
www.allitebooks.com

http://www.allitebooks.org

Getting Started with HTML5
WebSocket Programming

Develop and deploy your first secure and scalable
real-time web application

Vangos Pterneas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with HTML5 WebSocket Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-696-2

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Vangos Pterneas

Reviewers
Sann-Remy Chea

Wayne Ye

Acquisition Editor
Rubal Kaur

Lead Technical Editor
Mohammed Fahad

Technical Editor
Manal Pednekar

Project Coordinator
Akash Poojary

Proofreader
Lucy Rowland

Indexer
Tejal Soni

Graphics
Abhinash Sahu

Production Coordinator
Aditi Gajjar

Cover Work
Aditi Gajjar

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vangos Pterneas is a Software Engineer, passionate about natural user interfaces
and modern innovative technologies. He loves developing smart clients for the Web
and mobile devices. His professional experience includes iOS, Windows, Kinect, and
HTML5 development for small and large-scale systems.

Vangos has worked as a Software Engineer and Consultant for Microsoft Innovation
Center, where he participated in EU research projects and carried out numerous
technical presentations and workshops. He is now running his own company,
LightBuzz Software, introducing new concepts and software to the public. LightBuzz
applications have won the first place in Microsoft's worldwide innovation competition,
held in New York, and also the first place in TEDx's Rising Stars program.

Apart from this book, Vangos has reviewed Augmented Reality with Kinect, published
by Packt Publishing.

When Vangos is not coding, he loves blogging about technical staff and providing
the community with open-source utilities (http://lightbuzz.com)

I would like to thank my kitty and all of my fluffy cats (Pixel, Vector,
and Apollo) for their patience and support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Sann-Remy Chea works as a Software Engineer at Ubisoft Owlient, a video game
company specialized in Web games, based in Paris, France. During his Master's
degree, he created two games, which have reached thousands of players. As an
intern, he worked at Ubisoft and then joined IBM in the Media & Entertainment
industry. Fond of Web application development, he specializes in HTML5 and
mainly develops in JavaScript. You can follow Sann-Remy on Twitter: @srchea.

First of all, I would like to thank the author of this book, Vangos
Pterneas, for his awesome work. I would like to thank Nishanth for
contacting me, as well as Akash and Mohammed for their support
during the review. I would also like to thank the editorial team of
Packt Publishing who have worked on this book.

www.allitebooks.com

http://www.allitebooks.org

Wayne Ye is a Software Developer, Tech Lead, and also a Geek. He has immersed
himself in software development for nearly 8 years, with an emphasis on C#/ASP.
NET, Ruby on Rails, HTML5, JavaScript/jQuery, and nodejs. He is proficient in
GOF Design Patterns, S.O.L.I.D principle, MVC/MVVM, SOA, REST, and AOP;
he strongly believes in and masters Agile, Scrum, and TDD/BDD. He hacks daily
with Vim. He is a CodeProject MVP (2012) and a certified PMP. In his spare time, he
frequently writes tech/life blogs on WayneYe.com, and spends wonderful time with
his dear wife and lovely son.

He works as a global leader in 3D design, engineering, and entertainment software.
Autodesk helps people imagine, design, and create a better world. Autodesk offers
an unparalleled depth of experience and a broad portfolio of software to give
customers the power to solve their design, business, and environmental challenges.
In addition to designers, architects, engineers, and media and entertainment
professionals, Autodesk helps students, educators, and casual creators unlock their
creative ideas through user-friendly applications.

Wayne is also the author of Cucumber BDD How-To, published by Packt Publishing.

I appreciate my family's strong support and understanding. And I
appreciate Akash Poojary's patient guidance and support!

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: WebSocket – a Handshake! 7

Life before WebSocket 8
Polling 8
Long polling 8
Streaming 8
Postback and AJAX 9

Then came HTML5 10
The WebSocket protocol 11

The URL 11
Browser support 12
Who's using WebSockets 12

Mobile? 13
The future is now 13
What are we going to make? 14
Summary 14

Chapter 2: The WebSocket API 15
HTML5 basics 15

Markup 15
Styling 16
Logic 16

A chatting application 17
API overview 17

Browser support 18
The WebSocket object 19
Events 19

onopen 20

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

onmessage 20
onclose 21
onerror 21

Actions 22
send() 22
close() 23

Properties 23
The complete example 24

index.html 24
chat.js 25

What about the server? 26
Summary 26

Chapter 3: Configuring the Server 27
Why do I need a WebSocket server? 27
Setting up the server 28

Selecting the technology that suits you 28
C/C++ 28
Java 29
.NET 29
PHP 29
Python 29
Ruby 30
JavaScript 30

Setting up the development environment 30
Connecting to the web server 32

Creating the WebSocket server instance 32
Open 33
Close 33
Message 33
Send 34

Other methods 34
The complete source code 35
Summary 38

Chapter 4: Data Transfer – Sending, Receiving, and Decoding 39
What kinds of data can WebSockets transfer? 39

String 40
JSON 40
XML 41

ArrayBuffer 42
Blobs 44

Video streaming 47

Table of Contents

[iii]

Putting it all together 49
Sending the nickname and message using JSON 49
Sending images to the server 50

Summary 52
Chapter 5: Security 53

WebSocket headers 53
Common attacks 54

Denial of Service 55
Man-in-the-middle 55
XSS 56

WebSocket native defence mechanisms 58
SSH/TLS 58
Client-to-Server masking 58

Security toolbox 58
Fiddler 59
Wireshark 59
Browser developer tools 60
ZAP 61

Summary 61
Chapter 6: Error Handling and Fallbacks 63

Error handling 63
Checking network availability 63

Fallback solutions 65
JavaScript polyfills 65

Popular polyfills 66
Browser plugins 68

Summary 69
Chapter 7: Going Mobile (and Tablet, Too) 71

Why mobile matters 71
Native mobile app versus mobile website 71
Prerequisites 72
Installing the SDK 73
Testing our existing code in the mobile browser 74

Going native 75
Creating the project 76
Creating the WebSocket iPhone app 77

What about the iPad? 82
Summary 83

Table of Contents

[iv]

Appendix 85
Resources 85

Online sources 85
Articles 86

Source code 86
System requirements 86
Stay in touch 87

Index 89

Preface
The WebSocket protocol is the art of handshaking in the HTML5 world. It defines a
two-way communication between server and client, resulting in smoother, faster, and
more efficient web applications. This book will guide you through the whole process
of creating a modern web app, taking full advantage of the WebSocket's capabilities.
You will learn, step-by-step, how to configure the client and server, transfer text and
multimedia, add security layers, and provide fallbacks for older browsers. Moreover,
you will get a taste of how these techniques work in a native mobile and tablet client,
unleashing the complete power of the HTML5 WebSocket protocol.

What this book covers
Chapter 1, WebSocket – a Handshake!, provides a brief yet compact introduction to the
WebSocket protocol, specifies the need for bi-directional communication in the Web,
and showcases some inspiring real-world examples.

Chapter 2, The WebSocket API, highlights the fundamental concepts of the WebSocket
API and demonstrates a WebSocket web client application.

Chapter 3, Configuring the Server, implements the server-side functionality, which is
crucial for effectively achieving truly two-way communication.

Chapter 4, Data Transfer – Sending, Receiving, and Decoding, shows how the WebSocket
handles different data types such as text, images, and multimedia.

Chapter 5, Security, examines some common security risks when running a
WebSocket app and provides ways to ensure the stability of the system.

Preface

[2]

Chapter 6, Error Handling and Fallbacks, answers what to do when something
goes wrong and how to emulate the WebSocket behavior when dealing with
older browsers.

Chapter 7, Going Mobile (and Tablet, Too), extends the WebSocket functionality to
the mobile world and shows how a WebSocket app can run natively on an iPhone
or iPad.

Appendix, provides some further resources, including interesting and
controversial articles.

What you need for this book
To get the best out of this book, you need a modern web browser and a text editor.
Just to make life easier, here are a few software requirements that will help you build
and debug your WebSocket applications:

• The latest version of Google Chrome, Internet Explorer, Mozilla Firefox, or
Opera, including their developer tools

• A text editor such as Aptana or WebMatrix

Considering the server-side examples, if you choose to use our C# code, you need:

• .NET Framework 3.5 or later
• Visual Studio 2010 or later

Finally, considering the mobile and tablet examples, if you choose to deploy on iOS,
you need:

• Mac OS X 10.7 or later
• XCode 4.5 or later
• Apple developer license

Feel free to choose your preferred server-side, mobile and tablet technologies. The
main methodologies and techniques remain the same regardless of the various tools
and SDKs.

Preface

[3]

Who this book is for
This book is intended for professional software developers, researchers, and students
who are interested in developing modern web applications. Basic knowledge of
HTML, JavaScript, and at least one server-side technology is required. If you want to
get the most out of the mobile and tablet chapter, a good knowledge of any mobile
platform would be a plus. This book intends to guide you through the principles
and fundamentals of WebSocket programming, so you can apply this knowledge on
every platform you have expertise in.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "
You have probably noticed that we use the echo.websocket.org server for
this demo".

A block of code is set as follows:

h1 {
 color: blue;
 text-align: center;
 font-family: "Helvetica Neue", Arial, Sans-Serif;
 font-size: 1em;
}

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
" On the Solution Explorer tab, right-click on the References icon and select
Add new reference".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

WebSocket – a Handshake!
In real life, handshaking is the act of gently grasping two people's hands, followed
by a brief up and down movement. If you have ever greeted someone this way, then
you already understand the basic concept of the HTML5 WebSocket protocol.

WebSockets define a persistent two-way communication between web servers and
web clients, meaning that both parties can exchange message data at the same time.
WebSockets introduce true concurrency, they are optimized for high performance,
and result in much more responsive and rich web applications.

The following diagram shows a server handshake with multiple clients:

desktop

smartphone

tablet

server

“Hello server”

“Hello client”

www.allitebooks.com

http://www.allitebooks.org

WebSocket – a Handshake!

[8]

For the record, the WebSocket protocol has been standardized by the Internet
Engineering Task Force (IETF) and the WebSocket API for web browsers is
currently being standardized by the World Wide Web Consortium (W3C)—yes,
it's a work in progress. No, you do not need to worry about enormous changes,
as the current specification has been published as "proposed standard".

Life before WebSocket
Before diving into the WebSockets' world, let's have a look at the existing techniques
used for bidirectional communication between servers and clients.

Polling
Web engineers initially dealt with the issue using a technique called polling. Polling
is a synchronous method (that is, no concurrency) that performs periodic requests,
regardless whether data exists for transmission. The client makes consecutive
requests after a specified time interval. Each time, the server responds with the
available data or with a proper warning message.

Though polling "just works", it is easy to understand that this method is overkill for
most situations and extremely resource consuming for modern web apps.

Long polling
Long polling is a similar technique where, as its name indicates, the client opens a
connection and the server keeps the connection active until some data is fetched or
a timeout occurs. The client can then start over and perform a sequential request.
Long polling is a performance improvement over polling, but the constant requests
might slow down the process.

Streaming
Streaming seemed like the best option for real-time data transmission. When using
streaming, the client performs a request and the server keeps the connection open
indefinitely, fetching new data when ready. Although this is a big improvement,
streaming still includes HTTP headers, which increase file size and cause
unnecessary delays.

Chapter 1

[9]

Postback and AJAX
The web has been built around the HTTP request-response model. HTTP is a
stateless protocol, meaning that the communication between two parts consists of
independent pairs of requests and responses. In plain words, the client asks the
server for some information, the server responds with the proper HTML document
and the page is refreshed (that's actually called a postback). Nothing happens in
between, until a new action is performed (such as the click of a button or a selection
from a drop-down menu). Any page load is followed by an annoying)(in terms of
user experience) flickering effect.

It was not until 2005 that the postback flickering was bypassed thanks to
Asynchronous JavaScript and XML (AJAX). AJAX is based on the JavaScript's
XmlHttpRequest Object and allows asynchronous execution of JavaScript code
without interfering with the rest of the user interface. Instead of reloading the
whole page, AJAX sends and receives back only a portion of the web page.

Imagine you are using Facebook and want to post a comment on your Timeline. You
type a status update in the proper text field, hit Enter and... voila! Your comment is
automatically published without a single page load. Unless Facebook used AJAX, the
browser would need to refresh the whole page in order to display your new status.

AJAX, accompanied with popular JavaScript libraries such as jQuery, has strongly
improved the end user experience and is widely considered as a must-have attribute
for every website. It was only after AJAX that JavaScript became a respectable
programming language, instead of being thought of as a necessary evil.

But it's still not enough. Long polling is a useful technique that makes it seem like
your browser maintains a persistent connection, while the truth is that the client
makes continuous calls! This might be extremely resource-intensive, especially in
mobile devices, where speed and data size really matter.

All of the methods previously described provide real-time bidirectional
communication, but have three obvious disadvantages in comparison with
WebSockets:

• They send HTTP headers, making the total file size larger
• The communication type is half duplex, meaning that each party

(client/server) must wait for the other one to finish
• The web server consumes more resources

The postback world seems like a walkie-talkie—you need to wait for the other guy
to finish speaking (half-duplex). In the WebSocket world, the participants can speak
concurrently (full-duplex)!

WebSocket – a Handshake!

[10]

The web was initially built for displaying text documents, but think how it is
used today. We display multimedia content, add location capabilities, accomplish
complex tasks and, hence, transmit data different than text. AJAX and browser
plugins such as Flash are all great, but a more native way of doing things is
required. The way we use the web nowadays bears the need for a holistic new
application development framework.

Then came HTML5
HTML5 makes a huge, yet justifiable, buzz nowadays as it introduces vital solutions
to the problems discussed previously. If you are already familiar with HTML5, feel
free to skip this section and move on.

HTML5 is a robust framework for developing and designing web applications.

HTML5 is not just a new markup or some new styling selectors, neither is it a
new programming language. HTML5 stands for a collection of technologies,
programming languages and tools, each of which has a discrete role and all of
these together accomplish a specific task—that is, to build rich web apps for any
kind of device.

The main HTML5 pillars include Markup, CSS3, and JavaScript APIs, together.

The following diagram shows HTML5 components:

= </> + + JS

Markup CSS3 JavaScript

HTML CSS

Here are the dominant members of the HTML5 family. As this book does not cover
the whole set of HTML5, I suggest you visit html5rocks.com and get started with
hands-on examples and demos.

Markup Structural elements
Form elements
Attributes

Graphics Style sheets
Canvas
SVG
WebGL

Chapter 1

[11]

Multimedia Audio
Video

Storage Cache
Local storage
Web SQL

Connectivity WebMessaging
WebSocket
WebWorkers

Location Geolocation

Although Storage and Connectivity are supposed to be the most advanced topics,
you do not need to worry if you are not an experienced web developer. Throughout
this book, we will explain how to accomplish common tasks and we'll create
some step-by-step examples, which you can later download and experiment with.
Moreover, managing WebSockets via the HTML5 API is pretty simple to grasp, so
take a deep breath and dive in with no fear.

The WebSocket protocol
The WebSocket protocol redefines full-duplex communication from the ground
up. Actually, WebSockets, along with WebWorkers, take a really enormous step
in bringing desktop-rich functionality to web browsers. Concurrency and multi-
threading did not truly exist in the postback world. They were emulated in a rather
restrictive manner.

The URL
HTTP protocol requires its own schemas (http and https). So does the WebSocket
protocol. Here is a typical WebSocket URL example:

ws://example.com:8000/chat.php

The first thing to notice is the ws prefix. This is pretty normal, as we need a new
URL schema for the new protocol. wss is supported as well and is the WebSocket
equivalent to https for secure connections (SSL). The rest of the URL is similar to
the plain old HTTP URLs and is illustrated in the following image.

WebSocket – a Handshake!

[12]

The following image shows the WebSocket URL in tokens:

schema host port server

ws://example.com:8000/chat.php

Browser support
For the time being, the latest specification of the WebSocket protocol is RFC 6455 and
it's a blessing that the latest versions of every modern web browser support it. More
specifically, the RFC 6455 is supported in the following browsers:

• Internet Explorer 10+
• Mozilla Firefox 11+
• Google Chrome 16+
• Safari 6+
• Opera 12+

It is worth mentioning that the mobile versions of Safari (for iOS), Firefox (Android),
Chrome (Android, iOS), and Opera Mobile all support WebSockets, bringing the
WebSocket power to smartphones and tablets!

But, wait. What about the older browser versions that many people still use
worldwide? Well, no need to worry, as throughout this book, we'll have a look
at some fallback techniques that make our websites accessible to the largest
audience possible.

Who's using WebSockets
Although WebSocket is a brand-new technology, quite many promising companies
utilize its various capabilities in order to deliver a richer experience to their
users. The most well-known paradigm is Kaazing (http://demo.kaazing.com/
livefeed/), a startup that raised an investment of 17 million dollars for its real-time
communication platform.

Other businesses include the following:

Name Website Description
Gamooga http://www.gamooga.com/ Real-time backend for apps and

games

Chapter 1

[13]

Name Website Description
GitLive http://gitlive.com/ Notifications on GitHub

projects
Superfeedr http://superfeedr.com/ Real-time data pushing
Pusher http://pusher.com/ Scalable real-time functionality

API for web and mobile apps
Smarkets https://smarkets.com/ Real-time betting
IRC Cloud https://www.irccloud.com/ Chatting

Two great resources containing a large variety of WebSocket demos are as follows:

• http://www.websocket.org/demos.html

• http://www.html5rocks.com/en/features/connectivity

Mobile?
WebSockets, as the name indicates, are related to the web. As you know, the web
is much more than a bunch of techniques for some browsers; rather, it's a broad
communication platform for a vast number of devices, including desktop computers,
smartphones, and tablets.

Obviously, any HTML5 app that utilizes WebSockets will work on (almost) any
HTML5-enabled mobile web browser. Imagine you want to implement the same
functionality using the enhanced features of a native mobile app. Is the WebSocket
supported in the mainstream mobile operating systems? The short answer: yes.
Currently, all key players in the mobile industry (Apple, Google, Microsoft) provide
a WebSocket API you can use in your own native apps. iOS, Android, and Windows
smartphones and tablets integrate WebSockets in a similar way to HTML5.

The future is now
New neuroscience research confirms the old adage about the power of a handshake:
people do form a better impression of those who proffer their hand in greeting
(http://www.sciencedaily.com/releases/2012/10/121019141300.htm).
As a human handshake can lead to better deals, so a WebSocket handshake can
lead to better user experience. We investigate user experience as a combination of
performance (the user is waiting less) and simplicity (the developer builds straight
and quick).

WebSocket – a Handshake!

[14]

So, it's up to you: do you want to build modern, truly real-time web applications? Do
you want to provide your users with the maximum experience? Do you want to offer
a terrific performance boost to your existing web apps? If the answer to any of these
questions is yes, then it's time to realize that the WebSocket API is mature enough to
offer its goodies right here right now.

What are we going to make?
Throughout this book, we are going to implement a real-world project: a simple,
multi-user, WebSocket-based, chatting application. Live chat is a very common
feature among all modern social networks. We will learn, step-by-step, how to
configure the web server, implement the HTML5 client, and transfer messages
between them.

Apart from plain text messages, we'll see how WebSockets handle various types
of data, such as binary files, images, and videos. Yeah, we'll demonstrate real-time
media streaming, too!

Moreover, we are going to enhance the security of our app, examine some known
security risks and find out how to avoid common pitfalls. Furthermore, we'll take a
glance at some fallback techniques targeting those poor guys who cannot (or do not
want to) update their browsers yet.

Last but not least, we'll get mobile. You chat using a desktop browser, a phone, or a
tablet. Wouldn't it be nice if you could use the same techniques and principles across
multiple targets? Well, through reading this book, you'll find out how to easily
convert your web app into a native mobile and tablet application as well.

Summary
In this first chapter we introduced the WebSocket protocol, mentioned the existing
techniques for real-time communication and determined the specific needs that
WebSockets fulfill. Moreover, we examined its relationship with HTML5 and
illustrated how the users can benefit from such enhancements. It's now time to
introduce the WebSocket client API in more detail.

The WebSocket API
If you are familiar with HTML and JavaScript, you already know enough stuff to
start developing HTML5 WebSockets right now. WebSocket communication and
data transmission is bidirectional, so we need two parties to establish it: a server
and a client. This chapter focuses on the HTML5 web client and introduces the
WebSocket client API.

HTML5 basics
Any HTML5 web client is a combination of structure, styling, and programming
logic. As we have already mentioned, the HTML5 framework provides discrete
sets of technologies for each use. Although we assume that you are already slightly
familiar with these concepts, let's have a quick look at them.

Markup
The markup defines the structure of your web application. It is a set of XML tags
that lets you specify the hierarchy of the visual elements within an HTML document.
Popular new HTML5 tags include the header, article, footer, aside, and nav
tags. The elements have a specific meaning and help distinguish the different parts
of a web document.

Here is a simple example of HTML5 markup code that generates the essential
elements for our chatting app: a text field, two buttons, and a label. The text field
is used for typing our message, the first button will send the message, the second
button will terminate the chat, and the label will display the interactions coming
from the server:

<!DOCTYPE html>
<head>
 <title>HTML5 WebSockets</title>

The WebSocket API

[16]

</head>
<body>
 <h1> HTML5 WebSocket chat. </h1>
 <input type="text" id="text-view" />
 <input type="button" id="send-button" value="Send!" />
 <input type="button" id="stop-button" value="Stop" />

 <label id="status-label">Status</label>
</body>

The first line of the preceding code (the DOCTYPE) indicates that we are using
the latest version of HTML, which is HTML5.

For more information about the HTML5 markup, consider visiting
http://html5doctor.com/. There is a complete reference for the supported
HTML5 tags at http://html5doctor.com/element-index/.

Styling
In order to display colors, backgrounds, fonts, alignments, and so on, you need to be
familiar with Cascading Style Sheets (CSS). CSS is quite self-explanatory, so, if you
want to change the header style (for example color, alignment, and font), you would
write something similar to the following code:

h1 {
 color: blue;
 text-align: center;
 font-family: "Helvetica Neue", Arial, Sans-Serif;
 font-size: 1em;
}

http://www.css3.info/ is a great resource for CSS3 and further reading.

Logic
The markup defines the structure and the CSS rules apply the styling. What about
event handling and user actions? Well, here comes JavaScript! JavaScript is a
scripting programming language that lets you control and alter the behavior of
your web app according to the accompanying actions. Using JavaScript, you can
handle button clicks, page loads, apply addition styling, add special effects, or even
fetch data from web services. Using JavaScript, you can create objects, assign them
properties and methods, and raise and catch events when something occurs.

Chapter 2

[17]

Following is a simple JavaScript example:

var buttonSend = document.getElementById("send-button");

buttonSend.onclick = function() {
 console.log("Button clicked!");
}

The first line searches the document tree, finds the element named action-button
and stores it in an object named buttonSend. Then, a function is assigned to the
onclick event of the button. The body of the function is executed every time the
button is clicked on.

The brand-new HTML5 features are heavily based on JavaScript, so a basic
knowledge of this language is essential before implementing any web app. Most
importantly, the WebSocket API is pure JavaScript, too!

A chatting application
The most popular kind of full-duplex communication is chatting. We'll start the
development of a simple chatting application right here. First thing to do is configure
the client side, which consists of three basic files:

• An HTML (.html) file containing the markup structure of the web page
• A CSS (.css) file containing all the styling information
• A JavaScript (.js) file containing the logic of the application

Currently, that's all you need to have for a full-featured HTML5 chat client. No
browser plugins or other external libraries are required.

API overview
API, which stands for Application Programming Interface, is a set of objects,
methods, and routines that let you interact with the underlying layer of functionality.
Considering the WebSocket protocol, its API includes the WebSocket primary object,
events, methods, and attributes.

Translating these characteristics into actions, the WebSocket API allows you
to connect to a local or remote server, listen for messages, send data, and close
the connection.

Here is a typical usage of the WebSocket API.

www.allitebooks.com

http://www.allitebooks.org

The WebSocket API

[18]

The following illustration shows the typical WebSocket workflow:

Browser support
The WebSocket protocol is a new HTML5 feature, so not every browser supports
it yet. If you ever tried to run WebSocket-specific code on a browser that is not
supported, nothing would happen. Think of your users: it wouldn't be nice for them
to surf on an unresponsive site. Moreover, you wouldn't like to miss any potential
customers!

As a result, you should check for browser compatibility before running any
WebSocket code. If the browser cannot run the code, you should provide an error
message or a fallback, such as AJAX or Flash-based functionality. There will be more
on fallbacks in Chapter 6, Error Handling and Fallbacks. I also like providing messages
that gently prompt my users to update their browser.

JavaScript provides an easy way to find out whether a browser can execute
WebSocket-specific code:

if (window.WebSocket) {
 console.log("WebSockets supported.");

 // Continue with the rest of the WebSockets-specific functionality…
}
else {
 console.log("WebSockets not supported.");
 alert("Consider updating your browser for a richer experience.");
}

The window.WebSocket statement indicates whether the WebSocket protocol is
implemented in the browser. The following statements are equivalent:

window.WebSocket

"WebSocket" in window

window["WebSocket"]

Chapter 2

[19]

Each one of them results in the same validation check. You can also check about any
feature support using your browser's developer tools.

Want to see which browsers do support the WebSocket protocol? There is an
up-to-date resource available at http://caniuse.com/#feat=websockets.

At the time of writing, WebSocket is fully supported by Internet Explorer 10+,
Firefox 20+, Chrome 26+, Safari 6+, Opera 12.1+, Safari for iOS 6+, and Blackberry
Browser 7+.

The WebSocket object
It's now time to initialize a connection to the server. All we need is to create a
WebSocket JavaScript object, providing the URL to the remote or local server:

var socket = new WebSocket("ws://echo.websocket.org");

When this object is constructed, it immediately opens a connection to the specified
server. Chapter 3, Configuring the Server, will show us in detail how we can develop
the server-side program. For now, just keep in mind that a valid WebSocket URL
is necessary.

The example URL ws://echo.websocket.org is a public address that we can use
for testing and experiments. The Websocket.org server is always up and running
and, when it receives a message, it sends it back to the client! It's all we need in order
to ensure that our client-side application works properly.

Events
After creating the WebSocket object, we need to handle the events it exposes. There
are four main events in the WebSocket API: Open, Message, Close, and Error. You
can handle them either by implementing the onopen, onmessage, onclose, and
onerror functions respectively, or by using the addEventListener method. Both
ways are almost equivalent for what we need to do, but the first one is much clearer.

Note that, obviously, the functions we'll provide to our events will not be executed
consecutively. They will be executed asynchronously when a specific action occurs.

So, let's have a closer look at them.

The WebSocket API

[20]

onopen
The onopen event is raised right after the connection has been successfully
established. It means that the initial handshake between the client and the server
has led to a successful first deal and the application is now ready to transmit data:

socket.onopen = function(event) {
 console.log("Connection established.");

 // Initialize any resources here and display some user-friendly
messages.
 var label = document.getElementById("status-label");
 label.innerHTML = "Connection established!";
}

It's a good practice to provide your users with the appropriate feedback while
they are waiting for the connection to open. WebSockets are definitely fast, but
the Internet connection might be slow!

onmessage
The onmessage event is the client's ear to the server. Whenever the server sends
some data, the onmessage event is fired. Messages might contain plain text, images,
or binary data. It's up to you how that data will be interpreted and visualized:

socket.onmessage = function (event) {
 console.log("Data received!");
}

Checking for data types is pretty easy. Here is how we can display a string response:

socket.onmessage = function (event) {
 if (typeof event.data === "string") {
 // If the server has sent text data, then display it.
 var label = document.getElementById("status-label");
 label.innerHTML = event.data;
 }
}

We'll learn more about the supported data types in Chapter 4, Data Transfer – Sending,
Receiving, and Decoding.

Chapter 2

[21]

onclose
The onclose event marks the end of the conversation. Whenever this event is
fired, no messages can be transferred between the server and the client unless
the connection is reopened. A connection might be terminated due to a number
of reasons. It can be closed by the server, it may be closed by the client using the
close() method, or due to TCP errors.

You can easily detect the reason the connection was closed by checking the code,
reason, and wasClean parameters of the event.

The code parameter provides you with a unique number indicating the origin of
the interruption.

The reason parameter provides the description of the interruption in a string format.

Finally, the wasClean parameter indicates whether the connection was closed due to
a server decision or due to unexpected network behavior. The following code snippet
illustrates the proper usage of the parameters:

socket.onclose = function(event) {
 console.log("Connection closed.");

 var code = event.code;
 var reason = event.reason;
 var wasClean = event.wasClean;

 var label = document.getElementById("status-label");

 if (wasClean) {
 label.innerHTML = "Connection closed normally.";
 }
 else {
 label.innerHTML = "Connection closed with message " + reason +
 "(Code: " + code + ")";
 }
}

You can find a detailed list of the code values in the appendix of this book.

onerror
The onerror event is fired when something wrong (usually unexpected behavior or
failure) occurs. Note that onerror is always followed by a connection termination,
which is a close event.

The WebSocket API

[22]

A good practice when something bad happens is to inform the user about the
unexpected error and probably try to reconnect:

socket.onclose = function(event) {
 console.log("Error occurred.");

 // Inform the user about the error.
 var label = document.getElementById("status-label");
 label.innerHTML = "Error: " + event;
}

Actions
Events are raised when something happens. We make explicit calls to actions (or
methods) when we want something to happen! The WebSocket protocol supports
two main actions: send() and close().

send()
While a connection is open, you can exchange messages with the server. The send()
method allows you to transfer a variety of data to the web server. Here is how we
can send a chat message (actually, the contents of the HTML text field) to everyone in
the chat room:

// Find the text view and the button.
var textView = document.getElementById("text-view");
var buttonSend = document.getElementById("send-button");

// Handle the button click event.
buttonSend.onclick = function() {
 // Send the data!!!
 socket.send(textView.value);
}

It's that simple!

But wait… The preceding code is not 100 percent correct. Remember that you can
send messages only if the connection is open. This means that we either need to
place the send() method inside the onopen event handler or check the readyState
property. This property returns the state of the WebSocket connection. So, the
previous snippet should be modified accordingly:

button.onclick = function() {
 // Send the data if the connection is open.
 if (socket.readyState === WebSocket.OPEN) {

Chapter 2

[23]

 socket.send(textView.value);
 }
}

After sending the desired data, you can wait for an interaction from the server or
close the connection. In our demo example, we leave the connection open, unless
the stop button is clicked on.

close()
The close() method stands as a goodbye handshake. It terminates the connection
and no data can be exchanged unless the connection opens again.

Similarly to the previous example, we call the close() method when the user clicks
on the second button:

var textView = document.getElementById("text-view");
var buttonStop = document.getElementById("stop-button");

buttonStop.onclick = function() {
 // Close the connection, if open.
 if (socket.readyState === WebSocket.OPEN) {
 socket.close();
 }
}

It is also possible to pass the code and reason parameters we mentioned earlier:

socket.close(1000, "Deliberate disconnection");

Properties
The WebSocket object exposes some property values that let us understand its
specific characteristics. We have already met the readyState property. Following
are the rest:

Properties Description
url Returns the URL of the WebSocket
protocol Returns the protocol used by the server

The WebSocket API

[24]

Properties Description
readyState Reports the state of the connection

and can take one of the following self-
explanatory values:
WebSocket.OPEN

WebSocket.CLOSED

WebSocket.CONNECTING

WebSocket.CLOSING

bufferedAmount Returns the total number of bytes that
were queued when the send() method
was called

binaryType Returns the binary data format we
received when the onmessage event
was raised

The complete example
Here are the complete HTML and JavaScript files we used. We have omitted
the stylesheet file in order to keep the main points simple. However, you can
download the complete source code at http://pterneas.com/books/websockets/
source-code.

index.html
The complete markup code for our web app page is as follows:

<!DOCTYPE html>
<html>
<head>
 <title>HTML5 WebSockets</title>
 <link rel="stylesheet" href="style.css" />
 <script src="chat.js"></script>
</head>
<body>
 <h1> HTML5 WebSocket chat. </h1>
 <input type="text" id="text-view" />
 <input type="button" id="send-button" value="Send!" />
 <input type="button" id="stop-button" value="Stop" />
 </br>
 <label id="status-label">Status</label>
</body>
</html>

Chapter 2

[25]

chat.js
All the JavaScript code for the chatting functionality is as follows:

window.onload = function() {
 var textView = document.getElementById("text-view");
 var buttonSend = document.getElementById("send-button");
 var buttonStop = document.getElementById("stop-button");
 var label = document.getElementById("status-label");

 var socket = new WebSocket("ws://echo.websocket.org");

 socket.onopen = function(event) {
 label.innerHTML = "Connection open";
 }

 socket.onmessage = function(event) {
 if (typeof event.data === "string") {
 label.innerHTML = label.innerHTML + "
" + event.data;
 }
 }

 socket.onclose = function(event) {
 var code = event.code;
 var reason = event.reason;
 var wasClean = event.wasClean;

 if (wasClean) {
 label.innerHTML = "Connection closed normally.";
 }
 else {
 label.innerHTML = "Connection closed with message: " +
 reason + " (Code: " + code + ")";
 }
 }

 socket.onerror = function(event) {
 label.innerHTML = "Error: " + event;
 }

 buttonSend.onclick = function() {
 if (socket.readyState == WebSocket.OPEN) {
 socket.send(textView.value);
 }

The WebSocket API

[26]

 }

 buttonStop.onclick = function() {
 if (socket.readyState == WebSocket.OPEN) {
 socket.close();
 }
 }
}

What about the server?
You have probably noticed that we use the echo.websocket.org server for this
demo. This public service simply returns back the data you send. In the next chapter,
we are going to build our own WebSocket server and develop a true chatting app.

Summary
In this chapter, we built our first WebSocket client application! We introduced the
WebSocket object and explained its various methods, events, and properties. We
also developed a basic chat client in a few lines of HTML and JavaScript code. As
you noticed in the current examples, there is only a dummy server which echoes
the messages. Read on to find out how we you can configure your own WebSocket
server to do a lot more magic.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Configuring the Server
WebSocket stands for bidirectional, full-duplex communication. As a result, we need
two parties for this kind of conversation. In the previous chapter, we implemented
the WebSocket client application. Now it's time to establish the other side of the
channel, which is the WebSocket server.

Why do I need a WebSocket server?
We assume that you have a minor familiarity with servers in general. A server
is nothing but a remote computer that has specific hardware and software
requirements in order to achieve high availability and up-time, enhanced security,
and management of multiple concurrent connections.

A WebSocket server is nothing but a simple program that is able to handle
WebSocket events and actions. It usually exposes similar methods to the WebSocket
client API and most programming languages provide an implementation. The
following diagram illustrates the communication process between a WebSocket
server and a WebSocket client, emphasizing the triggered events and actions.

The following diagram shows WebSocket server and client event triggering:

Server Client

Create a server on localhost:8181

Start running

Initial handshake: establish connection

Handle the incoming message

Request connection

Send message

www.allitebooks.com

http://www.allitebooks.org

Configuring the Server

[28]

Do not get confused—a WebServer can either run on top of Apache or IIS—or it can
be a completely different application by itself.

Considering the hardware, you could use a super-computer or your developer
machine as a server. It's all down to the requirements and the budget of each project.

Setting up the server
Implementing a WebSocket server from scratch is not a hard process, though
it requires specific knowledge and it's far from the purposes of this book. As a
result, we are going to use one of the existing WebSocket implementations that are
currently out there. Thanks to the large community of developers, we can easily
pick the WebSocket server of our preferred programming language or framework.
Furthermore, most of the implementations are open source, so you can even adjust
them to your own needs if necessary!

Selecting the technology that suits you
We have listed some popular WebSocket server implementations. Here are some
questions you should ask yourself before picking one:

• What technology are you most familiar with?
• What are the specific requirements of your project?
• Do you already have a solution you want to enhance?
• Is the server's documentation thorough and understandable?
• Is there an active support community for the server?

Let's now have a look at the most popular WebSocket server libraries for the most
extensively used programming languages.

C/C++

Tufao https://github.com/vinipsmaker/tufao

Wslay http://wslay.sourceforge.net/

Libwebsockets http://libwebsockets.org/trac

Mongoose https://code.google.com/p/mongoose/

Chapter 3

[29]

Java

Apache Tomcat http://tomcat.apache.org/

JBoss http://www.jboss.org/

GlassFish http://glassfish.java.net/

Atmosphere https://github.com/Atmosphere/atmosphere

Play Framework http://www.playframework.com/

Jetty http://www.eclipse.org/jetty/

jWebSocket http://jwebsocket.org/

Migratory data http://migratorydata.com/

Bristleback http://bristleback.pl/

.NET

Internet Information Services 8 http://www.iis.net/

Fleck https://github.com/statianzo/Fleck

SuperWebSocket http://superwebsocket.codeplex.com/

PHP

Php-websocket https://github.com/nicokaiser/php-
websocket

Rachet http://socketo.me/

Hoar https://github.com/hoaproject/Websocket

Python

Tornado http://www.tornadoweb.org/en/stable/

Pywebsocket https://code.google.com/p/pywebsocket/

Autobahn http://autobahn.ws/

txWS https://github.com/MostAwesomeDude/txWS

WebSocket for Python https://github.com/Lawouach/WebSocket-
for-Python

Configuring the Server

[30]

Ruby

EM-WebSocket https://github.com/igrigorik/em-
websocket

Socky server https://github.com/socky/socky-server-
ruby

JavaScript
This is no joke. You can create a web server using JavaScript thanks to Node.js.
Node.js (http://nodejs.org) is an event-driven framework that lets you build
real-time web applications. It is also interpreted by Google's JavaScript engine, V8.
Although the framework does not support WebSockets out-of-the-box, there are
some quite good extensions which do so.

Socket IO http://socket.io/

WebSocket-Node https://github.com/Worlize/WebSocket-
Node

Node WebSocket Server https://github.com/miksago/node-
websocket-server

Node.js is constantly getting more and more fans, so it might be worth a try.

Setting up the development environment
The environment where your server will be created depends on the technology,
frameworks, and programming languages that you are planning to use. There is
an amazingly huge variety of Integrated Development Environments (IDEs) and
utilities that make your life easier!

Here is a list of some IDEs we propose, along with the web programming languages
they support:

IDE Operating System Supported languages
Aptana Windows, Mac, Linux HTML5

JavaScript
PHP

NetBeans Windows, Mac, Linux HTML5
C/C++
Java

Chapter 3

[31]

IDE Operating System Supported languages
Eclipse (with the
Web Developer
plugin)

Windows, Mac, Linux HTML5
JavaScript
C/C++
Java

Visual Studio Windows HTML5
JavaScript
.NET

WebMatrix Windows HTML5
JavaScript
PHP
.NET

Throughout the book, we decided to use C#.NET and Fleck, though this should
make no difference to you. Feel free to pick the language you prefer or the language
your existing projects require.

For didactic purposes, C# has the following advantages:

• It runs on Windows using the .NET framework and on Mac and Linux
using Mono

• It has an active community of developers, making it easier to find support
• It is easy-to-learn
• You can quickly setup a WebSocket server with minimum configuration

Fleck library was chosen because of three reasons:

• It is supported on both Windows and Unix-based operating systems
• It is extremely easy-to-use and configure
• It is well-maintained and well-documented

This is how you can quickly set up a Fleck WebSocket server using C#:

1. Download Visual Studio Express (It is freely available at
http://www.microsoft.com/visualstudio/eng/products/visual-
studio-express-for-windows-desktop).

2. Download Fleck (https://github.com/statianzo/Fleck).
3. Launch Visual Studio and click on File | New | Project.
4. Under Visual C#, select Windows.

Configuring the Server

[32]

5. Choose Console Application (yes, a console-based server is the easiest
way to set up a WebSocket server).

6. Name your project whatever you like and click on OK.
7. On the Solution Explorer tab, right-click on the References icon and

select Add new reference.
8. Click on browse and find the Fleck.dll file.
9. Click on OK and you are done!

Connecting to the web server
The WebSocket server works in a similar way to the WebSocket clients. It responds
to events and performs actions when necessary.Regardless of the programming
language you use, every WebSocket server performs some specific actions. It is
initialized to a WebSocket address, it handles OnOpen, OnClose and OnMessage
events, and sends messages to the clients, too.

Creating the WebSocket server instance
Every WebSocket server needs a valid host and port. Here is how we create a
WebSocketServer instance in Fleck:

var server = new WebSocketServer("ws://localhost:8181");

You can type any valid URL you'd like and specify a port that is not in use.

It is very useful to keep a record of the connected clients, as you may need to provide
them with different data or send different messages to each one.

Fleck represents the incoming connections (clients) with the IWebSocketConnection
interface. We can create an empty list and update it whenever someone connects or
disconnects from our service:

var clients = new List<IWebSocketConnection>();

After that, we can call the Start method and wait for the clients to connect. When
started, the server is able to accept incoming connections.

In Fleck, the Start method needs a parameter which indicates the socket that raised
the events:

server.Start(socket) =>
{
});

Chapter 3

[33]

Some syntax explanation: what follows the Start declaration is called a C# Action
and you can totally ignore it if you're using a different language. We'll handle all of
the events inside the Start block.

Open
The OnOpen event determines that a new client has requested access and performs
the initial handshake. We should add the client to the list and probably store
any information related to it, such as the IP address. Fleck provides us with such
information, as well as a unique identifier for the connection.

server.Start(socket) =>
{
 socket.OnOpen = () =>
 {
 // Add the incoming connection to our list.
 clients.Add(socket);
 }

 // Handle the other events here…
});

Close
The OnClose event is raised whenever a client is disconnected. We can remove that
client from our list and inform the rest of the clients about the disconnection:

socket.OnClose = () =>
{
 // Remove the disconnected client from the list.
 clients.Remove(socket);
};

Message
The OnMessage event is raised when a client sends data to the server. Inside this
event handler, we can transmit the incoming message to all of the clients, or probably
select only some of them. The process is straightforward. Note that this handler takes
a string named message as a parameter:

socket.OnMessage = () =>
{
 // Display the message on the console.
 Console.WriteLine(message);
};

Configuring the Server

[34]

Send
The Send() method simply transmits the desired message to the specified client.
Using Send(), we can deliver text or binary data across the clients. Let's loop
through the registered clients and transfer the messages to them. We need to
modify the OnMessage event as follows:

socket.OnMessage = () =>
{
foreach (var client in clients)
{
 // Send the message to everyone!
 // Also, send the client connection's unique identifier in order
 to recognize who is who.
 client.Send(client.ConnectionInfo.Id + " says: " + message);
}
};

Obviously, you do not need to expose everyone's IP address or ID publicly! It's
totally useless and makes no sense for your users (unless they are hackers). Of
course, during a real chat conversation, users pick nicknames instead of string
literals. We'll give them the nickname option in the next chapter.

Fleck accepts strings and byte arrays. Strings contain plain text, XML, or JSON
messages. Byte arrays are handful when dealing with images or binary files.

Other methods
Depending on which WebSocket server implementation you use, there might be
additional events or methods. For example, Fleck supports the OnBinary event,
which is a binary-supporting equivalent of the OnMessage event.

Keep in mind that the web server stores the connections in a list and we need to
loop through all of them in order to send messages.

Chapter 3

[35]

The complete source code
Here is the complete server-side source code, with a couple of extra additions
for better user experience. The screenshots display a Chrome and an Internet
Explorer 10 window chatting side-by-side!

The following screenshot shows a user chatting using Chrome:

Configuring the Server

[36]

The following screenshot shows a second user chatting concurrently using Internet
Explorer 10:

namespace WebSockets.Server
{
 class Program
 {
 static void Main(string[] args)
 {
 // Store the subscribed clients.
 var clients = new List<IWebSocketConnection>();

 // Initialize the WebSocket server connection.
 var server = new WebSocketServer("ws://localhost:8181");

 server.Start(socket) =>
 {

Chapter 3

[37]

 socket.OnOpen = () =>
 {
 // Add the incoming connection to our list.
 clients.Add(socket);

 // Inform the others that someone has just joined the
 conversation.
 foreach (var client in clients)
 {
 // Check the connection unique ID and display a
 different welcome message!
 if (client.ConnectionInfo.Id !=
 socket.ConnectionInfo.Id)
 {
 client.Send("<i>" + socket.ConnectionInfo.Id + "
 joined the conversation.</i>");
 }
 else
 {
 client.Send("<i>You have just joined the
 conversation.</i>");
 }
 }
 };

 socket.OnClose = () =>
 {
 // Remove the disconnected client from the list.
 clients.Remove(socket);

 // Inform the others that someone left the conversation.
 foreach (var client in clients)
 {
 if (client.ConnectionInfo.Id !=
 socket.ConnectionInfo.Id)
 {
 client.Send("<i>" + socket.ConnectionInfo.Id + "
 left the chat room.</i>");
 }
 }
 };

 socket.OnMessage = message =>
 {
 // Send the message to everyone!

www.allitebooks.com

http://www.allitebooks.org

Configuring the Server

[38]

 // Also, send the client connection's unique
 identifier in order to recognize who is who.
 foreach (var client in clients)
 {
 client.Send(socket.ConnectionInfo.Id + " says:
 " + message + "");
 }
 };
 });

 // Wait for a key press to close...
 Console.ReadLine();
 }
 }
}

Summary
By now, you should be able to create a complete WebSocket application! Chapter 2,
The WebSocket API, illustrated how to configure a client using JavaScript and
this chapter showed you how you can configure a WebSocket server using the
environment and programming language you are most familiar with. Moreover,
we had a look at the WebSocket server events and actions. In the upcoming chapters,
we are going to learn how we can effectively handle different data formats and
secure our WebSocket-based apps.

Data Transfer – Sending,
Receiving, and Decoding

Modern web development is all about content. No matter what kind of application
you are building, users will stop using it unless they get what they want. In the
old days of the web, the content someone could publish on his/her website was
extremely limited. Nowadays, content is a lot more than static text and images;
you can exchange messages, watch videos, download programs, and much more.
As a web developer, you should be able to deliver the desired content in a fast and
efficient way. The WebSocket protocol supports a variety of transferable data, taking
the burden to speed the whole process as much as possible.

In this chapter's demo, you are going to handle image and video data via
WebSockets. Let's start!

What kinds of data can WebSockets
transfer?
The WebSocket protocol supports text and binary data. In JavaScript, text is referred
to as String, while binary data is represented by the ArrayBuffer and Blob classes
(the first one is still experimental). Using plain text and binary format, you can
transfer and decode almost any type of HTML5 media.

Always keep in your mind that WebSockets only support one binary format at a time
and you have to explicitly declare it as follows:

socket.binaryType = "arraybuffer";

Data Transfer – Sending, Receiving, and Decoding

[40]

Another was to do it is as follows:

socket.binaryType = "blob"

Throughout this book, we'll demonstrate specific examples for using each and every
data type.

String
You have already taken a glimpse of transmitting plain text data in the previous
chapters, where you exchanged simple chat messages. Apart from this, strings are
tremendously helpful when dealing with human-readable data formats such as XML
and JSON.

Remember that whenever the onmessage event is raised, the client needs to check the
data type and act accordingly. JavaScript can easily determine that a data type is of
string type using the strict equal operator (that is, ===).

socket.onmessage = function(event) {
 if (typeof event.data === "string") {
 console.log("Received string data.");
 }
}

If you have an average experience with core JavaScript, you'll probably notice that
you could have used the following expression instead:

if (event.data instanceof String)

Although this code is pretty valid, it wouldn't work in your case. The reason is that
the instanceof expression requires the object on the left to have been created using
the JavaScript string constructor. In your case, the data is generated from the server,
so you can only determine their underlying type instead of their JavaScript class.

JSON
JSON (JavaScript Object Notation) is a lightweight format for transferring
human-readable data between computers. It is structured in key-value pairs,
usually describing properties and values. Due to its efficiency, JSON is the
dominant format for transferring data between server and client. The most
popular RESTful APIs, including Facebook, Twitter, and Github, nowadays
fully support JSON. Moreover, JSON is a subset of JavaScript, so you can parse
it immediately without using external parsers!

Chapter 4

[41]

Suppose that the web server somehow sends the following JSON string:

{
"name" : "Vangos Pterneas",
"message" : "Hello world!"
}

Obviously, the preceding notation contains two key-value pairs. Guess what? In
your chat demo, it represents the chat data received from another user. You are
going to use this information in a few minutes.

Following code shows how you can handle a JSON object and extract its properties:

socket.onmessage = function(event) {

 if (typeof event.data === "string") {
 // Create a JSON object.
 var jsonObject = JSON.parse(event.data);

 // Extract the values for each key.
 var userName = jsonObject.name;
 var userMessage = jsonObject.message;
 }
}

The preceding code is straightforward. Using the eval function, you create a JSON
object from the input string. What eval really does is invoke the JavaScript compiler
and execute the enclosed string arguments. The properties of the generated object are
the names of the JSON keys and each property holds its corresponding value.

XML
Similar to JSON, you can parse XML-encoded strings using JavaScript. We won't
go deeper into XML parsing, as this would be out of this book's scope. Parsing
XML is not difficult, though it requires different techniques for different browsers
(DOMParser versus ActiveXObject). The best method is using a third-party library
such as jQuery.

In both XML and JSON cases, the server should send you a string
value, not the actual XML/JSON file (which would be of binary type,
of course)!

Data Transfer – Sending, Receiving, and Decoding

[42]

ArrayBuffer
ArrayBuffer contains structured binary data. The key term here is structured, which
means that the enclosed bits are given in an order, so that you can retrieve portions
of them. In order to manipulate an ArrayBuffer for specific formats, you need to
create the corresponding ArrayBufferView object.

ArrayBuffers are really handy for storing image files. Suppose that your chat-room
guests can exchange images by dragging and dropping image files on the chat
window. Following code explains how JavaScript handles the drop event in
HTML5 browsers:

document.ondrop = function(event) {
 var file = event.dataTransfer.files[0];
 var reader = new FileReader();

 reader.readAsArrayBuffer(file);

 reader.onload = function() {
 socket.send(reader.result);
 }

 return false;
}

In the preceding code snippet, you firstly create an event handler for the drop event.
The event handler takes one parameter, which lets you access the dropped files. You
only drop one single image, so you need the zero-indexed file. After that, you create
a file reader that reads the file's data as an ArrayBuffer. When the reader has finished
processing the file, you handle the onload event where you send the image to the
web server using your WebSocket.

Learn more about FileReader at http://www.html5rocks.com/en/tutorials/
file/dndfiles/.

Chapter 4

[43]

The following is a screenshot of the drop effect that raises the send method:

Dropping an image to the browser and sending it to the server

Data Transfer – Sending, Receiving, and Decoding

[44]

Receiving data as ArrayBuffers is fairly simple. Note that you check using
instanceof, rather than the strict equal operator.

socket.onmessage = function(event) {
 if (event.data instanceof ArrayBuffer) {
 var buffer = event.data;
 }
}

Blobs
Blobs (Binary Large Objects) contain totally raw data in their most native form.
A blob might theoretically be anything, even a non-JavaScript object. As a result,
interpreting blob data might be quite tricky. As a thumb rule, you'd better know
exactly what the server is supposed to send, otherwise you'll need to make fairly
non-concrete assumptions.

However, the big advantage of blob data is their file size. Binary format is
machine-level format, so there are almost no abstraction layers used that would
increase its size.

When you transmit multimedia over the web, you need the highest speed possible,
in order to achieve the best user experience. The WebSocket blobs do not create
extra burden for your Internet connection and they rely on the client for proper
interpretation.

Following code shows how you can display an incoming image, sent as a set of
raw bits:

socket.onmessage = function(event) {
 if (event.data instanceof Blob) {
 // 1. Get the raw data.
var blob = event.data;

 // 2. Create a new URL for the blob object.
 window.URL = window.URL || window.webkitURL;
 var source = window.URL.createObjectURL(blob);

 // 3. Create an image tag programmatically.
 var image = document.createElement("img");
 image.src = source;
 image.alt = "Image generated from blob";

Chapter 4

[45]

 // 4. Insert the new image at the end of the document.
 document.body.appendChild(image);
 }
}

The preceding code snippet generates an image by properly interpreting the
incoming raw data. You have used some brand-new HTML5 JavaScript methods to
easily handle the blob. Let's be more specific.

At first, you verify that the server message is an instance of blob, similar to the way
you checked for the buffered array. Then, you store the raw data to a local variable,
named blob.

In order to display the blob in an image format, you need to decode it properly.
The new JavaScript API makes basic image manipulation a piece of cake. Instead of
reading the bytes, you create a plain URL to the specified data source. This URL is
alive as long as the HTML document is alive. That means you cannot retrieve it after
closing your browser window.

The window.URL property is currently supported in all the major browsers, though
Google Chrome has named it window.webkitURL. The createObjectURL method
generates a URL for the temporary file specified as a parameter. You do not need to
provide any further details or write any further code! JavaScript represents the blob
you received as a normal browser URL!

Finally, using the DOM manipulation methods you already know, you create an
image element, you provide it with the new URL, and you insert it right at the end
of the HTML document.

The createObjectURL method is supported in Chrome 23+, Firefox
8+, Internet Explorer 10+, Opera 16+ and Safari 6+, as well as in their
mobile counterparts (except IE and Opera).

Data Transfer – Sending, Receiving, and Decoding

[46]

Try it out and you'll see something like the following screenshot:

The incoming blob data, displayed as an HTML image

Chapter 4

[47]

Video streaming
Many web designers and developers argue that the future of the web is video.
Until now, video was delivered using third-party plugins and technologies such as
Flash or Silverlight. Although these technologies worked pretty well on the desktop
browsers, they required extra software and were a catastrophe (in terms of battery
life) for mobile and tablet devices. After Apple decided to drop Flash support for
iPhone and iPad, HTML5 became the only available gate for delivering videos and
rich graphics over the web.

In terms of WebSockets, it makes sense to stream video across different clients using
a fast and efficient way. Live video streaming is currently supposed to be one of the
last reasons Flash is still alive. Let's see how you can stream live video data from the
server to the clients in the WebSocket way.

A video is nothing more than a collection of consecutive images. Each of these
images is called a frame. When a number of frames (usually more than 20) are
displayed per second, the human eye cannot distinguish the distinct images and
thinks of it like a continuous flow. That's the technique you are going to use for
streaming a video file from the server to the clients.

The server sends 20 or more frames (images) per second, so that the client is
constantly awaiting for new messages. Remember the code you wrote for displaying
images? Well, in a real-time video stream context, you do not need to store the data
as URLs until the web page is closed. Rather, it's a good practice to dispose the frame
URLs when you do not use them any more. Also, there is no need to create the
element using JavaScript, as you can place it in our markup:

…and create a reference in your JavaScript code:

var video = document.getElementById("video");

So, here is the modified onmessage client event, which will be raised 20 or more
times per second:

socket.onmessage = function(event) {
 if (event.data instanceof Blob) {
 // 1. Get the raw data.
var blob = event.data;

 // 2. Create a new URL for the blob object.
 window.URL = window.URL || window.webkitURL;
 var source = window.URL.createObjectURL(blob);

 // 3. Update the image source.
 video.src = source;

www.allitebooks.com

http://www.allitebooks.org

Data Transfer – Sending, Receiving, and Decoding

[48]

 // 4. Release the allocated memory.
 window.URL.revokeObjectURL(source);
 }
}

The code is similar to the one you used to drop an image on the HTML document.
There are two things to notice:

• You have created a reference for the element, in order to constantly
modify its src property.

• After every src assignment, you release the image by calling the
revokeObjectURL function. This function cleans up the memory assigned
to the specified URL, and lets the browser know it doesn't need to keep the
URL's reference any more.

The following screenshot shows video streaming using consecutive frames:

Chapter 4

[49]

Although it makes the point, this might not be the optimal way
to stream video. For a more professional approach, have a look
at WebRTC (http://www.webrtc.org), a great multimedia
development API, implemented by Google, Mozilla, and Opera.

Putting it all together
You might be wondering where is the server code that handles the requests, receives
the images, and updates the video frames. We deliberately left out the server-side
part in order to focus on the client-side JavaScript code. For the purposes of our chat
demo web app, we'll now show you both the client and the server code. Once more,
note that you can use the programming language and frameworks of your choice to
implement the WebSocket server.

Let's have a close look at the new parts you'll implement.

Sending the nickname and message using
JSON
At first, you'll add one more text field to the HTML document, in order for the user
to type his/her preferred nickname. You'll send the nickname along with the text
message by encoding them in JSON format.

Add a new text input just before the message input:

<label id="status-label">Status...</label>
<input type="text" id="name-view" placeholder="Your name" />
<input type="text" id="text-view" placeholder="Type your
 message..." />

Then, create a reference to the JavaScript code:
var nameView = document.getElementById("name-view");

And finally, send the nickname and the message to the server, as you did a few
pages ago!

buttonSend.onclick = function (event) {
 if (socket.readyState == WebSocket.OPEN) {
 var json = "{ 'name' : '" + nameView.value + "', 'message' :
 '" + textView.value + "' }";
 socket.send(json);
 textView.value = "";
 }
}

Data Transfer – Sending, Receiving, and Decoding

[50]

The server now needs to transmit this message to the clients. Nothing is changed
from the previous chapter:

socket.OnMessage = message =>
 {
 // Send the text message to everyone!
 foreach (var client in clients)
 {
 client.Send(message);
 }
 };

The clients decode the JSON string and display the message accordingly. You have
added a prettier presentation style for showing the text in the chat area.

socket.onmessage = function (event) {
 if (typeof event.data === "string") {
 // Display message.
 var jsonObject = eval('(' + event.data + ')');
 var userName = jsonObject.name;
 var userMessage = jsonObject.message;

 chatArea.innerHTML = chatArea.innerHTML +
 "<p>" + userName + ": " + userMessage +
 "</p>";
 }
}

Sending images to the server
Remember the ondrop event we discussed previously? For consistency reasons, here
is the same functionality using Blobs instead of ArrayBuffers:

document.ondrop = function(event) {
 var file = event.dataTransfer.files[0];

 socket.send(file);

 return false;
}

Chapter 4

[51]

When dealing with HTML5 drag-and-drop, remember to always prevent the default
drag-and-drop behavior! Unless you explicitly define that you want to override
the default functionality, whatever you implement will not be shown correctly.
Fortunately, preventing the predefined actions from happening is quite simple:

document.ondragover = function (event) {
 event.preventDefault();
}

The server needs to distribute the blob image to all the clients. Fleck library
introduces the OnBinary event, which is raised when binary data is received:

socket.OnBinary = data =>
 {
 // Send the binary data to everyone!
 foreach (var client in clients)
 {
 client.Send(data);
 }
};

The method works similar to the OnMessage method. The only difference is that it
takes a byte array (data) instead of string as a parameter. An array of bytes is the
most native and efficient image representation.

When the rest of the clients receive the image, a new element will be created.
You have already seen the way, so you update the onmessage function accordingly:

socket.onmessage = function(event) {
if (typeof event.data === "string") {
 // Decode JSON, then display nickname and message.
 // …
}
 else if (event.data instanceof Blob) {
 // Get the raw data and create an image element.
var blob = event.data;

 window.URL = window.URL || window.webkitURL;
 var source = window.URL.createObjectURL(blob);

var image = document.createElement("img");
 image.src = source;
 image.alt = "Image generated from blob";

 document.body.appendChild(image);
 }
}

Data Transfer – Sending, Receiving, and Decoding

[52]

Summary
In this chapter, you had a detailed look at the various data formats the WebSocket
protocol supports. You implemented various examples using string and binary data
(text, images, and videos), found out how you can properly encode and decode
the client-side data, and finally extended the chat demo to manipulate images and
videos. The next chapter discusses security considerations over the web that will
make your apps even more robust.

Security
Security is a crucial issue for web applications that exchange data. Every site or app
that lives and breathes in the web is subject to attack by human or robot invaders. It's
a sad but true reality, and we all have to live with it.

Of course, this does not mean that your web apps are totally unsafe. Fortunately,
the native HTML5 security mechanisms protect you from the most common security
attacks without any configuration. Moreover, the WebSocket protocol is designed to
be a secure service, so a basic protection is guaranteed.

In this chapter, we are going to present some known security risks a WebSocket app
may have, and also provide you with the tools and knowledge to prevent, confront,
and overcome them, in favor of your users.

WebSocket headers
You normally don't shake hands with an unknown person or with someone who
does not want to reveal his/her identity. In the WebSocket world, you need to be
sure about the origin of the request. The origin is a header sent from the client and
is essential for cross-domain communication, as it allows the web server to reject
specific connections. Origin is the first and the most important security aspect
introduced and documented in WebSockets.

There are a couple more headers required to allow a client upgrade to the WebSocket
protocol. Such headers begin with a Sec- prefix and guarantees that every
WebSocket request will be initialized via the WebSocket constructor, rather than any
HTTP APIs, which might want to access the exchanged information.

Security

[54]

The following is an example of WebSocket header sent from a client:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Origin: http://example.com
Pragma: no-cache
Cache-Control: no-cache
Sec-WebSocket-Key: AAf/gvkPw6szicrMH3Rwbg==
Sec-WebSocket-Version: 13
Sec-WebSocket-Extensions: x-webkit-deflate-frame

The Sec-WebSocket-Version parameter can help you identify the browser used.
Take care if you need specific tweaks for specific browsers. The corresponding
handshake from the server should look as follows:

HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

If you are interested in more theoretical details, feel free to read the complete
specification of RFC 6455 at http://tools.ietf.org/html/rfc6455.

Common attacks
Currently, what you need to know is that the protocol is designed to be as secure
as possible. Be careful though! WebSocket is a brand-new protocol and not all web
browsers implement it correctly. For example, some of them still allow the mix of
HTTP and WS, although the specification implies the opposite. Everything is subject
to change, and while waiting for the browsers to mature, you can easily adopt some
protection techniques yourself.

So, the old-school problems are not solved. Remember those bad people who
sniffed the HTTP and intercepted into the web traffic? Well, the WS can be sniffed
the same way.

Here are some common security attacks you need to be aware of, and consequently,
some ways you can protect your app and your users.

Chapter 5

[55]

Denial of Service
Denial of Service (DoS) attacks attempt to make a machine or network resource
unavailable to the users that request it. Imagine that someone makes an infinite
number of requests to a web server with no or tiny time intervals. Obviously, the
server won't be able to handle every connection and will either stop responding or
will keep responding too slowly. That's the simplest form of a DoS attack.

There is no need to mention how frustrating this might be for the end-users, who
could not even load a web page.

DoS attack can even apply on peer-to-peer communications, forcing the clients of a
P2P network to concurrently connect to the victim web server.

The following figure describes a DoS attack:

Zombies

Attacker

Victim

DoS attack

Man-in-the-middle
Suppose you are chatting with your girlfriend via an IM client. Her ex-boyfriend
wants to view the messages you exchange, so he makes independent connections
with both of you and sniffs your messages. He also sends messages to you and
your girlfriend, as an invisible intermediate to your communication. That is known
as a man-in-the-middle attack. The man-in-the-middle kind of attack is easier for
unencrypted connections, as the intruder can read the packages directly. When the
connection is encrypted, the information has to be decrypted by the attacker, which
might be way too difficult.

From a technical aspect, the attacker intercepts a public-key message exchange and
sends the message while replacing the requested key with his own.

Security

[56]

Obviously, a solid strategy to make the attacker's job difficult is to use SSH with
WebSockets. Mostly when exchanging critical data, prefer the WSS secure connection
instead of the unencrypted WS.

The following figure describes how the spy interferes and acquires data:

Tom Mary

Attacker

Normal communication

Infected communication

Man-in-the-middle attack

XSS
Cross-site scripting (XSS) is a vulnerability that enables attackers to inject
client-side scripts into web pages or applications. An attacker can send HTML
or JavaScript code using your application hubs and let this code be executed on
the clients' machines.

You may encounter the simplest form of an XSS attack when filling a web
form. Imagine that someone sends the following data using the chat application
we developed:

<img src="http://www.therichest.org/wp-content/uploads/young-bill-
 gates.jpg" />

Try it out! Type the preceding lines in the message text field, click on Send and wait
for the result.

The following image shows an XSS attack to our WebSocket chat application:

Chapter 5

[57]

Although the image transmission is not at all bad during a chat application, the user
sent the image by injecting HTML code. In a similar way, somebody could execute
JavaScript code and harm the conversation.

What can we do? Taking into consideration the old rules about XSS attacks still
works and is the best practice. Things you can do are checking your code for HTML
entities or JavaScript syntax, and replacing them with the appropriate representation
or simply rejecting them.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet contains
a lot more information if you want to learn every aspect of XSS attacks, and how to
avoid them.

www.allitebooks.com

http://www.allitebooks.org

Security

[58]

WebSocket native defence mechanisms
By default, the WebSocket protocol is designed to be secure. In the real world,
you might encounter various issues that might occur due to poor browser
implementation. No need to worry though. As time goes by, browser vendors
fix any issues immediately, and if you still feel afraid, you can always use some
old-school fallback techniques (described in the next chapter).

SSH/TLS
As you have probably guessed, an extra layer of security is added when you use
secure WebSocket connection over SSH (or TLS). Remember when you needed to
decide between HTTP and HTTPS? You picked HTTPS only when it was absolutely
necessary for your transactions (for example, bank account information, private data,
and so on). Otherwise, HTTP was the way to go, as it is more lightweight and fast.
HTTPS required more CPU resources and was quite slower than HTTP.

In the WebSocket world, you do not need to worry about the performance of a
secure connection. Although there is still an extra TLS layer on top, the protocol
itself contains optimizations for this kind of use, furthermore, WSS works more
sleekly through proxies.

Client-to-Server masking
Every message transmitted between a WebSocket server and a WebSocket client
contains a specific key, named masking key, which allows any WebSocket-compliant
intermediaries to unmask and inspect the message. If the intermediary is not
WebSocket-compliant, then the message cannot be affected. Masking is handled by
the browser that implements the WebSocket protocol.

Security toolbox
Finally, we present some useful tools that help you investigate the flow of
information between your WebSocket clients and server, analyze the exchanged
data, and identify possible risks.

Chapter 5

[59]

Fiddler
Fiddler is a great tool for monitoring the network activity and inspecting the traffic
of any incoming or outgoing data.

The following screenshot shows fiddler in action, displaying the WebSocket headers:

Fiddler can be downloaded from http://www.fiddler2.com/fiddler2/

Wireshark
Wireshark is a network packet analyzer that captures the packages and displays
their data as accurately as possible.

Security

[60]

The following screenshot shows wireshark in action:

Wireshark can be downloaded from http://www.wireshark.org/

Browser developer tools
Chrome, Firefox, and Opera are great browsers in terms of developer support.
Their built-in tools help us determine almost any aspect of client-side interactions
and resources.

The following screenshot shows Chrome developer tools in action:

Chapter 5

[61]

ZAP
ZAP is a penetration-testing tool for finding vulnerabilities throughout your web
apps and sites, by performing an attack on them! Like all the preceding tools, ZAP
comes with a handy GUI visualization.

The following screenshot shows ZAP in action:

ZAP can be downloaded from https://code.google.com/p/zaproxy/

Summary
In this chapter, you investigated various security threats your web apps must
be aware of, saw the built-in WebSocket security mechanism, and presented
some popular tools that help us manage the network transfers better. Next,
we are going to describe some fallback techniques for browsers that lack full
or partial WebSocket support.

Error Handling and Fallbacks
By now, you must be familiar with the WebSocket capabilities and must have got
an idea of the power of full-duplex communication. However, the WebSocket
goodies are built on top of HTML5 and depend strongly on the browsers for full
support. What happens when the features you want to implement are not supported
by the means your audience is using? Would you let your customers leave? That
doesn't sound like a good idea. Fortunately, with a little bit of extra effort, you can
implement, mimic, and mostly emulate, the WebSocket behavior.

WebSocket is the future-friendly way to go, but you'll need some fallback techniques
in order to support the widest audience possible.

Error handling
When it comes to error handling, you have to take both internal and external
parameters into account. Internal parameters include errors that can be generated
because of the bugs in your code, or an unexpected user behavior. External errors
have nothing to do with the application; rather, they are related to parameters
you have no control on. The most important one is the network connectivity. Any
interactive bidirectional web application requires, well, an active Internet connection.

Checking network availability
Imagine that your users are enjoying your web app, when suddenly the network
connection becomes unresponsive in the middle of their task. In modern native
desktop and mobile applications, it is a common task to check for network availability.
The most common way of doing so is simply making an HTTP request to a website
that is supposed to be up (for example, http://www.google.com). If the request
succeeds, the desktop or mobile device knows there is active connectivity.

Error Handling and Fallbacks

[64]

Similarly, HTML has XMLHttpRequest for determining network availability.
HTML5, though, made it even easier and introduced a way to check whether
the browser can accept web responses. This is achieved via the navigator object:

if (navigator.onLine) {
 alert("You are Online");
}
else {

 alert("You are Offline");
}

Offline mode means that either the device is not connected or the user has selected
the offline mode from his/her browser toolbar.

Here is how to inform the user that the network is not available and try to reconnect
when a WebSocket close event occurs:

socket.onclose = function (event) {
 // Connection closed.
 // Firstly, check the reason.
 if (event.code != 1000) {
 // Error code 1000 means that the connection was closed normally.
 // Try to reconnect.
 if (!navigator.onLine) {
 alert("You are offline. Please connect to the Internet and try
 again.");
 }
 }
}

The preceding code is pretty simple. It checks the error code to determine
whether the WebSocket connection was closed successfully. Error code 1000
would determine exactly this. If the close event was raised due to an error,
the code would not be 1000. In this case, the code checks for connectivity and
informs the user appropriately.

You might notice that this is an HTML5 feature. Later, we will discuss polyfills, so
the following are two polyfills for checking network connectivity:

• https://github.com/remy/polyfills/blob/master/offline-events.js

• http://nouincolor.com/heyoffline.js/

The first one is using XMLHttpRequest, similar to what Smartphone APIs do.

Chapter 6

[65]

Fallback solutions
In real life, physical contact is preferred, as it is more direct and efficient, but it
shouldn't be the only way of meeting someone. There are numerous cases where you
won't be able to handshake, so you'll need to find other methods of communication.

The sad reality of HTML5 is that every browser does not equally support it.
Especially considering the new JavaScript APIs, major or minor differences still
exist among different browsers. However, even if the browser vendors decided to
provide the exact same features for their current releases, there would still be people
who cannot or do not want to update. According to StatCounter and W3Counter,
as of March 2013, the lion's share of desktop browsing belongs to Google Chrome,
followed by Microsoft Internet Explorer and Mozilla Firefox.

Internet Explorer 8 still shares 7 percent, Internet Explorer 7 shares 5 percent,
and Safari 5.1 shares 3 percent. A total of 15 percent is translated to a number of
customers you probably do not want to miss.

Here come the fallback solutions, which can handle such situations and provide a
gracefully scaled-down experience to the users of older browsers. There are two
kinds of popular fallbacks nowadays, Plugins (such as Flash or Silverlight) and
JavaScript hacks, formally known as polyfills.

JavaScript polyfills
We start by examining polyfills, as they are more close to the native web. JavaScript
polyfills are solutions and libraries that mimic a future feature, by providing support
for older browsers. Currently, there are polyfill solutions for almost all HTML5-
specific feature (canvas, storage, geolocation, WebSockets, CSS3, and so on).

A polyfill solution should be used in parallel to the standards-based, HTML5-
compliant API.

If you need to implement both an HTML5 and a polyfill solution, why not just
implement the second one and save time and money? Well, here are four reasons
you should use both:

1. Better user experience: When using HTML5, you serve your visitors the best
and smoothest experience possible. Everything is handled by the browser,
and you only need to focus on your application's requirements. When using
a polyfill to address a specific issue, the end-product cannot be of the same
quality. Surely, delivering something is better than delivering nothing, but a
polyfill is just a patch for those who run poorer vehicles.

Error Handling and Fallbacks

[66]

2. Performance: The most significant advantage between a native HTML5
solution and a polyfill plugin, is performance. When you request a JavaScript
file, you require extra resources, which increase loading time. Moreover,
a JavaScript plugin runs way slower than a native browser-implemented
method. Regarding WebSockets, the protocol is designed to provide
bidirectional full-duplex communication. That is the fastest way you can
achieve this kind of staff. What a polyfill can do is to simply mimic full-
duplex communication, using traditional AJAX polling. We have already
seen that AJAX polling is way slower than WebSockets.

3. Future-friendly: Using HTML5 right now lets your website or app to be
automatically enhanced from any future browser update. For example,
someone who used canvas three years ago, benefitted automatically when
Internet Explorer was updated to Version 9.

4. Standards-friendly: Although content, not web standards, should be our top
priority, it is good to know that our current implementation consorts with
the formal technical specifications. Moreover, the web standards propose
what is known as "best practices". Although polyfills usually consist of valid
JavaScript code, most of the time they need to address browser-specific bugs
and inconsistencies by inserting necessary non-standard code.

Popular polyfills
Modernizr, a well-known library for detecting HTML5 and CSS3 features, provides
a great list of HTML5 polyfills that can make your life much easier when it comes
to supporting older browsers. Regardless of which HTML5 feature you are using,
there is a corresponding polyfill available at https://github.com/Modernizr/
Modernizr/wiki/HTML5-Cross-Browser-Polyfills

Regarding WebSockets, following are a some of the libraries that mimic the
WebSocket behavior:

Name Hyperlink
SockJS https://github.com/sockjs/sockjs-client

socket.io http://socket.io/

Kaazing WebSocket
Gateway

http://kaazing.com/products/kaazing-websocket-
gateway.html

web-socket-js http://github.com/gimite/web-socket-js/

Atmosphere http://jfarcand.wordpress.com/2010/06/15/
using-atmospheres-jquery-plug-in-to-build-
applicationsupporting-both-websocket-and-comet/

Chapter 6

[67]

Name Hyperlink
Graceful WebSocket https://github.com/ffdead/jquery-graceful-

websocket

Portal https://github.com/flowersinthesand/portal

DataChannel https://github.com/piranna/DataChannel-polyfill

Except Kaazing, all of the above libraries are open-source and free to use. Some of
these libraries use the AJAX approach, while others rely on Flash, in order to emulate
the WebSocket behavior.

Here is an example using the Graceful WebSocket library. We chose Graceful
WebSocket because it is simple, lightweight, makes no use of Flash, and exposes
functionality similar to the WebSocket API.

First of all, download the library, along with jQuery, and include them in
your project:

<script src=" jquery-1.9.1.min.js"></script>
<script src="jquery.gracefulWebSocket.js"></script>

Structure your document as you would normally do and simply replace any
reference to the WebSocket native class with the gracefulWebSocket once!

Replace this:

var socket = new WebSocket("ws://localhost:8181");

with this:

var socket = $.gracefulWebSocket("ws://localhost:8181");

It is that simple! The rest of the WebSocket events and methods remain the same:

socket.onopen = function (event) {
 // Handle the open event as previously.
};

socket.onclose = function (event) {
 // Handle the close event as previously.
};

socket.onmessage = function (event) {
 // Handle the message event as previously.
};

socket.onerror = function (event) {
 // Handle the error event as previously.
};

Error Handling and Fallbacks

[68]

Sending data is equally easy and can be done as follows:

socket.send("Hello server! I'm a WebSocket polyfill.");

In normal mode, the preceding lines of code simply wrap the WebSocket object
and execute the native methods. In fallback mode, the library changes the protocol
from WS to HTTP, listens for messages by making HTTP GET requests, and sends
messages using HTTP POST requests.

The specific polyfill solution only required a minor change to our code.
Other solutions might need you to make a lot of modifications or only
work with specific server back-ends. You need to pay close attention to
the requirements of each plugin, its usage, and documentation before
using it for production.

Browser plugins
Browser plugins have been an extremely helpful solution for rich Internet applications
in the pre-HTML5 era. To name but a few, developers used to offer desktop-rich
functionality in their websites utilizing the capabilities of Flash (primarily), Silverlight,
or Java. A few years ago, basic UX effects, transitions, and animations could not be
made using plain HTML, CSS, or JavaScript.

To fill this gap, browser plugins provided the developers with a framework which
could be installed in the client browser and allowed richer content.

Browser plugins have several drawbacks that make them deprecated day-by-day.
They are resource-intensive, the user needs to wait more until a page is fully loaded,
and they are mostly based on proprietary technologies. As a result, more and more
companies (including Apple and Microsoft) are shifting away from browser plugins
in favor of HTML5.

However, if your users browse using an old browser, it is likely that they have an old
desktop PC with one or more such browser plugins installed. Some great WebSocket
implementations use Flash in order to achieve bidirectional communication, and so
do some of the polyfills mentioned previously.

The websocket-as, available at https://github.com/y8/websocket-as, is a
popular utility, written in ActionScript, which implements a WebSocket API like
the HTML5 approach. A similar example exists for Microsoft's Silverlight and WCF
technologies too (http://www.codeproject.com/Articles/220350/Super-
WebSockets-WCF-Silverlight-5).

Chapter 6

[69]

If you are familiar with Flash or Silverlight, then you could implement a fallback
solution based on your preferred browser plugin. Otherwise, you can stick to the
JavaScript implementations.

Summary
Not all browsers support the WebSocket protocol natively. As a result, you need
to provide some fallback solutions for those users who cannot sense the HTML5
goodies. Fortunately, the open-source community has provided us with various
techniques, which emulate the WebSockets' features using plain HTTP or Flash
internally. Implementing both the HTML5 and the fallback is critical for your web
apps and is strongly related to the audience width you want to reach. In this chapter,
we examined some popular fallback techniques and saw how to handle common
connectivity errors in your WebSocket applications. That's all you need to know
for the WebSocket and HTML part. In the last chapter, we are going to examine the
WebSocket protocol in terms of native mobile experience.

Going Mobile (and Tablet, Too)
WebSockets, as their name implies, is something that uses the web. The web is
usually interwoven with browser pages because that's the primary means of
displaying data online. However, non-browser programs too use online data
transmission. The release of the iPhone (initially) and the iPad (later) introduced
a brand new world of web interconnectivity without necessarily using a web
browser. Instead, the new smartphone and tablet devices utilized the power of
native apps to offer a unique user experience.

Why mobile matters
Currently, there are one billion active smartphones out there. That is, millions of
potential customers for your applications. Those people use their mobile phone to
accomplish daily tasks, surf the Internet, communicate, or shop.

Smartphones have become synonymous to apps, and nowadays, there is an app
for any usage you can think of. Most of the apps connect to the Internet in order to
retrieve data, make transactions, gather news, and so on.

Wouldn't it be great if you were able to use your existing WebSocket knowledge and
develop a WebSocket client running natively on a smartphone or tablet device?

Native mobile app versus mobile website
Well, this is a common conflict and as usual, the answer depends on your needs and
your target audience. If you are familiar with the modern design trends, designing a
website that is responsive and mobile friendly, is now a must. However, you should
be sure that the content, which is what really matters, is equally accessible via a
smartphone, as it is via a classic desktop browser.

Going Mobile (and Tablet, Too)

[72]

Definitely, a WebSocket web app will run on any HTML5-compliant browser,
including mobile browsers such as Safari for iOS and Chrome for mobile. So,
no need to worry about compatibility issues on modern smartphones.

What happens though if your app utilizes device-specific information such as
offline storage, GPS, notifications, or accelerometers, along with WebSockets? You
need a more native implementation in a language other than HTML and JavaScript.
W3C is defining some specifications that will let the client access hardware such as
camera, GPS, and accelerometer. However, only a minority of modern web browsers
currently support such specifications. At the time of writing, a native approach is
the way to go, though the client-side future seems way more interesting! iOS uses
Objective-C, Android uses Java, and Windows Phone uses C#. If you think that your
mobile use-case scenario does not utilize any of the smartphone goodies, feel free
to go with the browser-based app. If native functionality is required, then a native
solution is necessary. That's exactly what are we going to build in this chapter!

Prerequisites
In order to develop a smartphone app, you need to install the development tools
and SDKs of your preferred target. The philosophy behind the examples we'll
demonstrate is fundamentally the same in the three major mobile operating systems,
that is, iOS, Android, and Windows.

If you do not already have a mobile SDK installed, here is where you can pick one
(they are all free):

Platform Targets SDK URL
iOS iPhone, iPad https://developer.apple.com/devcenter/ios/

Android Android
phones &
tablets

http://developer.android.com/sdk/

Windows Windows
Phone,
Windows 8

http://developer.windowsphone.com/ develop

&
http://msdn.microsoft.com/ windows/apps

We suppose that you are familiar with at least one of the above SDKs and
technologies. If not, you can navigate to the corresponding developer portal, and
follow the online resources and tutorials, which provide a great starting point.

Throughout this chapter, we have decided to provide code samples for iOS, but feel
free to use the platform you are most familiar with.

Chapter 7

[73]

Installing the SDK
After downloading the desired SDK, you follow an automated wizard that installs it
in your system. Note that the iOS SDK can only run on a Mac operating system, the
Windows SDK runs on a Windows operating system, and the Android SDK runs on
Mac, Windows, or Linux. Along with the SDK, there are a couple of automatically
installed goodies:

• Smartphone/tablet simulators
• An integrated development environment where you write and debug

your code

Although you should always test your code on real devices (phones and tablets),
the simulator is a really solid solution for constant debugging.

Considering iOS, here are the iPhone and iPad simulators, running iOS 6.

The following figure shows an iPhone simulator:

Going Mobile (and Tablet, Too)

[74]

The following figure shows an iPad simulator:

Testing our existing code in the mobile
browser
Remember the HTML and JavaScript code we wrote back in Chapter 2, The WebSocket
API? Having the SDK and simulators installed, we can access the web using the
mobile browser included in the simulator. We can also access our local HTML, CSS,
and JavaScript files without uploading them to a web server. Here is the chat client
running pretty well on an iPad.

The following image shows WebSocket web app on Safari for iOS (no modifications
in code):

Chapter 7

[75]

Going native
So, what if your application supports device-specific or offline features, and you still
want to use WebSockets when the web is available?

You go native.

Fortunately, all of the major mobile platforms support WebSockets, so you need to
make absolutely no changes in your server code! After all, HTML5 is a front-end
client just like iPhone or iPad. Using the same techniques as the JavaScript samples,
you are going to build the same application in Objective-C. The process is similar
to any other mobile platform, so do not worry if you are not familiar with the
Objective-C concept.

Going Mobile (and Tablet, Too)

[76]

Creating the project
To begin with, open XCode, the development environment provided by
Apple for building iOS apps. Eclipse and Visual Studio are the Android
and Windows equivalents.

Follow the given steps for creating the project

1. Launch XCode and click on Create a new XCode project. The following
screenshot shows XCode launch screen:

2. Create a single view application. Provide a name, along with company
and organization identifiers if you want to. For example, name the app
WebSocketsMobile. Then, select a local folder to place it into, as shown
in the following screenshot:

Chapter 7

[77]

Creating the WebSocket iPhone app
If you need to deploy your app for production, you need to additionally specify
some icons for the target platforms. We'll skip such stuff for now, but feel free
to add any resources your app might require. XCode automatically creates some
files for us. The storyboard files (one for iPhone and one for iPad) will let us create
the user interface of our app and the ViewController file will handle all the
programming logic.

Going Mobile (and Tablet, Too)

[78]

The following screenshot shows the initial UI of our iPhone app:

1. Add some controls to the user interface builder. For learning purposes,
we'll try to keep it simple and only add UITextField for writing a message,
a button for sending the message, and UILabel for displaying the chat
messages. Remember to set the number of lines of the label to 0 (that is,
infinite). Do not forget to connect the outlets with View Controller, using the
assistant editor (http://www.techotopia.com/index.php/Establishing_
Outlets_and_Actions_using_the_Xcode_Assistant_Editor).The
following screenshot shows the iPhone app user interface:

Chapter 7

[79]

2. Download the UnittWebSocketClient library and include it in your
project. This library handles most of the WebSocket functionality. You can
pick another one or implement your own. Follow the directions specified at
https://code.google.com/p/unitt/wiki/UnittWebSocketClient.

3. Include the header files of the library in your project and specify your View
Controller as a WebSocketDelegate. Then subscribe for the corresponding
events, which are identical to the JavaScript ones:
// ViewController.h

#import <UIKit/UIKit.h>
#import "WebSocket.h"
@interface ViewController : UIViewController <WebSocketDelegate>
@end

// ViewController.m

#import "ViewController.h"

Going Mobile (and Tablet, Too)

[80]

@interface ViewController ()

@end

@implementation ViewController

- (void)viewDidLoad
{
 [super viewDidLoad];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
}

- (void)didOpen
{
 // JavaScript event: onopen
}

- (void)didClose:(NSUInteger)aStatusCode message:(NSString *)
aMessage error:(NSError *)aError
{
 // JavaScript event: onclose
}

- (void)didReceiveError:(NSError *)aError
{
 // JavaScript event: onerror
}

- (void)didReceiveTextMessage:(NSString *)aMessage
{
 // JavaScript event: onmessage
}

- (void)didReceiveBinaryMessage:(NSData *)aMessage
{
 // JavaScript event: onmessage
}

@end

Chapter 7

[81]

4. It is now time to populate the methods, as we did in the JavaScript samples.
Here's what you need to do in order to set the app up and running:

// ViewController.h

@interface ViewController : UIViewController <WebSocketDelegate>
{
 // Create a new WebSocket object.
 WebSocket *socket;
}

// ViewController.m

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Specify the WebSocket configuration. The only necessary
parameter is the URL.
 WebSocketConnectConfig *config = [WebSocketConnectConfig
 configWithURLString:@"ws://echo.websocket.org"
 origin:nil protocols:nil tlsSettings:nil headers:nil
 verifySecurityKey:YES extensions:nil];

 // Initialize the WebSocket object.
 socket = [WebSocket webSocketWithConfig:config
 delegate:self];

 // Open the WebSocket connection and start listening for
 events.
 [socket open];
}

- (void)didReceiveTextMessage:(NSString *)aMessage
{
 // JavaScript event: onmessage

 labelChat.text = [NSString stringWithFormat:@"%@\r%@",
 labelChat.text, aMessage];
}

- (IBAction)sendTapped:(id)sender
{
 [socket sendText:textMessage.text];
}

Going Mobile (and Tablet, Too)

[82]

The following figure shows the native iOS WebSocket client up-and-running!

What about the iPad?
Although the app you created would run pretty fine on iPad devices, it is
always better to provide a different interface for tablets. Simply navigate to
the MainStoryboard_iPad.storyboard file, rearrange the UI elements, and
provide tablet-specific functionality. Then, select the project targets and, while
in the Summary tab, expand the iPad Deployment Info option and ensure that
MainStoryboard_iPad is selected. You can select the iPhone storyboard if your
app is not too complex or specify that the app target is iPhone only. This way,
when someone runs your app on an iPad device, he/she will see a smaller screen
centered in the iPad device.

Chapter 7

[83]

Summary
In this chapter, we found out how WebSockets can act as a universal hub
for transmitting messages between connected mobile and tablet clients. We
implemented a native iOS application, which communicates with a WebSocket
server just like the HTML5 JavaScript client.

Appendix
It is not possible to cover everything in a single book. There are some things that
were intentionally or accidentally left out. So, here are some extra topics that will
let you dive deeper into the WebSocket world.

Resources
The WebSocket API is expanding day-by-day. In order to keep up with the
forthcoming changes, here are a few online resources you can bookmark for
further reading.

Online sources
The following websites provide up-to-date content regarding the WebSocket
protocol, applications, and real-world examples. Have a look at them, keep an
eye, and bookmark the ones you like most.

WebSocket.org http://www.websocket.org/

Web Platform docs http://docs.webplatform.org/wiki/apis/
websocket/WebSocket

HTML5 rocks http://www.html5rocks.com/en/features/
connectivity

HTML5 demos http://html5demos.com/

Mozilla Developer
Network

https://developer.mozilla.org/en-US/docs/
WebSockets

The WebSockets API
(W3C)

http://www.w3.org/TR/2009/WD-
websockets-20091222/

Appendix

[86]

Articles
Need more food for thought? These articles present personal opinions of well-known
bloggers. You'll even read controversial subjects, but you'll surely find out that there
is no black or white in the web industry.

WebSockets versus REST… fight! http://nbevans.wordpress.com/2011/12/16/
websockets-versus-rest-fight/

HTML% WebSocket cheat sheet http://refcardz.dzone.com/refcardz/
html5-websocket

Would You Let Your Grandma
Use WebSockets?

https://community.qualys.com/blogs/
securitylabs/2012/08/15/would-you-let-
your-grandma-use-websockets

Your users don't care if you use
WebSockets

http://www.hanselman.com/blog/
YourUsersDontCareIfYouUseWebSockets.aspx

WebSockets and the risks of the
unfinished standards

http://news.cnet.com/8301-30685_3-
20025272-264.html

Source code
The source code we demonstrated in this book can be found online at
http://pterneas.com/books/websockets/source-code. Note that the given
link will always be up-to-date, following the current trends and standards.

You can download and modify all of the included files as you wish.

System requirements
Web Standards is a cross-platform mechanism. This means that the client-side source
code will run on any HTML5-compliant browser. You only need a text editor such as
Notepad or GEdit to modify the files.

The server-side code has been tested in Windows, though you can run it using any
operating system that supports the Mono framework (http://www.mono-project.
com/). Finally, regarding the iOS source code, you need a Mac computer, along with
the XCode development environment.

Remember that you can use the operating systems, server-side libraries, and
IDEs of your choice to build your own projects. The main logic and functionality
remains the same.

Appendix

[87]

Stay in touch
Found a bug or have any changes to propose? We would be glad to listen to your
feedback and fix any issues as soon as possible. Simply send your message to
vangos@pterneas.com.

Index
Symbols
.NET, WebSocket server libraries

Fleck 29
Internet Information Services 8 29
SuperWebSocket 29

A
actions, WebSocket API

close() 23
send() 22

AJAX 9, 18
AJAX polling 66
Apache Tomcat

URL 29
API (Application Programming Interface)

17
ArrayBuffer 42
Asynchronous JavaScript and XML. See

AJAX
Atmosphere

about 66
URL 29

Autobahn
URL 29

B
basics, HTML5

logic 16, 17
markup 15, 16
styling 16

Binary Large Objects. See Blobs
binaryType property 24

about 44, 45

Blobs
video streaming 47, 48

Bristleback
URL 29

browser developer tools 60
browser plugins 68
browser support, WebSocket API 18, 19
bufferedAmount property 24

C
C#

advantages 31
used, for setting up Fleck WebSocket server

31
C# Action 33
Cascading Style Sheets. See CSS
C/C++, WebSocket server libraries

Libwebsockets 28
Mongoose 28
Tufao 28
Wslay 28

chat.js 25
chatting application 17
Client-to-Server masking 58
close event 33
close() method 23
common attacks

about 54
Cross-site scripting (XSS) 56, 57
Denial of Service (DoS) 55
Man-in-the-middle 55

Cross-site scripting (XSS) 56, 57
CSS 16
CSS3

URL 16

[90]

D
DataChannel 67
data transfer, WebSocket protocol

ArrayBuffer 42, 44
Blob 44, 45
String 40

Denial of Service (DoS) attacks 55
development environment

setting up 30

E
echo.websocket.org server 26
EM-WebSocket

URL 30
error handling

about 63
network availability, checking 63, 64

events, WebSocket API
onclose 21
onerror 21
onmessage 20
onopen 20

existing code
testing, in mobile browser 74

F
Facebook 9, 40
fallback solutions

about 65
browser plugins 68
JavaScript polyfills 65

Fiddler
about 59
URL, for downloading 59

Fleck
URL 29

Fleck library
features 31

Fleck WebSocket server
setting up, C# used 31

frame 47

G
Gamooga 12

Github 40
GitLive 13
GlassFish

URL 29
Google Chrome 45
Graceful WebSocket library

about 67
example 67

H
handshaking 7
Hoar

URL 29
HTML5

about 10
basics 15-17
URL 85
using 65, 66

HTML5 demos
URL 85

HTML5 markup
about 15, 16
URL 16

HTML5 rocks
URL 85

HTTP 9

I
IDEs

Aptana 30
Eclipse (with the Web Developer plugin) 31
NetBeans 30
Visual Studio 31
WebMatrix 31

images
sending, to server 50, 51

index.html 24
Integrated Development

Environments. See IDEs
Internet Engineering Task Force (IETF) 8
Internet Information Services 8

URL 29
iPad devices 82
iPad simulator 74
IRC Cloud 13

[91]

J
JavaScript

about 16
example 17

JavaScript hacks 65
JavaScript Object Notation. See JSON
JavaScript polyfills 65
JavaScript, WebSocket server libraries

Node WebSocket Server 30
Socket IO 30
WebSocket-Node 30

Java, WebSocket server libraries
Apache Tomcat 29
Atmosphere 28
Bristleback 28
GlassFish 28
JBoss 28
Jetty 28
Migratory data 29
Play Framework 29

JBoss
URL 29

Jetty
URL 29

jQuery 41
JSON

about 40, 41
used, for sending message 49, 50

jWebSocket
URL 29

K
Kaazing 12, 67
Kaazing WebSocket Gateway 66

L
Libwebsockets

URL 28
logic 16, 17
long polling 8, 9

M
Man-in-the-middle attacks 55
masking key 58

message event 33
Migratory data

URL 29
mobile browser

existing code, testing in 74
mobile website

versus native mobile app 71, 72
Modernizr 66
Mongoose

URL 28
Mozilla Developer Network

URL 85

N
native defence mechanisms, WebSocket

about 58
Client-to-Server masking 58
SSH/TLS 58

native mobile app
about 75
project, creating 76
versus mobile website 71, 72

network availability
checking 63, 64

Node.js
about 30
URL 30

O
Objective-C 75
OnBinary event 34
onclose event 21
ondrop event 50
onerror event 21
online sources

about 85
HTML5 demos 85
HTML5 rocks 85
Mozilla Developer Network 85
The WebSockets API (W3C) 85
Web Platform docs 85
WebSocket.org 85

OnMessage event 20, 34, 40
OnMessage method 51
onopen event 20

[92]

open event 33
origin 53

P
Php-websocket

URL 29
PHP, WebSocket server libraries

Hoar 29
Php-websocket 29
Rachet 29

Play Framework
URL 29

plugins 65
polling 8
polyfills

about 65-67
network connectivity, checking 64]
using 66

Portal 67
postback 9
project

creating, XCode used 77-82
properties, WebSocket API

binaryType 24
bufferedAmount 24
protocol 23
readyState 24
url 23

protocol property 23
Pusher 13
Python, WebSocket server libraries

Autobahn 29
Pywebsocket 29
Tornado 29
txWS 29
WebSocket for Python 29

Pywebsocket
URL 29

R
Rachet

URL 29
readyState property 24

resources, WebSocket API
about 85
articles 86
online sources 85

revokeObjectURL function 48
RFC 6455 12
Ruby, WebSocket server libraries

EM-WebSocket 30
Socky server 30

S
security 53
security toolbox

about 58
browser developer tools 60
Fiddler 59
Wireshark 59
ZAP 61

Sec-WebSocket-Version parameter 54
Send() method 22, 34
server

images, sending to 50, 51
server handshake, with multiple clients

diagrammatic representation 7
server-side source code 35
Smarkets 13
smartphone 71
smartphone app

prequisites 72
SDK, installing 73

socket.io 66
SockJS 66
Socky server

URL 30
source code, WebSocket API

system requisites 86
SSH/TLS 58
streaming 8
String

about 40
JSON 40, 41
XML 41

Superfeedr 13
SuperWebSocket

URL 29

[93]

T
The WebSockets API (W3C) 85
Tornado

URL 29
Tufao

URL 28
Twitter 40
txWS

URL 29

U
url property 23
users, WebSockets

Gamooga 12
GitLive 13
IRC Cloud 13
Kaazing 12
Pusher 13
Smarkets 13
Superfeedr 13

V
video 47
video streaming 47, 48

W
Web 71
Web Platform docs

URL 85
WebRTC

URL 49
WebSocket

about 7, 11, 13, 27, 63
browser support 12
native defence mechanisms 58
URL example 11
URL, for demos 13
users 12

WebSocket API
about 17
actions 22, 23
browser support 18, 19
events 19-21
example 24

properties 23, 24
resources 85
source code 86

websocket-as 68
WebSocket chat client 35
WebSocket for Python

URL 29
WebSocket headers 53, 54
web-socket-js 66
WebSocket object 19
WebSocket.org

URL 85
WebSocket protocol 39
WebSocket server

and client event triggering 27
connecting to 32
development server, setting up 30-32
need for 27, 28
setting up 28

WebSocket server implementations
close event 33
message event 33
OnBinary event 34
OnMessage event 34
open event 33
Send() method 34

WebSocket server instance
creating 32

Wireshark
about 59
URL, for downloading 60

World Wide Web Consortium (W3C) 8
Wslay

URL 28

X
XCode

about 76
used, for creating project 77-82

XML 40, 41
XMLHttpRequest 9, 64

Z
ZAP

about 61
URL, for downloading 61

Thank you for buying
Getting Started with HTML5
WebSocket Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home to
books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

HTML5 Mobile Development
Cookbook
ISBN: 978-1-84969-196-3 Paperback: 254 pages

Over 60 recipes for building fast, responsive HTML5
mobile websites for iPhone 5, Android, Windows
Phone, and Blackberry

1. Solve your cross platform development issues
by implementing device and content adaptation
recipes

2. Maximum action, minimum theory allowing
you to dive straight into HTML5 mobile web
development

3. Incorporate HTML5-rich media and
geo-location into your mobile websites

HTML5 Canvas Cookbook
ISBN: 978-1-84969-136-9 Paperback: 348 pages

Over 80 recipes to revolutionize the web experience
with HTML5 Canvas

1. The quickest way to get up to speed with
HTML5 Canvas application and game
development

2. Create stunning 3D visualizations and games
without Flash

3. Written in a modern, unobtrusive, and objected
oriented JavaScript style so that the code can be
reused in your own applications

4. Part of Packt's Cookbook series: Each recipe is a
carefully organized sequence of instructions to
complete the task as efficiently as possible

Please check www.PacktPub.com for information on our titles

HTML5 Multimedia Development
Cookbook
ISBN: 978-1-84969-104-8 Paperback: 288 pages

Recipes for practical, real-world HTML5 multimedia-
driven developmnet

1. Use HTML5 to enhance JavaScript
functionality. Display videos dynamically and
create movable ads using JQuery

2. Set up the canvas environment, process
shapes dynamically and create interactive
visualizations

3. Enhance accessibility by testing browser
support, providing alternative site views and
displaying alternate content for non supported
browsers

HTML5 for Flash Developers
ISBN: 978-1-84969-332-5 Paperback: 322 pages

Leverage your Flash skill set and learn to create
content using a wide range of HTML5 web
development features

1. Discover and utilize the wide range of
technologies available in the HTML5 stack

2. Develop HTML5 applications with external
libraries and frameworks

3. Prepare and integrate external HTML5
compliant media assets into your projects

Please check www.PacktPub.com for information on our titles

	Preface
	Chapter 1: WebSocket – a Handshake!
	Life before WebSocket
	Polling
	Long polling
	Streaming
	Postback and AJAX

	Then came HTML5
	The WebSocket protocol
	The URL
	Browser support
	Who's using WebSockets

	Mobile?
	The future is now
	What are we going to make?
	Summary

	Chapter 2: The WebSocket API
	HTML5 basics
	Markup
	Styling
	Logic

	A chatting application
	API overview
	Browser support
	The WebSocket object
	Events
	onopen
	onmessage
	onclose
	onerror

	Actions
	send()
	close()

	Properties
	The complete example
	index.html
	chat.js

	What about the server?

	Summary

	Chapter 3: Configuring the Server
	Why do I need a WebSocket server?
	Setting up the server
	Selecting the technology that suits you
	C/C++
	Java
	.NET
	PHP
	Python
	Ruby
	JavaScript

	Setting up the development environment

	Connecting to the web server
	Creating the WebSocket server instance
	Open
	Close
	Message
	Send

	Other methods
	The complete source code
	Summary

	Chapter 4: Data Transfer – Sending, Receiving, and Decoding
	What kinds of data can WebSockets transfer?
	String
	JSON
	XML

	ArrayBuffer
	Blobs
	Video streaming

	Putting it all together
	Sending the nickname and message using JSON
	Sending images to the server

	Summary

	Chapter 5: Security
	WebSocket headers
	Common attacks
	Denial of Service
	Man-in-the-middle
	XSS

	WebSocket native defence mechanisms
	SSH/TLS
	Client-to-Server masking

	Security toolbox
	Fiddler
	Wireshark
	Browser developer tools
	ZAP

	Summary

	Chapter 6: Error Handling and Fallbacks
	Error handling
	Checking network availability

	Fallback solutions
	JavaScript polyfills
	Popular polyfills

	Browser plugins

	Summary

	Chapter 7: Going Mobile (and Tablet,Too)
	Why mobile matters
	Native mobile app versus mobile website
	Prerequisites
	Installing the SDK
	Testing our existing code in the mobile browser

	Going native
	Creating the project
	Creating the WebSocket iPhone app

	What about the iPad?
	Summary

	Appendix
	Resources
	Online sources
	Articles

	Source code
	System requirements
	Stay in touch

	Index

