use vagrant halt.

Vagrant is useful as a virtualized, production-like environment for developers
to work within. To that end, it must be configured to emulate a production
environment. In other words, your box must be provisioned by telling Vagrant
how it should be configured and what software should be installed whenever
vagrant up is run.

One strategy for provisioning is to create a shell script that configures our server
directly and point the Vagrant provisioning process to that script. Add the following
line to Vagrantfile:

config.vm.provision "shell", path: "provision.sh"

Now, create that file with the following contents in the folder hosting Vagrantfile:

install nvm
curl https://raw.githubusercontent.com/creationix/nvm/v0.24.1/install.
sh | bash
restart your shell with nvm enabled
source ~/.bashrc

Deploying and Maintaining

[218]

install the latest Node.js
nvm install 0.12
ensure server default version
nvm alias default 0.12

Destroy any running Vagrant boxes. Run Vagrant again, and you will notice in the
output the execution of the commands in our provisioning shell script.

When this has been completed, enter your Vagrant box as the root (Vagrant boxes
are automatically assigned the root password "vagrant"):

vagrant ssh

su

You will see that Node v0.12.x is installed:

node -v

It's standard to allow password-less sudo for the Vagrant user. Run
visudo and add the following line to the sudoers configuration file:

vagrant ALL=(ALL) NOPASSWD: ALL

Typically, when you are developing applications, you'll be modifying files in a project
directory. You might bind a directory in your Vagrant box to a local code editor and
develop in that way. Vagrant offers a simpler solution. Within your VM, there is a
/vagrant folder that maps to the folder that Vagrantfile exists within, and these two
folders are automatically synced. So, if you add the server.js file to the right folder
on your local machine, that file will also show up in your VM's /vagrant folder.

Go ahead and create a new test file either in your local folder or in your VM's
/vagrant folder. You'll see that file synchronized to both locations regardless of
where it was originally created.

Let's clone our express-webhook repository from earlier in this chapter into our
Vagrant box. Add the following lines to provision.sh:

install various packages, particularly for git

yum groupinstall "Development Tools" -y

yum install gettext-devel openssl-devel perl-CPAN perl-devel zlib-devel
-y

yum install git -y

Move to shared folder, clone and start server

Chapter 7

[219]

cd /vagrant

git clone https://github.com/sandro-pasquali/express-webhook

cd express-webhook

npm i; npm start

Add the following to Vagrantfile, which will map port 8082 on the Vagrant box
(a guest port representing the port our hosted application listens on) to port 8000
on our host machine:

config.vm.network "forwarded_port", guest: 8082, host: 8000

Now, we need to restart the Vagrant box (loading this new configuration) and
re-provision it:

vagrant reload

vagrant provision

This will take a while as yum installs various dependencies. When provisioning
is complete, you should see this as the last line:

==> default: Express server listening on port 8082

Remembering that we bound the guest port 8082 to the host port 8000, go to your
browser and navigate to localhost:8000. You should see "Hello World!" displayed.

Also note that in our provisioning script, we cloned to the (shared) /vagrant folder.
This means the clone of express-webhook should be visible in the current folder,
which will allow you to work on the more easily accessible codebase, knowing it will
be automatically synchronized with the version on your Vagrant box.

Provisioning with Ansible
Configuring your machines by hand, as we've done previously, doesn't scale well. For
one, it can be overly difficult to set and manage environment variables. Also, writing
your own provisioning scripts is error-prone and no longer necessary given the
existence of provisioning tools, such as Ansible.

With Ansible, we can define server environments using an organized syntax rather
than ad hoc scripts, making it easier to distribute and modify configurations. Let's
recreate the provision.sh script developed earlier using Ansible playbooks:

Playbooks are Ansible's configuration, deployment, and orchestration language.
They can describe a policy you want your remote systems to enforce or a set of steps
in a general IT process.

Deploying and Maintaining

[220]

Playbooks are expressed in the YAML format (a human-readable data serialization
language). To start with, we're going to change Vagrantfile's provisioner to Ansible.
First, create the following subdirectories in your Vagrant folder:

provisioning
 common
 tasks

These will be explained as we proceed through the Ansible setup.

Next, create the following configuration file and name it ansible.cfg:

[defaults]
roles_path = provisioning
log_path = ./ansible.log

This indicates that Ansible roles can be found in the /provisioning folder, and that
we want to keep a provisioning log in ansible.log. Roles are used to organize tasks
and other functions into reusable files. These will be explained shortly.

Modify the config.vm.provision definition to the following:

 config.vm.provision "ansible" do |ansible|
 ansible.playbook = "provisioning/server.yml"
 ansible.verbose = "vvvv"
 end

This tells Vagrant to defer to Ansible for provisioning instructions, and that we
want the provisioning process to be verbose—we want to get feedback when
the provisioning step is running. Also, we can see that the playbook definition,
provisioning/server.yml, is expected to exist. Create that file now:

- hosts: all
 sudo: yes
 roles:
 - common
 vars:
 env:
 user: 'vagrant'
 nvm:
 version: '0.24.1'
 node_version: '0.12'
 build:
 repo_path: 'https://github.com/sandro-pasquali'
 repo_name: 'express-webhook'

Chapter 7

[221]

Playbooks can contain very complex rules. This simple file indicates that we are
going to provision all available hosts using a single role called common. In more
complex deployments, an inventory of IP addresses could be set under hosts, but,
here, we just want to use a general setting for our one server. Additionally, the
provisioning step will be provided with certain environment variables following
the forms env.user, nvm.node_version, and so on. These variables will come into
play when we define the common role, which will be to provision our Vagrant server
with the programs necessary to build, clone, and deploy express-webhook. Finally,
we assert that Ansible should run as an administrator (sudo) by default—this is
necessary for the yum package manager on CentOS.

We're now ready to define the common role. With Ansible, folder structures are
important and are implied by the playbook. In our case, Ansible expects the role
location (./provisioning, as defined in ansible.cfg) to contain the common folder
(reflecting the common role given in the playbook), which itself must contain a tasks
folder containing a main.yml file. These last two naming conventions are specific
and required.

The final step is creating the main.yml file in provisioning/common/tasks.
First, we replicate the yum package loaders (see the file in your code bundle for
the full list):

- name: Install necessary OS programs

 yum: name={{ item }} state=installed

 with_items:

 - autoconf

 - automake

 ...

 - git

Here, we see a few benefits of Ansible. A human-readable description of yum tasks
is provided to a looping structure that will install every item in the list. Next, we run
the nvm installer, which simply executes the auto-installer for nvm:

- name: Install nvm

 sudo: no

 shell: "curl https://raw.githubusercontent.com/creationix/nvm/v{{ nvm.
version }}/install.sh | bash"

Deploying and Maintaining

[222]

Note that, here, we're overriding the playbook's sudo setting. This can be done on
a per-task basis, which gives us the freedom to move between different permission
levels while provisioning. We are also able to execute shell commands while at the
same time interpolating variables:

- name: Update .bashrc

 sudo: no

 lineinfile: >

 dest="/home/{{ env.user }}/.bashrc"

 line="source /home/{{ env.user }}/.nvm/nvm.sh"

Ansible provides extremely useful tools for file manipulation, and we will see here a
very common one—updating the .bashrc file for a user. The lineinfile directive
makes the addition of aliases, among other things, straightforward.

The remainder of the commands follow a similar pattern to implement, in a
structured way, the provisioning directives we need for our server. All the files you
will need are in your code bundle in the vagrant/with_ansible folder. Once you
have them installed, run vagrant up to see Ansible in action.

One of the strengths of Ansible is the way it handles contexts. When you start your
Vagrant build, you will notice that Ansible gathers facts, as shown in the following
screenshot:

Simply put, Ansible analyzes the context it is working in and only executes what is
necessary to execute. If one of your tasks has already been run, the next time you try
vagrant provision, that task will not run again. This is not true for shell scripts! In
this way, editing playbooks and reprovisioning does not consume time redundantly
changing what has already been changed.

Ansible is a powerful tool that can be used for provisioning and much more complex
deployment tasks. One of its great strengths is that it can run remotely—unlike most
other tools, Ansible uses SSH to connect to remote servers and run operations. There
is no need to install it on your production boxes. You are encouraged to browse the
Ansible documentation at http://docs.ansible.com/index.html to learn more.

http://docs.ansible.com/index.html

Chapter 7

[223]

Integrating, delivering, and deploying
In this chapter, we've been looking at using deployment systems that encourage
agile development, generally facilitating safe delivery into production environments
of code updates in near real time. Variations in how deployments can be
structured and/or understood, which usually depend on factors such as team size
and management structure, are common. A brief summary of each of the three
typical categories, continuous integration, continuous delivery, and continuous
deployment, will be provided in the following sections. Finally, we'll set up a
build/deploy system for a Node application using Jenkins, a CI server, configured
to automatically deploy changes to a Heroku server.

Continuous integration
Continuous integration is the process of merging changes into a master branch
continuously (typically, several times a day). The goal of CI is to make errors
impatient and noisy, arriving early and failing loudly, rather than emerging later
from much larger and more complex bulk merges comprising several days or weeks
of work. Unit tests are typically run here. Note that an updated integration branch
is not necessarily continuously deployed, though it may be. The goal is to keep a
master branch fresh, current, and ready to be deployed when necessary.

Continuous delivery
"Delivery" is the key word here. In environments where all changes must be
tested/vetted by a quality assurance team or some other group of stakeholders
prior to being released, changes are delivered and reviewed as they are proposed.
While continuous delivery does not preclude delivery into production, the general
goal is to deliver new code where it can be subjected to further functional tests,
tests of business logic, and so on, prior to it reaching real customers.

This test environment should be equivalent to the production environment and,
when tests pass, there should be confidence that the changes will also be deployable
to production. Because this stage is typically understood as preceding deployment,
it is often described as the staging environment.

Staged changes are normally deployable in one step, a single system command,
or the click of a button in a GUI.

Deploying and Maintaining

[224]

Continuous deployment
Continuous deployment is the aggressive, optimistic strategy of building your
application in a way such that it can be released into production at any time,
typically as soon as it passes certain automated tests. This strategy generally leads to
many releases per day and requires that the validation pipeline, which changes move
through, is as close to production-like as possible.

Because there is limited (or nonexistent) oversight of the code being released,
continuous post-release inspection of application performance is normal. That is,
trust but verify: push changes into production after automated testing, but regularly
check whether your visitor counts are dropping, response times are rising, or other
metrics are behaving abnormally.

While similar to continuous delivery, the two should not be confused.

Building and deploying with Jenkins
You've learned how to use GitHub webhooks to trigger a build process whenever
new code is pushed to a repository. From pulling and testing a changed repository
to notifying a chat server that a new build has occurred, Jenkins helps you to trigger
deployment workflows. As your deployment needs become more complex than
simply testing a single branch, the benefits of a more powerful CI tool become
apparent. Jenkins provides tools to manage build permissions, task scheduling,
triggering deploys, displaying build logs, and more. Let's deploy an application
using Jenkins.

To install Jenkins, run the installer for your environment that can be found at
http://jenkins-ci.org/. There are also services that allow you to install Jenkins
in the "cloud", but we're going to build a local service. Upon successful installation,
a browser will open up with the Jenkins "home page" UI, as shown here:

http://jenkins-ci.org/

Chapter 7

[225]

You will use this Jenkins dashboard often as you manage builds.

Note that Jenkins will, by default, run on port 8080. You will, as with webhooks,
need to map this location to a web-accessible URL directly, via proxy, via
forwarding, or in some other way. Move to Manage Jenkins | Configure System
and find the Jenkins Location section. Add the Jenkins URL, as shown in the
following screenshot:

If you are running Jenkins on localhost, jump back to earlier in this chapter when
we discussed using forwarding services, such as http://localtunnel.me/.

You may be warned about an unsecured Jenkins instance. This is a valid
complaint! While we will not set up authentication, you should do so
in any real production environment. It isn't hard. Visit Manage Jenkins
| Configure Global Security to do so and/or visit https://wiki.
jenkins-ci.org/display/JENKINS/Securing+Jenkins.

http://localtunnel.me/
https://wiki.jenkins-ci.org/display/JENKINS/Securing+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Securing+Jenkins

Deploying and Maintaining

[226]

The next thing to do is configure Jenkins to work with Node.js and GitHub. From the
dashboard, navigate to Manage Jenkins | Manage Plugins | Available. You should
see a list of available plugins, from which you will search for and install NodeJS Plugin
and GitHub Plugin. This may take a while as these plugins, and their dependencies, are
installed. If any of the installs prompt you to restart Jenkins, you will find instructions
on how to do that in the installs list provided further on in this section.

The key integration that we'll have to do is with GitHub. In a new browser window,
visit your GitHub account and generate a new access token.

Copy the generated key. You will now give Jenkins this access token so that it can
perform operations on GitHub on your behalf, in particular around webhooks.
Return to Manage Jenkins | Configure, and add this OAuth token and your user
information to the GitHub Web Hook section, as shown here:

Run Test Credential to ensure that Jenkins can connect to GitHub using the token
you've provided.

Finally, we need to provide our GitHub credentials to Jenkins so that it can pull
our repository when changes happen. Navigate to Credentials and click on Global
credentials. Select Username with Password and add your credentials, which will
ensure that you give these credentials a useful name (you'll need to refer to these
credentials later).

Because you have already built your own webhook-powered CI system, it may
already be apparent to you why Jenkins is being configured in this way. In the end,
we are configuring Jenkins to respond to push events on a GitHub repository, pull
the changed repository, and automatically build it. To that end, we will need to
provision Jenkins so that it is configured with Node and can, therefore, build Node
repositories.

Chapter 7

[227]

Navigate to Configure System and add a NodeJS installation, as shown here:

You will now configure the Node environment that Jenkins will use. You should
match that environment with the environment your production servers will
run in. Click on Add NodeJS and follow the instructions. You can select Install
automatically and, when presented with installer options, select Install from nodejs.
org. Make sure that you add any global npm packages you need—tools such as gulp,
pm2, mocha, and others that are necessary to your build environment.

If you would rather manage the install yourself, just use the "Run Shell command"
option and something like the following command, adding any global installs you'd
like:

curl https://raw.githubusercontent.com/creationix/nvm/v0.24.1/install.sh
| bash; nvm install 0.12; nvm alias default 0.12; npm install gulp -g

Remember to save your changes!

We're almost done configuring Jenkins for CI. The last step is to create a build project.
Navigate to New Item, add a useful item name in the Item name field, select Freestyle
project, and click on OK. Now, navigate to Source Code Management, select Git,
add a GitHub repository name, select the credentials to access that repository, click on
Save, and you'll be ready to build, as shown in the following screenshot:

Deploying and Maintaining

[228]

Return to the Jenkins dashboard, and you'll see your build project listed. Click on the
name, and select Build Now from the menu on the left-hand side. If all goes well,
you'll see a build history table quickly populate, as shown here:

Click on the number and, if all is well, you'll see information on your build,
indicating no changes (you have just pulled off a masterstroke), some information
about the Git revision number, and so on. Now, the real test—make a change to
your GitHub repository, either by pushing a change or simply editing a file using
GitHub's editing tools. If you return to the dashboard, you will see that Jenkins
has added a new build to Build Queue; shortly the build will complete, and you'll
see the changes you've just made listed in your project's build history. You've just
created a CI environment for your project!

Now, we need to deploy. We'll use Heroku to deploy, but feel free to try your provider
of choice—as long as it speaks Git, Jenkins will be able to push your repository.

Deploying to Heroku
It might be useful to return to Chapter 2, Installing and Virtualizing Node Servers, and
refresh your memory about how to build on Heroku. At the very least, you will need
to install Heroku Toolbelt and authenticate. Once you are connected to Heroku via
the toolbelt, clone the express-webhook repository we created earlier and enter that
folder. Now, run heroku create to build a machine on Heroku. You should receive
both a URL and a Git endpoint resembling the following:

https://floating-shelf-4947.herokuapp.com/ | https://git.heroku.com/
floating-shelf-4947.git

Git remote heroku added

Now, it is time to push something for that server to run. Execute the following
command to push the express-webhook application to Heroku:

git push heroku master

The express-webhook application is now deployed to Heroku. Heroku will have
automatically built and started the application. Go ahead and visit the URL we
received before in a browser. The next step is to use Jenkins to automatically deploy
to Heroku whenever you make changes to the application repository.

Chapter 7

[229]

You are now connected to two Git repositories, which you can see by running
git remote -v:

heroku https://git.heroku.com/floating-shelf-4947.git (fetch)

heroku https://git.heroku.com/floating-shelf-4947.git (push)

origin https://github.com/sandro-pasquali/express-webhook (fetch)

origin https://github.com/sandro-pasquali/express-webhook (push)

The origin URL is our GitHub repository, and heroku represents the Git repository
maintained by Heroku. We'll synchronize these two via Jenkins.

As Jenkins will eventually be doing the pushing for us, we need to give it permission
to access your Heroku box. What we're going to do is generate a key pair for the
jenkins user and associate these local SSH keys with Heroku, allowing Jenkins to
perform pushes and so on. Log in as the jenkins user, and run the following two
commands:

ssh-keygen -t rsa

heroku keys:add ~/.ssh/id_rsa.pub

Jenkins can now authenticate with Heroku. All that is left to do is inform Jenkins
about the Heroku repository and to instruct Jenkins to deploy to Heroku whenever it
is informed, via the webhook we configured earlier, that changes have been made.

Return to your Jenkins project, click on Configure, and add the Heroku Git endpoint
as another repository to the Source Code Management section by clicking on Add
Repository. Fill in the Repository URL field to match the one you received earlier:

Note that you will not fill in Credentials as we've earlier linked Jenkins to Heroku
using SSH keys.

Deploying and Maintaining

[230]

Now, click on the "Advanced" button underneath the new repository, and give it a
name—you'll need this for the next step. Here we use heroku, but it can be anything:

Now, Jenkins has been made aware of our GitHub repo and our Heroku repo. The
final step is to configure Jenkins to push GitHub changes to Heroku.

Scroll down to Post-build Actions in your Jenkins project. Click on Add post-build
action and select Git publisher. Fill out the form provided exactly as shown here:

We are telling Jenkins to push to the master branch of the express-webhook
GitHub repository to heroku after each successful build. This is the deploy step. Save
your changes—you're done!

To test that everything is working, modify the default route of server.js in your
local clone of express-webhook such that it produces a different message, and push
that change to GitHub. If you return to the Jenkins dashboard, you will soon see
something like the following progress indicator on the build status of your project:

Chapter 7

[231]

If all goes well, your project will be listed on the dashboard as having been
successfully built. If you refresh your Heroku URL, you will also see the changes
you've made. Congratulations on successfully setting up continuous deployment for
your project!

Now that you have the structure set up for CI and deployment, start adding tests
and other build steps and run them either in your Node environment or using the
many Jenkins tools available to you. Happy building!

Package maintenance
JavaScript itself does not provide a native package management system; npm does
this job for Node applications. A good package management strategy is, therefore,
a key part of a good deployment strategy.

Packages offer the benefit of encapsulation. Running packages are accessible only
through the API they've exported. This isolation reduces the number of potential
bugs in a system, thus guarding the core functionality from accidental alteration.
However, given that (opaque) packages can themselves require other packages
as dependencies, the full dependency graph of an application can be difficult for
a developer to easily see. For example, if the functionality of a package you have
implemented suddenly changes, how do you debug it? Is the error in the package?
Is it in one of its dependent packages?

Understanding what is going on in your npm dependency graph is essential when
you are deploying Node applications. In this section, we will look at ways to stay
up to date on package updates, use Git to manage private packages, track the health
of an entire dependency graph, and look at best practices to set version rules in your
application's package.json file.

Deploying and Maintaining

[232]

Understanding Semver
Semantic Versioning (Semver) is simply a set of rules that have been proposed to
govern how dependencies in a system are declared. Npm enforces these rules in its
package manager, so understanding how they govern dependency management is
what will be discussed here.

Take for example the following npm package file:

"devDependencies": {
 "browserify": "^6.1.0",
 "gulp": "~3.8.8",
 "foobar": " >=1.2.3 <1.3.0"
}

Each dependency is given a version number corresponding to a version in the npm
repository. Some of these numbers are further modified by tokens, for example, a
caret (^) or a tilde (~), as well as version ranges. Let's look at what each segment
of semantically versioned numbers signify and how various tokens are used to
modulate those segments.

A version number is broken into three segments, which are shown here:

Semver concretely describes allowable package version ranges as well as implying
the current stability or state of a package—whether the package is stable, whether it
is mature, and so on. The numbering proceeds in order: 1.0.1 precedes 1.0.2, which
precedes 2.0.0.

The significance of the changes that Semver describes proceeds from left to right,
where a change in the major version of a package typically describes changes that
break compatibility with lower versions—2.0 is not compatible with 1.0. According
to semver.org, you should use version numbers in this way:

"Given a version number MAJOR.MINOR.PATCH, increment the: MAJOR
version when you make incompatible API changes, MINOR version when you add
functionality in a backwards-compatible manner, and PATCH version when you
make backwards-compatible bug fixes."

Chapter 7

[233]

Then, Semver allows you to set acceptable range limits on the versions of
dependencies in your application with an eye toward providing useful indications of
the level of impact implied by version changes. Some common usage examples are
given here:

•	 "3" indicates that only the major version (3) must be satisfied, ignoring minor
or patch values—3.0.0, 3.6.3, and 3.99.99 are all acceptable.

•	 "3.4.5" indicates that only that version is acceptable, with no variation.
•	 "<, <=, > and >=" range comparators work as expected in many

programming languages and can be used to set controlled ranges.
>= 3.0.1 <= 3.2.1 accepts 3.0.2 and 3.1.9 but not 3.0.0 or 3.2.2.

•	 1.3.4 >= 3.0.1 <= 3.2.1 accepts the version range as described in the preceding
point or the 1.3.4 version.

•	 Being equivalent to >= 0.0.0, "*" indicates that any version is acceptable.
•	 Hyphen ranges (-) describe inclusive sets. The hyphen range 1.0.0 - 2.0.0

matches any package with a major version of 1.
•	 x-ranges provide a shorthand for minor and patch ranges; 1.2.x is equivalent

to >= 1.2.0 <= 1.3.0 and 1.x is equivalent to >= 1.0.0 <= 2.0.0.
•	 Tilde(~) ranges allow patch-level changes if a minor version is specified and

minor-level changes if it is not. ~1.3.2 is equivalent to >= 1.3.2 < 1.4.0, ~1.3 is
equivalent to >= 1.3.0 < 1.4.0, and ~1 is equivalent to >= 1.0.0 < 2.0.0.

•	 Caret(^) ranges allow changes that do not modify the leftmost nonzero digit.
^1.2.0 is equivalent to >= 1.2.0 <= 2.0.0, ^0.2.1 is equivalent to >= 0.2.1 <=
0.3.0, and ^0.0.2 is equivalent to >= 0.0.2 < 0.0.3.

For more details, visit https://github.com/npm/node-semver
and https://docs.npmjs.com/misc/semver. A useful tool to
check versions for specific packages against Semver tuples can be found
at http://semver.npmjs.com/.

As we saw when we were using the npm install <packagename> --save
construct, npm defaults to caret prefixing—npm will assign the newly installed
dependency a version of ^<latest version> in package.json. If you'd like to have
a default tilde prefix, use npm config set save-prefix="~".

Another important feature of Semver for maintainability is prerelease tags. These
tags allow you to release a package version that is not ready for production
(prerelease), which you might do in order to get it in the hands of other people on
your team, beta testers, and so on, while ensuring that the default version will be
installed on a "normal" install.

https://github.com/npm/node-semver
https://docs.npmjs.com/misc/semver
http://semver.npmjs.com/

Deploying and Maintaining

[234]

When you publish an npm package, you can use the --tag argument to tag that
release. The published package is now no longer tagged as "latest" but as whichever
tag you've assigned it. Let's say we tagged the alpha.7 package (and changed the
version field of the package with npm version <version>-alpha.7).

Now, consider the case where that package is being listed as a dependency
somewhere in userland:

"my-package" : ">=1.03-alpha.1"

When this package is installed, npm will install the alpha.7 package—Semver ranges
would apply as alpha.7 is greater than alpha.1.

Let's define our package in this way:

"my-package" : ">=1.03"

In the preceding case, the alpha.7 package will not be installed. In this way, we can
see that by the Semver rule, prerelease tags only apply if the comparator (what
you've set as the version of the package) also contains a prerelease tag. In this way,
you can safely release experimental breaking changes in tagged packages as only
someone who is fully aware of the tag name (and its alpha nature) would do the
work required to be done to use it, while others continue to use production versions.

Managing packages with npm
One of the most important (and tricky) application management strategies you will
deploy is choosing packages and updating package versions. In this section, good
strategies to maintain your npm packages will be discussed—how to keep your
packages up to date, how to lock dependencies, how to load packages from Git
repositories rather than npm, and so on.

Generally, you'll want to balance the relative safety of the rigid Semver constraints
with the need to stay as up to date as possible with the latest version of an important
package and to keep your dependency tree predictable and clean. Developing a good
strategy here will help with application maintenance.

Take a look at the following six aspects of package maintenance:

•	 Maintaining awareness of the full npm dependency tree
•	 Tracking divergence between the latest version and the installed version

of a package
•	 Removing unused packages defined in your package file

Chapter 7

[235]

•	 Ensuring that all needed dependencies are installed
•	 Ensuring that the dependencies you need are the ones you have
•	 Using private or other modules not held in the npm repository

Other package management systems enforce the rule that a single version of a
package exists across all dependencies; npm does not. Packages typically require
other packages, so multiple versions of the same package can enter into an npm
build. An application may have A and B dependencies, with the A package requiring
version 1.0.1 of the C package, and with the B package requiring version 2.0.1 of the
C package.

Think about what it means to say that, on every npm install, there is limited (often
barely thought out) control over the package versions inserted into a dependency
tree—there is no guarantee that your application will run the same code at any
given time. What's been installed at one moment may fundamentally change if you
reinstall one hour later or even one second later. That's an extraordinary level of
risk to introduce into production systems—similar to a software manager being
indifferent to who makes changes, where, or when.

The first step is getting a full breakdown of what has been installed. Use npm ls for
this, which returns something like the following:

...

├─┬ mocha@1.21.5

│ ├── commander@2.3.0

│ ├─┬ debug@2.0.0

│ │ └── ms@0.6.2

│ ├── diff@1.0.8

│ ├── escape-string-regexp@1.0.2

│ ├─┬ glob@3.2.3

│ │ ├── graceful-fs@2.0.3

│ │ ├── inherits@2.0.1

│ │ └─┬ minimatch@0.2.14

│ │ ├── lru-cache@2.5.0

│ │ └── sigmund@1.0.0

│ ├── growl@1.8.1

...

Deploying and Maintaining

[236]

If you want this tree to be represented as JSON, use the --json flag: npm ls --json.
To include the contents of each package's description field in the output, use
npm ls --long. You can use npm ls -g to get this tree for globally installed
packages. If you'd just like to know which packages are installed globally,
try ls `npm root -g`.

Keeping up to date on the current versions of the installed packages is something
you should be doing regularly. It doesn't take long for the version of a package to
become outdated. Npm provides the npm outdated tool for this purpose (here, it is
used with the --long "extended information" argument). The following screenshot
shows this:

Here, we see that the package.json file within the node_modules/redis folder of
our application is at version 0.8.2 (current), that the latest version is 0.12.1, and that
the wanted Semver for redis in the root package.json file will match up to version
0.12.1. This indicates that it has been quite a while since npm install was run
within this application. A very useful global tool to perform these sorts of checks
is npm-check (https://github.com/dylang/npm-check), which delivers more
detailed information, as shown in the following screenshot:

Additionally, this tool offers an interactive UI that will automatically update the
packages you choose.

Another type of residue that accumulates over time is unused packages. These can
be installed in node_modules but no longer linked, or these can be defined for a
package but not required anywhere in the application's code.

https://github.com/dylang/npm-check

Chapter 7

[237]

To remove packages that are installed but no longer listed in package.json,
you can use npm prune. Note that this is simply a technique for cleaning up the
node_modules folder within an individual package's folder; it is not a smart,
global tool to remove unused packages across the entire tree.

The dependency-check module (https://github.com/maxogden/dependency-
check) is another tool to find unnecessary packages. Assuming that such an unused
dependency exists, dependency-check will find it:

dependency-check package.json --unused

Fail! Modules in package.json not used in code: express

Conversely, packages may be required in the application code but not listed in
a package file. This happens occasionally, when a necessary package is installed
during development but not saved to package.json, possibly because the user
forgets to use the --save option or for some other reason. The dependency-check
command will walk all files in your codebase and find such cases, as shown here:

dependency-check package.json

Fail! Dependencies not listed in package.json: express

Note that it is expected that the entry point to your application is listed in
package.json as dependency-check needs to know where your application tree
is rooted. You should, therefore, ensure that your packages all have a main attribute
pointing to an existing file. If you need to add further files to check, use the --entry
argument as follows:

dependency-check package.json --entry a.js b.js [...]

To have a main entry point to your application is an important general practice that
you should follow.

One final tool that can help speed up your npm builds is npm dedupe. When
triggered, npm attempts to reduce the number of redundant package installs,
"flattening" the tree somewhat, and, therefore, reducing install time. Consider this
dependency tree:

A
└─┬ B
│ └── C
└─┬ D
 └── C

https://github.com/maxogden/dependency-check
https://github.com/maxogden/dependency-check

Deploying and Maintaining

[238]

Here, the A package depends on the B and D packages, which each depend on the C
package. Normally, C would be installed twice, once for each parent. However, if the
Semver that B and D use to target C matches a single version of C, npm will reduce
the tree in a way that both B and D pull from pull from the same, single, installed
version of C. Note that Semver rules still apply—npm will not break version
requirements solely to reduce the number of installs required.

It should be clear that many of the tools we've been looking at would fit nicely into a
build/deploy process, issuing a warning if, for example, a given package is not used
or is out of date. npm is itself an npm package (https://github.com/npm/npm)—try
using npm programmatically within your build process to perform some of these
checks.

Designing a dependency tree
All dependencies are not created equal. Some are necessary when in development
mode but are not meaningful in production. The location and versions of
dependencies can also vary as you may not always use packages in the npm
repository, or you may want to use specialized versions.

There are three types of dependencies used in npm package files: dependencies,
devDependencies, and peerDependencies. Let's look at the differences.

Simple dependencies are likely what you're most familiar with. These dependencies
are always installed, regardless of context. You should place dependencies that must
exist in this collection, typically the packages your production build will need.

When you are developing and building, you will often use tools, such as Mocha or
gulp. Once a validated build is ready to be placed in production, however, there
is no need for those packages to accompany it. The packages you do not need in
production should be placed in the devDependencies collection. While npm will
always install both dependencies and devDependencies, you can (and should)
exclude devDependencies from the deploy install using the --production flag,
which is as follows:

npm install --production

Usefully, if you run the npm config set production command, the ~/.npmrc file
will be updated such that all future installs will automatically set the --production
flag. For example, your provisioner can do this configuration.

https://github.com/npm/npm

Chapter 7

[239]

Finally, peerDependencies deals with the case of plugins. You're familiar with
various Grunt plugins. While these are loaded via the npm ecosystem, they need
their host program (Grunt) in order to function. You might think that each of these
plugins should just require('grunt')—but which version of Grunt? Any one of
these plugins may depend on a specific version of its host program, but those host
programs are also direct dependencies of the package. So, consider this declaration:

"dependencies": {
 "grunt": "1.2.3",
 "gulp-plugin": "1.0.0" // requires grunt@2.0.0
}

The preceding declaration leads to a dangerous conflict:

└── grunt@1.2.3
└─┬ gulp-plugin@1.0.0
 └── grunt@2.0.0

So, peerDependencies should be used in plugin-type packages that have specific
host-program needs, allowing the plugin to "carry along" their needed host. If npm
attempts to install a different version of that host program, an error is thrown.
This, of course, leads to another problem—any given plugin can cause an install
to fail if its required host program is not version-compatible with the one the main
application is demanding. The complexities of peerDependencies remain an ongoing
discussion in the Node community (https://github.com/npm/npm/issues/5080).

As mentioned, npm does not put many limits on package versions, allowing
multiple versions of the same package to exist simultaneously and, indeed, for
versions (and, therefore, package functionality) to change unexpectedly.

One way to secure your application's state is to lock a dependency tree
using npm shrinkwrap. This command will trigger npm to generate the
npm-shrinkwrap.json file containing explicit references to specific versions.
The file generated contains definitions such as the following:

"moment": {
 "version": "2.8.4",
 "from": "moment@^2.8.3",
 "resolved": "https://registry.npmjs.org/moment/-/moment-2.8.4.tgz"
},
"node-uuid": {
 "version": "1.4.2",
 "from": "node-uuid@^1.4.1",
 "resolved": "https://registry.npmjs.org/node-uuid/-/node-uuid-
1.4.2.tgz"
}

https://github.com/npm/npm/issues/5080

Deploying and Maintaining

[240]

It should be clear how this syntax ensures that future installs will be identical. Note
that this is a heavy-handed approach that you probably don't need very often.
However, in production situations where you are deploying identical code across
multiple machines, shrinkwrapped "bundles" may be exactly what you need.

Another option to ensure visibility in the behavior of your packages is to control
them in their entirety. You are able to link dependencies to Git repositories, either
public or private. For example, you can load Express directly from its GitHub
repository:

dependencies : {
 "express" : "strongloop/express"
}

npm assumes GitHub, so you are able to use the compressed syntax, as shown in the
preceding code.

You can also link to a private Git repository using https/oauth:

"package-name": "git+https://<github_token>:x-oauth-basic@github.
com/<user>/<repo>.git"

You can also use SSH as follows:

"package-name": "git+ssh://git@github.com/<user>/<repo>.git"

The npm package manager is an essential part of the Node ecosystem, and Node
applications are typically composed of dozens, even hundreds, of packages.
Developing a strategy around package management is an important consideration if
you plan to release and maintain a large-scale Node application.

Chapter 7

[241]

Summary
In this chapter, you learned how to deploy a local build into a production-ready
environment. The powerful Git webhook tool was demonstrated as a way of creating
a continuous integration environment, and this knowledge was carried forward into
the creation of a full build/deploy pipeline that connected a GitHub repository to a
Heroku deployment via a CI environment configured using Jenkins. We also covered
the semantic versioning system that npm uses and even how to use Semver, npm
methods, and some helper libraries to keep our package trees clean and predictable.

From basic JavaScript programs to the deployment of full applications, in this book,
we took a tour of Node's design and goals. We've worked through ways in which
Node's event-driven architecture influences how we design networked software by
building on the foundational concept of streams. With an eye toward the creation
of fast, deployable systems, we worked through virtualization strategies, compiler
optimizations, load balancing, and vertical and horizontal scaling strategies.
Additionally, the power of composing software out of small, focused programs was
considered by introducing the power of micro services, interprocess messaging, and
queues as one way to build distributed systems.

Keeping in mind that software is written by fallible humans, we also covered
strategies for testing and maintaining running applications, learning to expect
failure, and planning for it, with the help of both native and third-party logging and
monitoring tools. We learned debugging techniques and optimization strategies
aimed at reducing bottlenecks at the local and network levels and also how to find
their source when they inevitably appear. With the goal of making development
simpler, we looked at how to make effective use of integration tools and versioning
systems, provision virtual machines and test with headless browsers, enable
developers to work freely and take risks, and push changes with the confidence that
smart deployment strategies confer. Constructing a smart build pipeline, you learned
about the power of full-stack JavaScript, transpilation, live updates, and continuous
testing and integration.

You are encouraged to modify and extend the example code to improve it or,
otherwise, change it to your needs. The hope is that, as you come to appreciate the
power of Node.js, the npm ecosystem, and open source software, you will begin
to naturally design your applications so that they will require few changes when
pushed into production, and that you will share your discoveries so that others can
do the same thing.

[243]

Index
A
add-ons, Heroku 33
Advanced Message Queuing Protocol

(AMQP)
about 80
URL 84

alpha.7 package 234
Ansible

deployed application, provisioning 219-222
roles 220
URL 222

Apache Bench tool
URL 164

application development
expensive technical realities 167
with Browserify 168
with Gulp 168
with Handlebars 168

Application Programming Interface (API) 9
assert module

about 186-188
methods 187, 188

asynchronous execution 8
automated browser testing

with CasperJS 199
with PhantomJS 199

autopilot repository
about 212
URL 212

B
backup directive 77

bind command, arguments
address 84
callback 84
port 84

Bit Operations (bitops) 105
bitwise operations

bitmasks 108, 109
bits, counting 106-108
bits, getting 106-108
bits, setting 106-108
results, filtering 108, 109
used, for analyzing user actions 105

bitwise operators 105
bluebird library

about 120
URL 120

bouncy module
URL 79

Browserify
about 20, 21, 168
references 21
URL 177
using 178

BrowserSync
about 168, 179
URL 179

Brunch
URL 181

build/deploy system
implementing, webhooks used 212-215
URL 212

Bunyan
about 144
URL 144

[244]

C
C10K problem

about 54
URL 54

caching
about 118, 119
CloudFlare, deploying as CDN 122-125
Redis, using 119-122
strategies 118, 119

Cartridges 40
CasperJS

about 202
navigation scenarios 202-204
URL 202
used, for automated browser testing 199

Chai
about 180, 188-191
assert assertion style 191
expect assertion style 191
should assertion style 191
URL 188
used, for testing 191, 192

child process
about 62
child.connected 62
child.disconnect() 63
child.kill([signal]) 63
child.pid 63
child.send(message, [sendHandle]) 63, 64
child.stderr 62
child.stdin 62
child.stdout 62

CloudFlare (CF)
about 125
deploying, as CDN 122-125
URL 123

cluster events
disconnect 67
exit 67
fork 66
listening 66
online 66
setup 67

cluster module
about 64, 65

cluster.disconnect([callback]) 66
cluster events 66
cluster.fork([env]) 66
cluster.isMaster 65
cluster.isWorker 65
cluster.setupMaster([settings]) 66
cluster.worker 65
cluster.workers 66
worker.disconnect() 67, 68
worker.id 67
worker.kill([signal]) 67
worker.process 67
worker.send(message, [sendHandle]) 67
worker.suicide 67

coffeelint.json file
about 175
URL 175

CoffeeScript 175
Combined Log Format

URL 143
comparison operators

reference link 188
Component

about 21
URL 21

components, Docker
Docker containers 45
Docker images 45
Docker registries 45

concurrency 4, 5
configuration variables

managing 37, 38
content delivery network (CDN)

about 119
URL 123

continuous delivery 223
continuous deployment 223, 224
continuous integration 223
curl 25

D
debugger

about 182
commands 183
using 184, 185

[245]

dependencies
about 238
dependency tree, designing 238-240

dependency-check module
about 237
URL 237

deployed application
and local application, synchronizing 216
developing, with Vagrant 216-219
provisioning, with Ansible 219-222

design, Node
about 3, 4, 12
asynchronous execution 8
concurrency 4, 5
event loop 11-15
events 9, 10
implications, on system architects 15, 16
large systems, building 16, 17
parallelism 5-7
processes 8
streams 17, 18
threads 5-7
URL 12

devDependencies 238
development build 208
Digital Cloud

about 70
Nginx load balancer, deploying 72

DigitalOcean
about 71
Nginx load balancer, deploying 71
URL 71

direct exchange 81
distributed systems

managing, with microservice 92, 93
managing, with Redis pub/sub 94-97
microservice, with Seneca 97-100

Docker
about 23
application, building 47, 48
components 45
Dockerfile, creating 48, 49
Docker image, building 50, 51
Docker image, running 50, 51
installing, on Unix 45, 46
URL 44

used, for creating lightweight virtual
containers 44

Docker containers 45
Dockerfile 48, 49
Docker image

about 45
building 50, 51
running 50, 51
URL, for image repository 47

Docker registries 45
domain module 133-135
dyno 32

E
encryption, with Node

URL 127
equality comparison (==) 186
error handling

logging 139
process errors, catching 136-138
URL 132
with domain module 133-135

Error objects, properties
error.domain 135
error.domainBound 135
error.domainEmitter 135
error.domainThrown 135

event-driven programming
about 12
URL 12

event loop
about 11-15
considerations 15

events
about 9, 10
reference link 142

exchange
about 81
direct 81
fanout 81
topic 81

execFile method 62
exec method

about 61
callback 62

[246]

command 61
options 61

exec method, options
callback 62
cwd 61
encoding 61
env 61
killSignal 62
maxBuffer 62
timeout 62

Express framework 142

F
fail_timeout directive 77
failure

dealing with 132, 133
fanout exchange 82
file descriptors, values

ignore 57
integer 58
ipc 57
null, undefined 58
pipe 57
stream object 58

Foreman 33
fork method

about 59
using 60

fork method, options
cwd (string) 59
encoding (string) 59
env (object) 59
execPath (string) 59
silent (Boolean) 59

forwarding services
reference link 211

forward proxy 69
full-stack JavaScript

about 19
Browserify 20, 21
code 19
using 19

G
Gears 40

Git
about 34
URL 34
using 34-37

GitHub
URL 208
webhooks, using 208

globs
about 171
URL 171

Google Chrome debugger
URL 185

Gulp
about 168
build, running 179-181
build scaffold, building 172-178
build, testing 179-181
reference link 181
src command 171
using 168-172

gulp-imagemin
about 181
URL 181

Guvnor
about 159
URL 159

H
Handlebars 168
HAProxy

about 77
URL 77

HashiCorp
URL 216

headless testing
with PhantomJS 199-201

Heroku
about 32
add-ons 33
application, deploying 228-230
configuration variables, managing 37, 38
deploying 38, 39
Git 34-37
installing 32, 33
URL 32

[247]

Heroku Toolbelt
about 32
URL 32

horizontal scaling
about 54
across different machines 68
load balancing 77
message queues, using 80-83
Nginx, using 69, 70
UDP, using 84-89

HTOP
about 46
URL 46

HTTP requests
creating 26

HTTPS 29
HTTP server

setting up 24, 25
HyperLogLog

about 105, 111
used, for counting unique anonymous

visitors 110-112
HyperText Markup Language (HTML) 16

I
identity comparison (===) 186
I/O events

deferred execution blocks 15
execution blocks 14
I/O 14
timers 14

ip_hash directive 77

J
Jasmine

URL 189
JavaScript

arrays 116, 117
functions 118
numbers 114-116
objects 116, 117
optimization/de-optimization,

tracing 114-116
optimizing 113, 114

JavaScript memory profiling
URL 152

JavaScript Object Notation (JSON) 19
Jenkins

dashboard 225
URL 224
used, for building application 224-228
used, for deploying application 224-228

JSON Web Token (JWT)
about 126
authentication 126-130
claims segment 127
expiry time 130
header 127
sessions 126-130
structure 126
URL 127

L
least_conn directive 77
Least Recently Used (LRU)

about 122
URL 122

libuv 12
lightweight virtual containers

creating, Docker used 44, 45
load balancing

about 77
node-http-proxy, using 78, 79

Loader.io
URL 164

Load Impact
URL 164

localtunnel
URL 211

logging
about 139
with Morgan 142-144
with UDP 139-142

low-assurance SSL certificates
URL 30

M
max_fails directive 76
memcached 119
memory-efficient data structures

with Redis 105

[248]

memory usage, reducing
about 100
reference link 100
with prototypes 102-105
with Redis 105
with streams 101, 102

message queues
using 80-83

microservice
about 92
architecture designs 93
with Seneca 97-100

Mikeal Rogers' request
about 26
URL 26

Mimosa
URL 181

Mocha
about 180-190
hooks 191
URL 189
used, for testing 190, 191

mocks
about 197, 198
URL 199

MongoDB
about 32
installing 41

Morgan
about 142
URL 142
used, for logging 142-144

N
native testing tools

assert module 186-188
debugger 182-185
using 181

New Relic
about 162
URL 162
used, for monitoring 162-164

Nginx
about 69
configuring 72-77

installing 72-77
URL 69
using 69, 70

Nginx load balancer
deploying, on Digital Cloud 72
deploying, on Digital Ocean 71

Node application
deploying 42, 43
installing 41

node-http-proxy
using 78, 79

node-inspector module
about 185
URL 185

nodemon
URL 159

Node processes
managing 147-151

node_redis module
about 107
URL 107

Node REPL 145-147
Node server

HTTP requests, creating 26
HTTPS 29
HTTP server, setting up 24, 25
proxying 27, 28
securing 29
self-signed certificate, creating 29, 30
setting up 24
SSL certificate, installing 30, 31
TLS (SSL) 29
tunneling 27, 28

Nodetime
about 160, 161
URL 160

Node Version Manager (NVM) 73
npm

about 17, 188, 189
dependency tree, designing 238-240
URL 17, 238
used, for package management 234-237

npm-check
URL 236

[249]

O
Object.create method

about 104
URL 104

Object-oriented (OO) language 102
OpenShift

Cartridges 40
Gears 40
installing 39, 40
MongoDB, installing 41
Node application, deploying 42, 43
Node application, installing 41

P
package 17
package management

about 231
aspects 234
with npm 234-237
with Semantic Versioning

(Semver) 232-234
parallelism 5-7
peerDependencies

about 238
reference link 239

performance optimization 113
PhantomJS

URL 199
used, for automated browser testing 199
used, for headless testing 199-201

playbooks 219
PM2

about 155-158
commands 156
monitoring 158, 159

port redirection
URL 51

process errors
catching 136-138

process ID (PID) 63
Procfile 33
production build 208
profiling processes

about 151-155
references 155

prototypes
reference link 105
using 102-105

proxy 69

R
RabbitMQ

about 80
URL 80

Read-Eval-Print-Loop (REPL) 145
Redis

about 105
bitwise operations, using 105
HyperLogLog, using 110-112
npm module, URL 94
pub/sub 94-97
used, for caching 119-122

remotely monitoring
about 144, 147-151
with Node REPL 145-147

Remote Procedure Calls (RPC) 20
reverse proxy 70
rhc tool

delete command 43
force-stop command 43
reload command 43
restart command 43
show command 43
start command 43
stop command 43
tidy command 43
using 43

routing keys 81
Rule of Modularity 16
Rule of Simplicity 7
runtime_function

about 115
URL 115

S
Sass CSS preprocessor

about 176
URL 176

scalability 53

[250]

self-signed certificate
creating 29, 30

Semantic Versioning (Semver)
about 232
range limits, using 233
references 233
URL 232
used, for package management 232-234

Seneca
about 97-100
URL 92

sessions
JSON Web Token (JWT) 125
managing 125

Should
URL 189

single thread 6
Sinon

about 180, 188-193
mocks 193, 197, 198
spies 193, 194
stubs 193-197
URL 189
used, for testing 193

sinon-chai module
about 193
URL 193

SlimerJS 202
sourcemap 176
spawn method

about 56-59
arguments 56
command 56
options 56

spawn method, options
cwd (string) 56
detached (Boolean) 56
env (object) 56
gid (number) 57
stdio (string or array) 57
uid (number) 56

spies
about 193, 194
URL 195

SpookyJS
URL 204

SSL certificate
installing 30, 31

stack 14
StatsD

about 139
URL 139

streams
about 17, 18, 101
references 18
using 101, 102

stubs
about 195, 196
URL 197

T
technical debt 167
testing

with Chai 188, 189
with Mocha 188, 189
with npm 188, 189
with Sinon 188, 189

test spy 193
test stubs

URL 195
third-party monitoring tools

Nodetime 160, 161
PM2 155-158
using 155

threads 5-7
tick module

about 152
URL 152

TLS (SSL) 29
topic exchange 82
transactions, Redis

URL 107
Transmission Control Protocol (TCP) 146
tunneling 27, 28

U
Unix

Docker, installing 46
upstream servers 74

[251]

usage module
about 152
URL 152

User Datagram Protocol (UDP)
about 84, 139
reference link 86
used, for logging 139-142
using 84-89

User Interface (UI) 32

V
V8

about 113
JavaScript, optimizing 113, 114
URL 117

Vagrant
about 216
URL 216
using 216-219

vertical scaling
about 54
across multiple cores 54-56
child process 62
cluster module 64, 65
execFile method 62
exec method 61
fork method 59, 60
spawn method 56-59

VirtualBox
URL 216

Vows
URL 189

W
webhooks

about 208
enabling 208-212
used, for implementing build/deploy

system 212-215
weight directive 76
Winston

about 144
URL 144

worker events
disconnect 68
exit 68
listening 68
message 68
online 68
setup 68

Y
YAML format 220
Yeoman

URL 181

Thank you for buying
Deploying Node.js

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Node.js Blueprints
ISBN: 978-1-78328-733-8 Paperback: 268 pages

Develop stunning web and desktop applications with
the definitive Node.js

1.	 Utilize libraries and frameworks to develop
real-world applications using Node.js.

2.	 Explore Node.js compatibility with AngularJS,
Socket.io, BackboneJS, EmberJS, and GruntJS.

3.	 Step-by-step tutorials that will help you to
utilize the enormous capabilities of Node.js.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1.	 Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2.	 Tame asynchronous programming, the event
loop, and parallel data processing.

3.	 Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Please check www.PacktPub.com for information on our titles

Node Web Development
Second Edition
ISBN: 978-1-78216-330-5 Paperback: 248 pages

A practical introduction to Node.js, an exciting
server-side JavaScript web development stack

1.	 Learn about server-side JavaScript with Node.js
and Node modules.

2.	 Website development both with and without the
Connect/Express web application framework.

3.	 Developing both HTTP server and client
applications.

Instant Node.js Starter
ISBN: 978-1-78216-556-9 Paperback: 48 pages

Program your scalable network applications and web
services with Node.js

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Learn how to use module patterns and Node
Packet Manager (NPM) in your applications.

3.	 Discover callback patterns in NodeJS.

4.	 Understand the use Node.js streams in your
applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Appreciating Node
	Understanding Node's unique design
	Concurrency
	Parallelism and threads
	Concurrency and processes
	Events
	The event loop

	The implications of Node's design on system architects
	Building large systems out of small systems
	Streams

	Using full-stack JavaScript to maximum effect
	Hot code
	Browserify

	Summary

	Chapter 2: Installing and Virtualizing Node Servers
	Getting a basic Node server up and running
	Hello world
	Making HTTP requests
	Proxying and tunneling
	HTTPS, TLS (SSL), and securing your server
	Creating a self-signed certificate for development
	Installing a real SSL certificate

	Installing applications on Heroku
	Add-ons
	Git
	Managing configuration variables
	Managing your deployment

	Installing applications on OpenShift
	Installing a Node application and MongoDB
	Deploying your app

	Using Docker to create lightweight virtual containers
	First, some Unix
	Getting started with Docker
	Creating a Dockerfile
	Building and running a Docker image

	Summary

	Chapter 3: Scaling Node
	Scaling vertically across multiple cores
	spawn(command, [arguments], [options])
	fork(modulePath, [arguments], [options])
	exec(command, [options], callback)
	execFile
	Communicating with your child process
	child.connected
	child.stdin
	child.stdout
	child.stderr
	child.pid
	child.kill([signal])
	child.disconnect()
	child.send(message, [sendHandle])

	The cluster module
	cluster.isMaster
	cluster.isWorker
	cluster.worker
	cluster.workers
	cluster.setupMaster([settings])
	cluster.fork([env])
	cluster.disconnect([callback])
	cluster events
	worker.id
	worker.process
	worker.suicide
	worker.send(message, [sendHandle])
	worker.kill([signal])
	worker.disconnect()

	Scaling horizontally across different machines
	Using Nginx
	Deploying an Nginx load balancer on DigitalOcean
	Installing and configuring Nginx

	Load balancing with Node
	Using node-http-proxy

	Using message queues
	Using Node's UDP Module

	Summary

	Chapter 4: Managing Memory
and Space
	Dealing with large crowds
	Microservices
	Redis pub/sub
	Microservices with Seneca

	Reducing memory usage
	Use streams, not buffers
	Understanding prototypes
	Memory-efficient data structures with Redis
	Using bitwise operations to analyze user actions over time
	Using HyperLogLog to count unique anonymous visitors

	Taming V8 and optimizing performance
	Optimizing JavaScript
	Numbers and tracing optimization/de-optimization
	Objects and arrays
	Functions

	Caching strategies
	Using Redis as a cache
	Deploying CloudFlare as a CDN

	Managing sessions
	JSON Web Token authentication and sessions

	Summary

	Chapter 5: Monitoring Applications
	Dealing with failure
	The 'domain' module
	Catching process errors
	Logging
	Logging with UDP
	Logging with Morgan

	Modifying behavior in changing environments
	Node REPL
	Remotely monitoring and managing Node processes

	Profiling processes
	Using third-party monitoring tools
	PM2
	Monitoring

	Nodetime

	Using New Relic for monitoring
	Summary

	Chapter 6: Building and Testing
	Building with Gulp, Browserify, and Handlebars
	Using Gulp
	Erecting a build scaffold
	Running and testing your build

	Using Node's native testing tools
	The Node debugger
	The 'assert' module

	Testing with Mocha, Chai, Sinon, and npm
	Mocha
	Chai
	Sinon
	Spies
	Stubs
	Mocks

	Automated browser testing with PhantomJS and CasperJS
	Headless testing with PhantomJS
	Navigation scenarios with CasperJS

	Summary

	Chapter 7: Deploying and Maintaining
	Using GitHub webhooks
	Enabling webhooks
	Implementing a build/deploy system using webhooks

	Synchronizing local and deployed builds
	Developing locally with Vagrant
	Provisioning with Ansible

	Integrating, delivering, and deploying
	Continuous integration
	Continuous delivery
	Continuous deployment
	Building and deploying with Jenkins
	Deploying to Heroku

	Package maintenance
	Understanding Semver
	Managing packages with npm
	Designing a dependency tree

	Summary

	Index

