
www.allitebooks.com

http://www.allitebooks.org


Building Scalable Apps with 
Redis and Node.js

Develop customized, scalable web apps through the 
integration of powerful Node.js frameworks

Joshua Johanan

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Building Scalable Apps with Redis and Node.js

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2014

Production reference: 1190914

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-448-0

www.packtpub.com

Cover image by Siddhart Ravishankar (sidd.ravishankar@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Author
Joshua Johanan

Reviewers
Harrison Dahme

Sven Kreiss, PhD

Andrew Long

Jari Timonen

Commissioning Editor
Kunal Parikh

Acquisition Editor
Richard Harvey

Content Development Editor
Arun Nadar

Technical Editors
Kunal Anil Gaikwad

Shruti Rawool

Copy Editors
Mradula Hegde

Dipti Kapadia

Sayanee Mukherjee

Deepa Nambiar

Alfida Paiva

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Lauren Harkins

Linda Morris

Indexers
Rekha Nair

Priya Sane

Graphics
Sheetal Aute

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org


About the Author

Joshua Johanan is a web developer who currently lives in South Bend, Indiana. 
He has been a web developer for 5 years. He has built sites using many different 
languages, including PHP, Python, JavaScript, and C#, although if asked, he would 
prefer using Python and JavaScript. These languages have led him to use different 
MVC frameworks such as Zend Framework, Django, and .NET's MVC.

As you can tell from this book, he has used JavaScript on both the backend with 
Node.js and the frontend using many different libraries. These include Backbone, 
React, jQuery, and plain old JavaScript.

He currently works for a health care organization, writing websites in C#. This does 
not allow him to utilize the latest flashy browser technologies, but it does enforce 
good development skills such as maintainability and scalability.

This is his first book, but he posts regularly on his blog at http://ejosh.co/de.

I would like to thank my wife, Liz, for her support through the 
writing of this book. I would also like to thank Dexter and Gizmo, 
who hung out with me at my feet as I wrote most of this book.

www.allitebooks.com

http://ejosh.co/de
http://www.allitebooks.org


About the Reviewers

Harrison Dahme is a full-stack software engineer in San Francisco, born 
and raised in Toronto. He's driven by an addiction to learning and a love for 
adventure. He has a specialist degree in Artificial Intelligence from the University 
of Toronto, and he has years of experience working with the frontend, backend, app 
development, and system design. When he's not making things or breaking things, 
you can find him surfing, rock climbing, skiing, or mountain biking. Find him on 
social media as @IsTheBaron, or connect with him on LinkedIn as hdahme.

Sven Kreiss, PhD, is a data scientist in New York City with a background in 
particle physics. He holds a Master's degree from the University of Edinburgh, 
Scotland, and a PhD from New York University (NYU). His thesis included software 
development for applied statistics tools. Together with other physicists of the ATLAS 
collaboration, he used these tools to discover the Higgs Boson in 2012 at CERN, 
Switzerland. He is also the author of Databench, an open source tool for interactive 
data analysis and visualization.

To learn more about him, visit his website at www.svenkreiss.com and follow him 
on Twitter at @svenkreiss.

www.allitebooks.com

www.svenkreiss.com
http://www.allitebooks.org


Andrew Long is an entrepreneur working in San Francisco, California. He has 
extensive battle-worn experience in building and scaling out both the frontend 
and backend services of popular consumer applications. Currently, he is working 
as a senior software engineer at Hall, Inc. Previously, he was building Mailbox 
at Orchestra, prior to being acquired by Dropbox. He also worked on mobile 
technologies at Palm, Inc. for the WebOS platform. After Palm's acquisition by HP, 
he helped build the first official native Facebook application on a tablet form factor.

Follow him at @aslong on Twitter, or visit www.andrewslong.com.

I'd like to thank Katherine for her never-ending support and 
encouragement in producing this book.

Jari Timonen is an experienced software enthusiast with over 10 years of 
experience in the software industry. His experience includes successful team 
leadership combined with understanding complex business domains and delivering 
them into practice. He has been building enterprise architectures, designing 
software, and programming. Although he started his career in the finance industry, 
he currently works as a service architect in a telecommunications company. He 
practices pair programming and is keen on studying new technologies. When he is 
not building software, he spends time with his family, fishing, exercising, or flying 
his radio-controlled model helicopter.

He currently holds the following certifications:

• Sun Certified Programmer for Java 2 Platform, Standard Edition 5
• Sun Certified Developer for Java 2 Platform
• Oracle Certified Master, Java EE 5 Enterprise Architect

www.allitebooks.com

www.andrewslong.com
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related  
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials for 
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Table of Contents
Preface 1
Chapter 1: Backend Development with Express 9

Node.js and Node Package Manager 9
Using Express in Node 12
Using middleware in Express 14

Creating our own middleware 15
Adding templates to the mix 18

Layouts 20
Using sessions in Express 23

Using cookies in Express 23
Adding sessions 25
Redis as a session store 28

Processing forms 31
Cross-Site Request Forgery (CSRF) 34

Very simple authentication 36
Setting up a config file for our app 42

Route mapping 43
Updating our app to use the config 43

Methods to extend an application 45
Summary 46

Chapter 2: Extending Our Development with Socket.IO 47
Node package versions 47
Building a simple Socket.IO app 48

Installing the package 48
Building the client 49
Using Python to serve our site 50
Ping-Pong 51

www.allitebooks.com

http://www.allitebooks.org


Table of Contents

[ ii ]

Creating some interaction 51
Adding the browser side 52
Acknowledgments 54

Broadcasting a message 56
Using the disconnect event 58
Creating namespaces 59

Building our namespace client 61
Adding rooms 66
Using namespaces or rooms 69

Namespaces 69
Finding namespaces 70

When to use rooms 70
Finding rooms 71

Using namespaces and rooms together 71
Using Socket.IO and Express together 72

Adding Socket.IO to the config 72
Who are you? 74

Authorization in Socket.IO 75
Adding application-specific events 79
Using Redis as the store for Socket.IO 79
Socket.IO inner workings 80

WebSockets 80
Ideas to take away from this chapter 81
Summary 82

Chapter 3: Authenticating Users 83
Node package versions 83
Let's build our authentication 84
Registering a Facebook application 85
Using Passport to authenticate to Facebook 88
Using Google for authentication 94
Adding Google authentication to our application 98
Adding more OAuth providers 101
Adding secure local authentication 102

Adding registration 108
Adding a database 110

Password-storing theory 111
OAuth process 112
Summary 113



Table of Contents

[ iii ]

Chapter 4: RabbitMQ for Message Queuing 115
Node package versions 115
Getting RabbitMQ 116

Installing on Mac OS X 116
The RabbitMQ management plugin 118

Installing on Linux 118
Installing on Windows 119

Our first message queue 120
Using the management interface 123
Sending messages 124
Queuing messages 125
Adding another worker 126

Sending messages back 127
Creating StartServer 129
Building the worker 130
Charging cards in real time 131

Adding message queues to PacktChat 133
Topic exchange 133
Building the worker 138

Message queuing in RabbitMQ 139
Summary 141

Chapter 5: Adopting Redis for Application Data 143
Node package versions 143
Installing Redis 144

Installing on Mac OS X 145
Installing on Linux 146
Installing on Windows 148

Using Redis data structures 149
Building a simple Redis application 150

Redis schema 158
Using a hash 159
Keys in Redis 159

Redis persistence 160
Removing Redis keys 160

Using Redis as a message queue 163
Adding Redis to PacktChat 167

Defining the Redis structures 167
Creating our Redis functions 168

Redis is for application state 172
Summary 173



Table of Contents

[ iv ]

Chapter 6: Using Bower to Manage Our Frontend Dependencies 175
Node package versions 175
Installing and using Bower 176
Introducing React 176
Introducing Backbone 184

Using Backbone models 185
Using Backbone collections 186

Summary 188
Chapter 7: Using Backbone and React for DOM Events 189

Bower package versions 189
Finishing Socket.IO 190
Creating React components 195

React summary 203
Backbone models 203

Syncing the models with Socket.IO 203
Creating the model 205
Creating collections 206

The Backbone router 208
Putting it all together 208
Updating CSS and the layout 212
Adding a new worker 213
Trying out our application 216
Summary 216

Chapter 8: JavaScript Best Practices for  
Application Development 217

Node package versions 218
Setting up tests 218

Using Istanbul for code coverage 222
Setting up different environments 224

Twelve Factor App 224
Fixing the config file 224
Creating our environment files 225
Adding more environments 227

Introducing Grunt 227
Building a basic Grunt file 227
Automating our tests 228
Preprocessing our files 229
Using Grunt to clean out a folder 231



Table of Contents

[ v ]

JSHinting our source files 231
Concatenating our code 232
Minifying our code 233
Grunt summary 234

Static files and CDNs 235
Creating an S3 bucket 236
Python and installing virtual environments 238

Scripting our new tools 240
Summary 242

Chapter 9: Deployment and Scalability 243
Creating servers on EC2 243

AWS EC2 summary 245
What is Ansible? 246

Installing Ansible 246
Using Ansible roles 248

Installing RabbitMQ 251
Installing our application 253
Installing the workers 261
Load balancing multiple application servers 261
Automating roles 265

A summary of Ansible 266
Creating new environments 267

Scalability 268
Different types of scalability 269

Horizontal 269
Vertical 270

Summary 270
Chapter 10: Debugging and Troubleshooting 271

Node packages 271
Using Chrome Developer Tools 272

Elements 272
Network 272
Sources 273
Timeline 273
Profiles 273
Resources 274
Audits 274
Console 274

Inspecting requests 274



Table of Contents

[ vi ]

Debugging 277
Frontend debugging 278
Backend debugging 280
Debugging summary 281

CPU profiling our application 281
Taking heap snapshots 283

Frontend memory leaks 286
Memory leak summary 289

Summary 289
Index 291



Preface
Node.js is a fantastic way to begin your journey in building scalable applications. 
As it was built using non-blocking I/O, it can serve more concurrent requests than a 
blocking server, such as Apache, which can be achieved through asynchronous events. 
When a function call blocks, Node.js will reply via a callback. The great foundation of 
Node.js has led to many libraries that allow you to build a scalable application.

Redis is another vital building block of scalable applications. While Redis is not 
Node.js-specific, it offers great support. It fills up the need of shared memory 
between web servers that scalable applications require. Redis also has bindings 
in some other frameworks, which will be covered in this book. This prevents us 
from falling into the trap of needing five different data stores for five different 
frameworks, which only adds to the complexity of our environment and system 
administration overhead.

Building Scalable Apps with Redis and Node.js combines both of these essential building 
blocks into one comprehensive and straightforward project guide. It shows you 
how to build an application from scratch, straight from having an idea all the way 
to deploying it. The first seven chapters show you a specific problem or issue you 
might come across during development. The following chapter will cover some best 
practices when developing. The final two chapters will cover the deployment of your 
site to Amazon Web Services. These particular chapters will also show you how you 
can troubleshoot and debug your application. Although the book covers one project, 
the chapters are organized in such a way that you can jump straight into them, to be 
shown how to create a certain feature or learn a specific topic. It is recommended, 
though, that you work from the beginning of the book. You will find that because 
we will be building an entire site, the code from one chapter will have relevance to 
another. However, most code samples will be usable in other contexts.



Preface

[ 2 ]

On a personal note, I will say that using JavaScript for backend development is 
refreshing. I readily admit that when I first heard about Node.js and the idea of using 
JavaScript in the backend, my initial reaction was "Why would I want to do that?" I 
have run the gamut of server-side languages (PHP to Ruby and Python, and C# .NET). 
I have worked with many different web servers (Apache, IIS, built-in servers, Unicorn, 
Gunicorn, and so on). Throw in the fact that all modern web applications require some 
JavaScript and you start to build mental barriers, which is especially true if the syntax 
is different (consider comparing Ruby to JavaScript, for example). Node.js allows you 
to remain in the JavaScript mode, utilizing the same design patterns and even the same 
tools. You will also be glad to hear there is not much to set up. You build your Node.js 
app and then you simply run it. All these reasons are exactly why Node.js is one of the 
best web application/serving frameworks and why I, personally, love to use it.

What this book covers
Chapter 1, Backend Development with Express, shows us how to serve our pages using 
Express. Express is a full-featured web application framework that provides us with 
many features while writing very little code. It also has a rich middleware system 
that others have extended. This middleware allows us to work with form data as 
well as use templates and sessions. We will build the foundation of the application, 
on which all the other chapters will be based.

Chapter 2, Extending Our Development with Socket.IO, shows us how to build real-time 
applications using WebSockets. WebSockets are the next step in the evolution of 
dynamic web pages that allow users to interact instantaneously. This chapter also 
covers the use of tying Socket.IO to the sessions that Express creates.

Chapter 3, Authenticating Users, shows us how to build a login page that actually 
works! We will be using the Passport framework to build our authentication 
functions. Passport has performed a lot of heavy lifting in building connectors to 
different providers. Many of these implemented OAuth or OAuth 2.0. If you have 
ever had to develop against these different OAuth providers, you can appreciate 
the work that went into each library. You will also be shown how to store local 
passwords securely.

Chapter 4, RabbitMQ for Message Queuing, covers the topic of message queues. These 
are a requirement of any scalable application, allowing you to break your application 
up, that serves both its complexity and scope. In this chapter, we will cover some 
great use cases for this. In addition, you will be able to build your own message 
queues and tie them to functions.



Preface

[ 3 ]

Chapter 5, Adopting Redis for Application Data, shows us how to use the store 
information and retrieve it from Redis. This is important, as the Redis data storage 
engine is unlike any relational database. Thinking of it as such can actually create 
issues! We will cover the commands you will use the most throughout your 
application, as well as take a look at how Redis implements message queuing  
in your application.

Chapter 6, Using Bower to Manage Our Frontend Dependencies, begins to take a look  
at how you can begin the frontend development of your application. We will not 
have an application without a frontend. We will talk about the frameworks that  
will be used and why they are chosen.

Chapter 7, Using Backbone and React for DOM Events, covers the backbone, if you can 
excuse the pun, of the frontend of our application. The two most important tasks 
when using JavaScript in a browser are DOM manipulation and responding to 
events. You will learn how to listen for real-time events and then interact with the 
page. Backbone and React will help us build the maintainable code to do this.

Chapter 8, JavaScript Best Practices for Application Development, shows us how to build 
better JavaScript. JavaScript, as a scripting language, will run despite making many 
mistakes, which is both a good and a bad thing. However, you will still need to 
know if you have forgotten a semicolon or caused a runtime error. We will achieve 
this by building a repeatable build system. You will also be shown modules and how 
to module proof the code.

Chapter 9, Deployment and Scalability, shows us how to remove our site off localhost. 
It is critical to get a deployment script right, as it is very easy to miss a step when 
deploying. We will cover how to deploy to one, two, or more servers, including 
having different environments from which we can deploy. The advantage of these 
multiple servers for your application is that it is horizontally scalable, making it easy 
to add more servers.

Chapter 10, Debugging and Troubleshooting, shows us how to look at the context of 
a function call because strewing console.log() functions everywhere is a horrible 
method to debug. We will also learn how to track memory leaks in both the frontend 
and backend. If you have had experience in debugging JavaScript in Chrome,  
you will feel right at home here.



Preface

[ 4 ]

What you need for this book
A computer and an editor! Node.js is cross-platform; so Windows, Mac OS X, or 
Linux will all work. You can use any text editor, although I will be using Sublime 
Text 2 for some of the coding. I will also use an IDE for other parts, which is JetBrains 
PyCharm, with its Node.js module installed. You can use PyCharm, WebStorm, or 
IntelliJ IDEA from JetBrains, as they are all cross-platform.

You will also need the latest (at the time of this writing) version of Node.js, which is 
v0.10.26. The API could change (it has changed previously), so later versions could 
cause issues. The version of each Node package will be shown to you when you first 
go to install and use it.

The level of expertise you will need is just a little familiarity with Node and 
experience with building applications. We will touch upon many different 
frameworks throughout the book. You do not need to know about any of them  
in depth, and that is why you are reading this book! You should also know how  
to run things from the console (whether it is Mac OS X, Linux, or Windows)  
and how to get and install software packages.

Here is a summary of the version of different technologies you will be using in  
some of the chapters:

• Each chapter will list out all of the npm packages that will be needed  
for development.

• Chapter 4, RabbitMQ for Message Queuing, will require RabbitMQ  
Version 3.2.3.

• Chapter 5, Adopting Redis for Application Data, will be using Redis  
Version 2.8.6.

• Chapter 9, Deployment and Scalability, will require Python 2.7+ or Python 3+ 
to be installed. It will be used for building the deploy script. You don't need 
to be fluent in Python, as the syntax is very straightforward and I will cover 
what you will need to know. We will also need an SSH client. Mac OS X 
already has both installed. Linux will have an SSH client and will most likely  
have Python installed already, and you can install both in Windows.

• Chapter 10, Debugging and Troubleshooting, will be using Google Chrome. 
If you have worked in web development, you probably already have this 
installed. If you do not have Chrome, it is free and can be easily downloaded 
from Google.

I will personally be using Mac OS X using iTerm as my terminal application and 
Homebrew for installing software packages. If I run any commands, it will be in  
this context.



Preface

[ 5 ]

Who this book is for
This book is geared toward an intermediate JavaScript developer. It is assumed 
you have built applications using Node.js and that you may have used some of the 
frameworks before. We will work through each framework separately and also 
explain how to tie them all together. This book also touches upon the backend  
and frontend of JavaScript development. You will find this book helpful if you  
are well-versed in one, but lacking in the other.

This book is also perfect for someone who has read about scalability but is not sure 
what exactly this means for their projects. We will cover how to build applications 
that are horizontally scalable.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Our app.js file kicks off everything that deals with Express."

A block of code is set as follows:

var sayMyName = function(name){
//please don't alert anything
//this is not 1992
alert(name);
}

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

//get the err and data
function(err, data) {
//you have access to data here
var id = data.objects[0].id;
}

Any command-line input or output is written as follows:

# npm install express --save

www.allitebooks.com

http://www.allitebooks.org


Preface

[ 6 ]

New terms and important words are shown in bold. Words that you see on  
the screen, in menus or dialog boxes, for example, appear in the text like this:  
"Click on the Login button to log in."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title through the subject of your message.

If there is a topic you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ 7 ]

Downloading the color images of this book
We also provide you at a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/4480OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded to our website, or added to any list 
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works, in any form, on the Internet, 
please provide us with the location address or website name immediately so we  
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support




Backend Development  
with Express

This chapter will show how to set up Express for our application. Express is the 
application framework for Node.js. If Node.js is the foundation, Express will be 
the framework of our house. Express provides us with routing, sessions, form 
processing, and so on. Entire books have been written on it, so we will just touch 
on what we require. If you have never used Express before in a Node project, don't 
worry, you will get a good feel of it by the end of this chapter. If you were lucky 
enough to use Express before, then hopefully I can show you something you don't 
already know.

The topics that we will cover in this chapter are as follows:

• Serving and responding to HTTP requests
• Routing
• Middleware
• Templating
• Creating sessions
• Parsing form data
• Integrating everything together

Node.js and Node Package Manager
Node.js is a platform that uses Google Chrome's JavaScript engine. This means that 
we can create server applications using JavaScript. We do not need an in-depth 
knowledge of everything on Node.js, we only need it to be installed. Node.js binaries 
are packaged for all the major platforms at http://nodejs.org/download/.

http://nodejs.org/download/


Backend Development with Express

[ 10 ]

We will use npm (also known as Node Package Manager) to install all the libraries 
that we are going to use. Most languages/platforms/frameworks move to a 
managed packaging system. This will be familiar if you have ever used Python's pip 
with virtualenv, Debian's apt-get, or Microsoft's NuGet, to name a few. Managed 
packaging allows developers to explicitly define what dependencies your application 
requires. We will install almost all the Node packages locally. This allows us to 
install and test new dependencies separately without creating conflicts on the 
system. By default, npm installs the packages to a folder named node_modules  
in the root of our project. When a package is used in a file, Node will check this 
directory for the package. The code that accompanies each chapter will not have  
the node_modules directory included, but it will have the file that defines what  
is needed. When we install something globally, we will use the –g flag for npm.  
This installs the packages to a central node_modules directory so that every Node 
project can use the package. If you have built a Node.js project before, this should  
not be new. I will write out the commands for anyone that has not used npm.

Node packages are very notorious for having fast release cycles, which means that 
by the time you have read this, some of the packages you will use might be of a 
different version. There are a few ways to combat this. We can use npm shrinkwrap, 
which will explicitly define each package and all its dependencies. Another way, 
is to include all the dependencies into source control, so we are completely sure 
what package and version is installed. I will list out the versions I have used, so 
that you can install the same versions. As an example, Express has already gone 
through a major version upgrade (from Version 3.x to 4.x), which was not completely 
backwards compatible.

The following are the versions that we will use:

• body-parser: 1.4.3
• connect: 3.0.2
• cookie-parser: 1.3.2
• csurf: 1.3.0
• ejs: 0.8.5
• express: 4.6.1
• express-partials: 0.2.0
• express-session: 1.6.5
• redis: 0.10.1
• connect-redis: 1.4.7
• connect-flash: 0.1.1



Chapter 1

[ 11 ]

To ensure that these are the versions installed, you can create a file in the root of the 
project named package.json. The file should look similar to the following code:

{
  "name": "NodeChat",
  "version": "0.0.0",
  "main": "app.js",
  "scripts": {
    "stop": "echo not implemented",
    "start": "node ./app.js"
  },
  "dependencies": {
    "ejs": "0.8.5",
    "express": "4.6.1",
    "express-partials": "0.2.0",
    "redis": "0.10.1",
    "connect-redis": "1.4.7",
    "connect-flash": "0.1.1"
  }
}

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

The package.json file defines attributes about our project using JSON. The key 
property that we are concerned with here is dependencies. We define each one in  
the dependency object along with the version. Note that each dependency is pinned 
to a specific version. We can add a line to install Express 4 or above as follows:

"express": ">=4.0.0"

The issue with this is that we will not know what version we can get. Always prefer 
explicit dependencies to implicit ones.

We can then install the required packages by running the following command:

npm install



Backend Development with Express

[ 12 ]

Using Express in Node
With everything installed, we can create our project directory. It does not matter 
where you create it (I created a projects directory under my user folder), but all 
the files we created will be referenced from the root of this folder. To do this, create 
an app.js file. Note that the aim here is to build our very own, simple Express 
application. To get started, open app.js and add the following code to it:

var express = require('express');
var app = express();

app.get('*',function(req, res){
  res.send('Express Response');
});

app.listen(3000);
console.log("App server running on port 3000");

To start the Express server, we will run the following commands:

node app.js

npm start

The first tells Node to run using this file. The other uses the value from our  
package.json file under scripts.start. We can then open our browser  
to http://localhost:3000. Any path we put into our browser will return  
the Express response, which you can see in the following screenshot:



Chapter 1

[ 13 ]

In order to receive this response, the app.get function uses a regular expression to 
match any GET request, no matter the path. The req and res objects are the request 
and response objects. The res.send Express function adds all the basic headers for 
us, before sending the response back.

The Express application can respond to all the common HTTP verbs such as GET, 
POST, PUT, and DELETE. As you have guessed by now, we will use these verbs in 
order to use the method call passing in the path, as well as the callback.

Although this works well, it is in fact not very useful. We will need to define routes, 
which are specific HTTP verbs matching with the URL. We need to add all of our 
routes and connect them to functions. Our application is very simple from a routing 
standpoint. We will have an index page, a login page that has a form, and a chat 
page. Although we can just as easily add all of these functions to app.js, app.js, it 
will then become very difficult to maintain quickly. Instead, we will create a routes 
folder and then add an index.js file. Our folder structure should then look similar 
to the one in the following screenshot:

Inside the index.js file in routes, we will create all our routes with the  
following code:

module.exports.index = index;
module.exports.login = login;
module.exports.loginProcess = loginProcess;
module.exports.chat = chat;
function index(req, res){
  res.send('Index');
};
function login(req, res){
  res.send('Login');
};
function loginProcess(req, res){
  res.redirect('/');
};
function chat(req, res){
  res.send('Chat');
};



Backend Development with Express

[ 14 ]

Following this, app.js should only use our routes. Our app.js file should look 
similar to the following code:

var express = require('express');
var app = express();
var routes = require('./routes');

app.get('/', routes.index);
app.get('/login', routes.login);
app.post('/login', routes.loginProcess);
app.get('/chat', routes.chat);

app.listen(3000);
console.log("App server running on port 3000");

Our routes are now nice and clean, which also lends itself to aliases. If we  
want people to be able to see the login form from /login and /account/login,  
we just have to add the following line:

app.get('/account/login', routes.login);

We can also group related functions together in the same file. Our example is simple, 
but it will be easy to have as many files mapping to specific routes. Each file would 
just have the functions that relate to its primary duty, which means you could then 
wire them to any route you wanted.

You may already be asking, "What happens when a route is not defined?".  
This is, in fact, a great question, and it was something I was just about to discuss.  
By default, Express will respond with Cannot GET /notfoundURL. Usually, it is a 
bad idea to keep this as our 404 response. What we actually want is to tell the user 
that they have made a wrong turn somewhere. This naturally leads us to our next 
major idea—using middleware in Express.

Using middleware in Express
One of the greatest things about Express is that it is easily extended, which 
is achieved by using middleware. Every request makes its way through the 
middleware layer. In fact, our routes are just the final middleware function.  
We return a response, which means that at this point, the request is done and  
no more middleware functions are executed.



Chapter 1

[ 15 ]

Creating our own middleware
To create our own middleware, all we have to do is create a function that accepts  
the parameters req, res, and next. Inside of this function, we should have access  
to request and response, and the ability to tell Express to move on to the next piece  
of middleware.

To add a middleware layer to Express, we use app.use(), which allows us to take 
a middleware function. So, let's create our own 404 middleware function! Create a 
directory named middleware and a file called errorhandlers.js, before putting  
the following code in the file:

exports.notFound = function notFound(req, res, next){
  res.send(404, 'You seem lost. You must have taken a wrong turn back 
there.');
};

Now, update app.js and put this code right after the initial block of variable 
declarations, but before we define routes. This should be line 4. This is shown  
as follows:

var errorHandlers = require('./middleware/errorhandlers');
app.use(errorHandlers.notFound);

We didn't call the next function here because no other middleware matches  
this route at this point. We can safely send the response by letting the user know 
that they are lost. Let's fire this up and check it out. We will type a nonexistent route, 
http://localhost:3000/notfound, into our browser. So far, everything looks 
good. Now, let's try a known route, http://localhost:3000/. Uh-oh! Everything  
is responding as not found. What did we do wrong?

If you can keep a secret, I'll let you know that I knew this wasn't 
going to work. Middleware runs in the order they are added in 
Express. We only added one middleware, which means it runs on 
every request. This middleware also returns a response and does 
not run the next() function.
Since I trust that you can keep secrets, I will tell you another one. 
You can actually call next() after sending a response. You will, in 
all probability, create an error because another middleware/route 
will try to send a response that you cannot. To sum this up, if you 
send a response from middleware, do not call next(). The default 
action of our routes is to just return a response and not run next.

www.allitebooks.com

http://www.allitebooks.org


Backend Development with Express

[ 16 ]

How do we fix this issue? Pretty easily, in fact. We will add in another piece of 
middleware before our notFound handler. It will be the app.router middleware, 
since this is the function that maps all the routes. If a request matches a defined 
route, then it will execute the function we have defined for that route and return 
a response. If it doesn't match anything, the next middleware will be called. You 
should then open up app.js and move app.use(errorHandlers.notFound)  
under the routes we have created:

app.get('/', routes.index);
app.get('/login', routes.login);
app.post('/login', routes.loginProcess);
app.get('/chat', routes.chat);
app.use(errorHandlers.notFound);

This will check the request to see if it matches a route. If not, run the next 
middleware, which is the notFound function. Our app is now running how we 
expect it to. Try loading all the routes, and then run the routes that we know will 
create a 404 error to test our new middleware.

Let's add a few more pieces of middleware. First off, let's add a logging middleware. 
Create log.js under the middleware folder and put the following code in:

exports.logger = function logger(req, res, next){
  console.log(req.url);
  next();
};

Then, modify app.js, and add this as the first middleware:

var errorHandlers = require('./middleware/errorhandlers');
var log = require('./middleware/log');
app.use(log.logger);

app.get('/', routes.index);
app.get('/login', routes.login);
app.post('/login', routes.loginProcess);
app.get('/chat', routes.chat);
app.use(errorHandlers.notFound);

Each request will log the URL to the console. We did not modify the request in 
any way, so it continues down the middleware path to the route or the notFound 
handler. We can change this to write to a file or a database, but we are keeping things 
simple for now (is this foreshadowing? It probably is!). Also, we do not need to 
modify the request or response in any way.



Chapter 1

[ 17 ]

Although we built our own logging middleware for 
demonstration purposes, Express comes with its own  
logging middleware, which is express.logger().

Next, we will add the ability to serve static assets. Most sites use CSS and JavaScript, 
and we don't want to send these files through the view rendering engine (a concept 
we will get to later in this chapter). Express comes with middleware that can serve 
static files. So, create a folder in our project called static, and then create a file 
called static.txt, putting whatever you want in the file. Now, add the static 
middleware right above the router, as follows:

app.use(log.logger);
app.use(express.static(__dirname + '/static'));

Anything you put in this folder will be served. Browse to http://localhost:3000/
static.txt, and you should see whatever you added to the file.

Finally, let's add an error handler. This middleware has a different function 
signature. It takes the four parameter functions of err, req, res, and next.  
This conforms to the node practice of passing the error as the first parameter.  
We will add the error handler inside middleware/errorhandlers.js.  
To conclude, add the following code to the file:

exports.error = function error(err, req, res, next){
  console.log(err);
  res.send(500, 'Something broke. What did you do?');
};

Here is our final middleware stack in app.js:

app.use(log.logger);
app.use(express.static(__dirname + '/static'));
app.get('/', routes.index);
app.get('/login', routes.login);
app.post('/login', routes.loginProcess);
app.get('/chat', routes.chat);

app.use(errorHandlers.error);
app.use(errorHandlers.notFound);

At this point, we cannot test the error handler. Every request we create does not 
throw an error, so let's create a route that actually does. Add this to the end of our 
route definitions:

app.get('/error', function(req, res, next){
  next(new Error('A contrived error'));
});



Backend Development with Express

[ 18 ]

Remember that a route is just another piece of middleware. We create an error 
here to pass to the error handler. The only middleware that will match the function 
signature with an error is our new error handler. If we go to /error, we will see that 
our logging middleware writes to the console, followed by the error middleware 
writing our error to the console. It then concludes with Something broke. What did 
you do?. Our little website is now not blowing up on errors and logging everything.

Right now, we are serving HTTP responses based on routes and wired-up logging, 
404 not found error page, and error handling middleware. This is all in roughly 20 
lines of code in app.js. Not too bad!

Adding templates to the mix
We now have a working site that has routes and middleware, but we are missing one 
import thing—HTML. Our requests come back with a Content-Type of text/html. 
Although res.send() adds this header for us, it is just text. It is missing a document 
type, head, and body, which is where another feature of Express comes in: templates.

We will use Embedded JavaScript (EJS) as our view template engine. I must notify 
you here that many tutorials, and even the Express command-line utility, default the 
view engine to Jade. I have used a few other template systems, which are not limited 
to PHP (which by itself is a kind of template system), Python's Django template, and 
Microsoft's Razor engine in MVC, to name a few. Luckily, EJS feels closer to all of 
these. I also feel that I don't need a parser to build my HTML. I want to write HTML 
and then add my variables where I need them. These are just a few reasons why we 
will continue using EJS.

If you like to use Jade, a major part of the application configuration 
will be the same. You will just have to build your own templates.

On a side note, I will reiterate that we don't want to install Express globally.  
You will see answers on Stack Overflow asking if the questioner has installed it 
locally or globally. Everything we need to do can be done locally. There is nothing 
that Express installed globally can do differently, where even the command-line 
utility works in this way:

 ./node_modules/.bin/express --help. 



Chapter 1

[ 19 ]

We need to enable Express's view engine using the Express command app.set(). 
Before our middleware stack (app.use()), we should add the following:

app.set('view engine', 'ejs');
app.use(log.logger);
app.use(express.static(__dirname + '/static'));

To see a list of possible settings, visit http://expressjs.com/api.html#app-
settings. The two settings we are concerned with now are view engine and views. 
The views setting is used to set the view directory. By default, it is set to the views 
directory under the current directory. We will use the default value, so now we 
should create a directory named views. Our current folder structure should then 
look as shown in the following screenshot:

Under views, create a file named index.ejs and add the following HTML code to it:

<!DOCTYPE html>
<html>
<head>
  <title>Index</title>
</head>
<body>
Index
</body>
</html>

Following this, open up index.js from routes, and modify the index function  
as follows:

exports.index = function index(req, res){
  res.render('index');
};

http://expressjs.com/api.html#app-settings
http://expressjs.com/api.html#app-settings


Backend Development with Express

[ 20 ]

Restart node and load the root. Alright, you now have a valid HTML5 document. 
Express knows to look in the views directory (views setting) for index.ejs  
(view engine setting). This is working great, but it is not very dynamic. We want 
to be able to change the response. We will need to modify the index.ejs file and 
change the head element, which you can do in the following way:

<head>
  <title><%= title %></title>
</head>

The main features we will use from EJS are <%= %>, which will output the value 
of the variable into the HTML document and <% %>, which allows us to execute 
JavaScript. Any if or for loop will also be used, in addition to any plain JavaScript.

Now, we have to pass a title variable to the view, so you can add the following code 
to the index function:

res.render('index', {title: 'Index'});

Browse to http://localhost:3000/, and you should see that the title of the tab 
is now Index. You can view the source of this page and see that it is rendered in 
HTML. This is great but not very maintainable. Essentially, this is no different than 
running a completely static website. So, we next need to add a layout.

Layouts
Express 3 lets each template-rendering library implement its own layout, which 
means it does not force any set way on the layout. This is different from Express 2 
as it's defaulted to using a file named layout in the views directory. You will have 
to be careful that you do not get information about Express 2 when searching on 
the Internet. Our package of EJS does not have layout support, but we have already 
installed a package that does, which is express-partials.

We have to do a little setup to let Express know that we are using partials. The first 
step is to get a reference to our new library, which you can do by:

//all the other variables declarations at the top of app.js
var partials = require('express-partials');

Next, we add it as middleware. The only caveat here is that it has to be before our 
routes. This makes sense because we will have to render our complete page before 
the server sends a response.

app.use(partials());
//all other middleware functions



Chapter 1

[ 21 ]

Finally, we can add a view option for the default layout.

//after variable declarations 
app.set('view options', {defaultLayout: 'layout'});
//but before the middleware

Setting the default layout is not required, but I will recommend it. Otherwise,  
we will have to define the layout for every view. We can override the default  
layout (or set it in the first place) using the render function:

res.render('index', {layout: 'layout', title: 'Index'});

Now that we have our layout setup, we can create it and update all our routes  
to use the layout. Create a file called layout.ejs in the views folder. Add the 
following code to it:

<!DOCTYPE html>
<html>
<head>
  <title><%= title %></title>
</head>
<body>
<%- body %>
</body>
</html>

Now, we can create two more files called login.ejs and chat.ejs. Finally, we have 
to update each res.render function to have the name of the file to render and a title.

exports.login = function chat(req, res){
  res.render('login', {title: 'Login'});
};
exports.chat = function chat(req, res){
  res.render('chat', {title: 'Chat'});
};

Now, all the routes will return valid HTML.

Let's go ahead and make our layout pretty. We will add the HTML code that our 
app will use, and the CSS framework we will be using is Bootstrap. It's great to get 
projects off the ground as we can start to be concerned with the code as opposed 
to the design. We will use a theme named Cosmo from http://bootswatch.
com/ so that our site does not look like a default Bootstrap site. We can get the CSS 
framework from http://bootswatch.com/cosmo/. Once you have downloaded the 
CSS file, create a new directory named css under the static directory. The path from 
root should be static/css/cosmo.min.css.

http://bootswatch.com/
http://bootswatch.com/
http://bootswatch.com/cosmo/


Backend Development with Express

[ 22 ]

You can recognize Bootstrap sites as they have the same font, 
buttons, color, and CSS elements. If you are going to build 
something, you will want to differentiate it from other sites. 
You want users to associate with your site with just a look.

After carrying out all of these tasks, here is what our layout should look like:

<!DOCTYPE html>
<html>
<head>
    <title><%= title %></title>
    <link rel="stylesheet" href="css/cosmo.min.css">
</head>
<body>
<div class="container">
  <div class="row">
      <div class="col-sm-4"><h1>PacktChat</h1></div>
  </div>
  <div class="row">
  <%- body %>
  </div>
</div>
</body>
</html>

Refer to the following screenshot to see the index page in the new layout:

I recommend using Bootstrap when you start your projects. You can 
easily get a good-looking site without spending any time in design. 
Another great option is to use Zurb's Foundation. Using either of 
these frameworks is a good idea if you do not have much design 
experience. You can always go back and change the look.



Chapter 1

[ 23 ]

Using sessions in Express
Express uses the same methods, cookies, as most other web frameworks to  
track sessions. A cookie will have the session ID so that Express can look it up  
on each request.

Using cookies in Express
The latest version of Express has taken out much of the middleware that was 
previously included in Express. This is important when migrating from Express  
3 to 4. We will use the cookie-parser package, which should already be installed. 
We will now add cookie parsing to our app. It is a middleware, so we will put it with 
all the other middleware. Remember that the middleware is processed in order, so 
that we can add each before the middleware that will actually use it, which is our 
routes. We will do this by adding a variable declaration and another function in the 
middleware stack.

//with all the other requires at the top of the file
var cookieParser = require('cookie-parser');
//in the middleware stack
app.use(express.static(__dirname + '/static'));
app.use(cookieParser());

We will repeat this pattern many times over this chapter and the next. Anytime 
there is require, it will be at the top of the file. The code that comes along with the 
book will also declare all the variables together. There will be one var, and each line 
will have require with a comma instead of a semicolon. Whether there is one var 
declaration or many, the code will still run. Further down in the file, we will use our 
new variable. I will try to include landmarks in the code to help, but we will add a 
lot of code in many places at times. Refer to the code that is supplied with the book.

The cookie parser gives us access to req.cookies. This will be an object that we 
can read the values out of. At this point, if we run our application, nothing will be 
different. We have not set cookies, nor are we trying to access them. Let's change that.

First, let's set up our views to show us the cookies in the request. In index.ejs 
under views, let's add the section. The file should look similar to the following code:

Index
<div>Cookie passed: <%= cookie %></div>



Backend Development with Express

[ 24 ]

We now have to pass the cookie to our view. You should edit routes/index.js  
and add this to our view function. Note that we do not need to specify a 
layout because we have a default layout set with app.set('view options', 
{defaultLayout: 'layout'}).

exports.index = function index(req, res){
  res.render('index', {title: 'Index', cookie: JSON.stringify(req.
cookies)});
};

Let's check it out in the browser. We should see that we have a blank cookie object  
in our request. It is time to create our own cookie. Open the JavaScript console in  
the browser (I am using Google Chrome) and type this in:

document.cookie="test=Test Cookie"

Refresh the page and see that it has our cookie in it. We can see that the request 
cookie object is just a simple JavaScript object, as seen in the following screenshot:

Next, we will set a cookie from the server. Express has a simple way to do this:  
in our index.js file under routes, let's add a cookie in the index function:

exports.index = function index(req, res){
  res.cookie('IndexCookie', 'This was set from Index');
  
res.render('index', {title: 'Index', cookie: JSON.stringify(req.
cookies)});
};

Restart the node and load the page twice. The first restart will set the cookie, and  
the second restart will read it into our response. From the following screenshot,  
you should now see both cookies on our page:



Chapter 1

[ 25 ]

You can also easily get rid of cookies by using clearCookie off the response object:

res.clearCookie('IndexCookie');

If you want to do it from the browser side, you can usually get a list of current 
cookies. In Chrome, this is in the developer tools. Click on the menu button in the 
upper right and navigate to Tools | Developer Tools. Then click on Resources | 
Cookies. You can then right-click on a specific cookie in the list and delete the cookie 
or select Clear All to delete all the cookies, as shown in the following screenshot:

By now, you should be feeling good about adding and removing cookies to requests 
and responses, so now let's see how to tie these cookies to a session.

Hopefully, I have demonstrated how easily any attacker can forge 
cookies. Do not store sensitive information in your cookie. For example, 
storing a Boolean variable whether or not the user is logged in is a bad 
idea. We will shortly cover how to do all of this securely.

Adding sessions
Sessions allow us to store data about requests that are tied together with a cookie. 
HTTP is stateless, but cookies that map back to a session allow us to know that this 
is the same browser making multiple requests. You should be able to guess by now 
that Express comes with a great session middleware.

The first thing to know is that we need to store our sessions somewhere. For now,  
we will use a memory store.

www.allitebooks.com

http://www.allitebooks.org


Backend Development with Express

[ 26 ]

You should add this to our variable declarations at the top of app.js:

var session = require('express-session');

Next, add the middleware. You should remember to add it under our cookieParser 
middleware, as follows:

app.use(cookieParser());
app.use(session());

The express session uses cookies, so the cookie object needs to be present before it 
can use the session.

Now, we can use our session. We will update our index page to show what is stored 
in our session. Edit index.ejs under views to display a session:

Index
<div>Cookie passed: <%= cookie %></div>
<div>Session: <%= session %></div>

The session middleware adds a new object to our request, which is req.session. 
Let's pass this to the view from index.js under middleware:

function index(req, res){
  res.cookie('IndexCookie', 'This was set from Index');
  res.render('index', {title: 'Index', cookie: JSON.stringify(req.
cookies), session: JSON.stringify(req.session)});
};

Once you load this up, you will find that we get an error. If we check our console,  
as you can see from the following screenshot, we need to add a secret option  
for sessions:

We can now do this by revisiting our session middleware and adding a secret option:

app.use(session({secret: 'secret'}));



Chapter 1

[ 27 ]

The secret option uses the string we pass in to create a hash of our session ID, 
so we can tell if someone has tried to tamper with our cookie (also known as a 
request forgery). We just covered ways by which users can easily delete and create 
any cookie that they want. If our cookie had a session ID in it, which for example 
could be 1234, a user could delete that cookie and create a new one with a session 
ID of 1235. As far as the server knows, the next request comes from the user who 
has session 1235. A hashed session ID makes this much more difficult. If the user 
does not know the secret (don't actually use secret or 123456, use something such as 
http://randomkeygen.com/ or http://www.guidgenerator.com/ to get a unique 
secure secret), then their ability to create a valid token is reduced. This is a very 
contrived example, but it should illustrate why we need this.

Reload the node and refresh twice. We can now see our session and the cookie that 
was created in the following screenshot:

We can test our security by deleting our connect.sid cookie and creating a new 
one. On the next request, we will get a new connect.sid cookie set.

Let's build a simple page counter in the session. On each request, we will increment a 
counter. We can do this easily by adding a middleware function. We only need  
to remember to add it under the session middleware so that we have access to  
req.session; we will write this function inline as we are not going to keep it  
in our final middleware stack. Add this to the stack right under session:

app.use(function(req, res, next){
  if(req.session.pageCount)
    req.session.pageCount++;
  else
    req.session.pageCount = 1;
  next();
});

http://randomkeygen.com/
http://www.guidgenerator.com/


Backend Development with Express

[ 28 ]

Test it by going around and loading a bunch of pages. The pageCount session 
variable should track each different request you make. The request could be a 404 or 
even an error. Our middleware runs and adds to the total before any error handling. 
One thing to remember is that only our index view will output pageCount. After 
testing this, we can remove the middleware.

One limitation to how we have set this up is that only the node instance that created 
the session also has access to it. If you run multiple node instances, you will need to 
have a different session store from memory.

Redis as a session store
Redis is an in-memory key-value store. We will use Redis to hold the session ID as 
a key and the session data as a value. It is important to note that we will not get into 
what Redis is and how to install it here as Chapter 5, Adopting Redis for Application 
Data, will cover the topic. Also, we will not cover the security issues with Redis now 
as we just want to get it working for our sessions. However, we will cover how to 
add it as an Express session store.

We will use the two packages redis and connect-redis. To use a Redis store,  
we assume that we are running Redis locally and that Redis' version is above 2.0.0 
(the latest version, as of writing this book, is 2.8.6, so this isn't a huge hurdle). First, 
let's change our reference to the memory store so that our variable session will point 
to a connect-redis instance. Change these variable declarations in app.js:

var session = require('express-session');
var RedisStore = require('connect-redis')(session);

Connect-redis extends the session. We can now set up our middleware. Change our 
session middleware to this:

app.use(session({
  secret: 'secret',
  saveUninitialized: true,
  resave: true,
  store: new RedisStore(
    {url: 'redis://localhost'})
  })
);

We use the same secret, but we will now create a new RedisStore object with 
an options object using the Redis server's URL. This URL can take a username, 
password, and port, if all of these were not the default values. At this point, we can 
restart our server and load up our index page. It should be working in exactly the 
same way as it was with an in-memory store. We also have a couple of other options. 
If these are not added, a warning is thrown.



Chapter 1

[ 29 ]

Let's actually take a peek into what is happening here. We know at this point that 
our session is tracked with a cookie, but unfortunately, this is a signed value. We 
can get access to this by changing our cookieParser middleware to use the same 
secret as the session middleware. The following line of code is what our new 
cookieParser line should look like:

app.use(cookieParser('secret'));

Remember that the secret passed must match the one used for the session.  
This is because the session middleware creates the cookie and the cookieParser 
middleware reads it out. We will now have req.signedCookies. Any signed cookie 
will be here, so it is time to test this out. We will need to update index.ejs in the 
View folder and index.js in the routes folder provided in the code bundle.

The index.ejs file in the views folder looks like:

Index
<div>Cookie passed: <%= cookie %></div>
<div>Signed Cookie passed: <%= signedCookie %></div>
<div>Session: <%= session %></div>

The index.js file in the routes folder looks like:

exports.index = function index(req, res){
  res.cookie('IndexCookie', 'This was set from Index');
  res.render('index', {title: 'Index', 
    cookie: JSON.stringify(req.cookies), 
    session: JSON.stringify(req.session), 
    signedCookie: JSON.stringify(req.signedCookies)});
};

From the following screenshot, you can see that our unsigned cookies will be first 
and our connect.sid cookie will be second:



Backend Development with Express

[ 30 ]

The browser will still get the signed cookie, as you can see in the following screenshot:

Without getting too much into Redis, we will look up our session in Redis.  
We can quickly install Redis on Mac OS X by running the following command:

brew install redis

We can then launch redis-cli (which we should now have if we have Redis installed. 
If you face issues, jump to Chapter 5, Adopting Redis for Application Data). We can now 
run a command against Redis. connect-redis will prepend sess: to all the session keys 
in Redis. To see our session, we will run GET sess:YOUR-SESSION-ID, as shown in the 
following command line:

$ redis-cli

127.0.0.1:6379> GET sess:0DMsXhobExvbCL3FFeYqRGWE

"{\"cookie\":{\"originalMaxAge\":null,\"expires\":null,\"httpOnly\":true,
\"path\":\"/\"}}"

We can see that this returns our session object as an escaped string. You can compare 
this to the object that was returned from our response and see that it is the same. 
We have successfully moved our sessions to a data store that can be accessed from 
multiple servers. One of the most basic ideas of creating a scalable application is not 
to keep any shared state on the local instance. Previously, with the memory store  
for sessions, each server had its own state. Now, we can have multiple servers  
share the state. Here, we are using Redis, but you can use any data store to do this 
(which is not limited to memcache, MongoDB, Postgres, and many others). We are 
not going to do this here in this chapter, but we have started to prepare our app to  
be scalable. Another thing to note is that the Redis server is running on localhost.  
For a production-ready scalable application, Redis will be moved to a separate  
server or even several servers.

Let's clean up our views a little. You definitely do not want to send all of a user's 
session data to them. In index.ejs in the views folder, remove everything except for 
Index. In index.js in the routes folder, drop all the other attributes except for title, 
and remove the line that sets the cookie. This is shown as follows:

exports.index = function index(req, res){
  res.render('index', {title: 'Index'});
};



Chapter 1

[ 31 ]

Processing forms
All web frameworks that are useful allow you to process forms. We have a route that 
we have not tested yet, which is app.post('/login', routes.loginProcess);. 
We have only been using and testing GET routes, so let's build a form and then do 
something with it.

We will create the form on the /login GET request. Before we modify our template, 
we will need some local styles that extend Bootstrap. Firstly, create a file that is called 
style.css in static/css, and add the following styles to it:

.facebook {background: #3b5998; color: #ffffff;}

.google {background: #dd4b39; color: #ffffff;}

.top-margin {margin-top: 20px;}

These are the styles that we will use to extend base Bootstrap. The styles are mainly 
for making sure that we color our social buttons correctly.

Please don't forget to add this to our layout:

<link rel="stylesheet" href="css/style.css">

We can now create our login form, which you can do by opening up login.ejs in 
login.ejs and adding the following code:

  <div class="row">
      <div class="col-sm-8 col-sm-offset-2">
          <div class="row">
              <div class="col-sm-12">
                <form method="post">
                  <div class="form-group">
                      <label for="username">Username</label>
                      <input type="text" class="form-control" 
id="username" placeholder="username" name="username">
                  </div>
                  <div class="form-group">
                      <label for="password">Password</label>
                      <input type="password" class="form-control" 
id="password" placeholder="password" name="password">
                  </div>
                  <button class="btn btn-primary btn-block">Login</
button>
              </div>
            </form>



Backend Development with Express

[ 32 ]

          </div>
          <div class="row top-margin">
              <div class="col-sm-6">
                  <button class="btn btn-block facebook"><i class="fa 
fa-facebook"></i> Facebook</button>
              </div>
              <div class="col-sm-6">
                  <button class="btn btn-block google"><i class="fa 
fa-google-plus"></i> Google</button>
              </div>
          </div>
      </div>
  </div>

We will not spend a lot of time on all the classes for the elements because the 
Bootstrap documents are a quick-and-easy read if you are looking for a quick 
reference of each class. We should now have a nice-looking form, as shown in  
the following screenshot, although it cannot currently do much:

This should demonstrate why using Bootstrap can get your app 
running quickly. I am only using around a dozen different classes, 
and already, the form does not look like the basic browser style.

The form will make a POST request to /login, with the route responding  
with a redirect back to root. Express is not doing anything with our POST info,  
so let's change it.



Chapter 1

[ 33 ]

We will first need to add a new piece of middleware (you should be seeing a trend 
now). Without parsing the body, our POST request will not see the data that we are 
sending. Add this variable declaration and middleware to the stack:

//variable declarations
var bodyParser = require('body-parser');
//middleware stack right after session
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({extended: false}));

The middleware will process POST data that has a content type of application/
json and application/x-www-form-urlencoded. We do not have the middleware 
for multipart as it can lead to a denial-of-service (DOS) attack. The multipart 
middleware creates a new tmp file for each new request, which can eventually kill 
your server. Since we are not processing files, we do not need to include it. The 
reason we do not use it is because it is merely a reference to all three of the parsers, 
as you can see in the following code line:

app.use(bodyParser());

Let's make sure that this is working how we expect it to. Open up the index.js file 
from routes and modify the loginProcess function to the following:

function loginProcess(req, res){
  console.log(req.body);
  res.send(req.body.username + ' ' + req.body.password);
};

Now, each post should show us what was entered into the form, instead of 
redirecting and writing it to the console. We can use the form we created, or we can 
use curl. Curl should be available if you are using Mac OS X or Linux, although it 
can be installed on Windows. Run the command below and check your node console:

$ curl -X POST -H "Content-Type: application/json" -d '{"username":"josh"
,"password":"password"}' http://localhost:3000/login

It should log { username: 'josh', password: 'password' } in the console. Let's 
test a URL encoded form now, so run the following curl command:

$ curl -X POST -H "Content-Type: application/x-www-form-urlencoded" -d 
'username=josh&password=password' http://localhost:3000/login

It should log { username: 'josh', password: 'password' } in exactly the  
same way as the json request.

We have just built a form that will post back to itself and then parse out the  
form values.



Backend Development with Express

[ 34 ]

Cross-Site Request Forgery (CSRF)
We are missing one huge security piece—the Cross-Site Request Forgery (CSRF) 
protection. Anyone can create a form and then tell it to process against our site. As far 
as Express is concerned, it is just another request, which is where CSRF comes in. It 
is essentially a token that is put into the form and a store on the server in the session. 
When the form is submitted, the server checks the token. If they do not match, the 
server knows the form is not from us and rejects it. It is time to implement it!

First, we add a..., you've got it, a middleware! Add the following code after your 
session and body parsing middleware:

//variable declarations
Var csrf = require('csurf');
//middleware stack
app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(csrf());

By doing this, it will add the CSRF token to our session.

With CSRF loaded, let's try to submit our form using the POST method.  
As you can see in the following screenshot, we get the error Something broke.  
What did you do?

The CSRF middleware threw a 403 status code forbidden error. Our CSRF protection 
is working exactly as planned as we did not add the token to the form. This is exactly 
what will happen if someone with nefarious purposes tried to submit a form against 
our site with the token.

To fix this, let's add another piece of middleware (note that our app is 90 percent 
middleware and only 10 percent views). We will create a utility function file by 
creating a utilities.js file under the middleware directory. Inside this file,  
add the following:

module.exports.csrf = function csrf(req, res, next){
  res.locals.token = req.csrfToken();
  next();
};



Chapter 1

[ 35 ]

Res.locals is a special object that is available to all templates that have access  
to this response. It will make all of its attributes available for the template to use. 
This is great for middleware as the only other way that we covered to get variables  
to the template was by passing them in through render(). Create a new variable at 
the top of app.js:

Var util = require('./middleware/utilities');

Add it as middleware directly under our CSRF middleware:

app.use(csrf());
app.use(util.csrf);

It seems a little redundant to add two straight CSRF middlewares, but they serve 
different functions. The first is the built-in middleware that will add the token to the 
session. The other is our utility that will take it from the session and make it available 
to the template. Maintainable middleware should have one simple single focus.

We can now edit our form to send this token, so right under the form declaration, 
add the following input tag:

<input type="hidden" name="_csrf" value="<%= token %>">

If you get errors while following along, I can almost guarantee that it is 
a middleware out-of-order issue. If you try to set the CSRF token in the 
session before the session is added to the request, you will get an error. 
When errors arise, step through your middleware and make sure that 
they are being executed in the correct order.

Our forms should now process and our middle stack should look similar to the 
following code:

app.use(partials());
app.use(log.logger);
app.use(express.static(__dirname + '/static'));
app.use(cookieParser('secret'));
app.use(session({
  secret: 'secret',
  saveUninitialized: true,
  resave: true,
  store: new RedisStore(
    {url: 'redis://localhost'})
  })

www.allitebooks.com

http://www.allitebooks.org


Backend Development with Express

[ 36 ]

);app.use(bodyParser.json());
app.use(bodyParser.urlencoded());
app.use(csrf());
app.use(util.csrf);
app.get('/', routes.index);
app.get('/login', routes.login);
app.post('/login', routes.loginProcess);
app.get('/chat', routes.chat);
app.use(errorHandlers.error);
app.use(errorHandlers.notFound);

We have now learned all the basic building blocks of using Express. We will now 
take them and see how to build a functioning site.

CSRF should be used for any POST endpoint that you make public. 
Without it, anyone can make POST requests to your server, and it 
will process them!

Very simple authentication
We want everyone who goes to /chat to be authenticated. We will build a very 
simple, yet very insecure, authentication system. We will then gut this and put in 
a real authentication system later, but this exercise will show us how all the pieces 
we have talked about work together. The first thing is to check if a user is logged in 
during a request. We will use middleware for this. Open up our utilities.js from 
the middleware folder, and add two new functions.

The first function is to add an isAuthenticated variable for our templates, which 
we will use shortly. The following is our function:

module.exports.authenticated = function authenticated(req, res, next){
  res.locals.isAuthenticated = req.session.isAuthenticated;
  if (req.session.isAuthenticated) {
    res.locals.user = req.session.user;
  }
  next();
};

We will store whether or not someone is authenticated in the session. We are just 
adding it to the response so that a template can check the isAuthenticated value. 
We also add a user object if the user is logged in.



Chapter 1

[ 37 ]

Next, we will create middleware to check to see if someone is authenticated.  
If not, we redirect them to the login page. The following is the function:

module.exports.requireAuthentication = function 
requireAuthentication(req, res, next){
  if (req.session.isAuthenticated) {
    next();
  }else {
    res.redirect('/login');
  }
};

This middleware is pretty straightforward. If you are authenticated, run the next 
middleware, if not, redirect to /login.

Now, we need to add these to our middleware stack. Add the authenticated function 
right after our CSRF and before our routes, as you can see in the following code:

app.use(util.csrf);
app.use(util.authenticated);

Our other middleware is going to go on the chat route. So far, all middleware has 
been added by using app.use. The app.use function will apply the middleware to 
every request coming in. For a lot of middleware, this is the correct place. For some 
though, the middleware should only be executed on certain routes. To do this, add 
them as the second parameter on a route definition. You can also chain multiple 
middleware together by using an array. Here is how our chat route looks now:

app.get('/chat', [util.requireAuthentication], routes.chat);

You can just pass the function by itself as the second parameter, but I wanted  
to demonstrate this syntax. Each middleware passed in the array will be executed  
in order.

If you load this up, you will see that you cannot get to http://localhost:3000/
chat; it will always redirect you to /login.

We need to build an authentication function so that we can log users in. Open up 
utilities.js from middleware, and add the following function:

module.exports.auth = function auth(username, password, session){
  var isAuth = username === 'joshua' || username === 'brian';
  if (isAuth) {
    session.isAuthenticated = isAuth;
    session.user = {username: username};
  }
  return isAuth;
};



Backend Development with Express

[ 38 ]

This is a very simple username check as it will only authenticate if you enter  
joshua or brian as the username.

I will reiterate—do not use anything like this in production.  
We will cover how to do proper and secure local authentication 
in Chapter 3, Authenticating Users.

We now have to execute this inside our login post route. Open up index.js from 
routes and edit the loginProcess function:

//add a reference to util at the top of the file
var util = require('../middleware/utilities');
//then modify loginProcess
function loginProcess(req, res){
  var isAuth = util.auth(req.body.username, req.body.password, req.
session);
  if (isAuth) {
    res.redirect('/chat');
  }else {
    res.redirect('/login');
  }
};

We pass in the username, password, and session so that auth can do its job. 
Depending on whether the user is authenticated or not, we will send them  
to /chat or redirect them back to /login. If the authentication was successful,  
our auth function will set isAuthenticated on the session, which means that  
our requireAuthentication function will not redirect you. Our little app works, 
well kind of. It is still a little clunky and missing some polish, and in addition to  
that, there is no way to log out.

This leads us right into writing a logout function, so in our utilities.js file,  
add the following function:

module.exports.logOut = function logOut(session){
  session.isAuthenticated = false;
  delete session.user;
};



Chapter 1

[ 39 ]

A simple logOut function for a simple auth system. We have set isAuthenticated 
on the session back to false and got rid of the user in the session. Now, we have to 
put this in a route, so let's add that route in index.js present in the routes folder.

function logOut(req, res){
  util.logOut(req.session);
  res.redirect('/');
};

We log the user out, and then redirect to root. Finally, it needs to be added to our 
routes. Open up app.js.

app.get('/logout', routes.logOut);

After logging in, we can log ourselves out by going to http://localhost:3000/
logout. We are still missing a little polish on our app, so let's add links to log in  
and out of our app.

We will do this by using partials. We will have a loggedin and loggedout  
partial. Create a directory in views called partials, before adding two files  
called user-loggedin.ejs and user-loggedout.ejs. The files should look  
like the following:

• user-loggedin.ejs: Hello <%= user.username %> <a href="/
logout">Logout</a>

• user-loggedout.ejs: <a href="/login">Login</a>

We can use the user object in our templates because of our middleware. We know 
the logged-in template will only be run when a user has successfully authenticated.

We will now update our layout to use these partials. Remember this functionality  
is provided by express-partials as of Express 3 and 4. Express 2 had this built in, 
so you can run into issues with code from the Internet. Here is what our layout.ejs 
should look like now:

<!DOCTYPE html>
<html>
<head>
    <title><%= title %></title>
    <link rel="stylesheet" href="css/cosmo.min.css">
    <link rel="stylesheet" href="css/style.css">
</head>
<body>



Backend Development with Express

[ 40 ]

<div class="container">
  <div class="row">
      <div class="col-sm-4"><h1 class="pull-left">PacktChat</h1></div>
      <div class="col-sm-4 col-sm-offset-4 top-margin">
        <div class="pull-right">
      <% if (isAuthenticated) { %>
        <%- partial('partials/user-loggedin') %>
      <% } else { %>
        <%- partial('partials/user-loggedout') %>
      <% } %>
        </div>
    </div>
  </div>
  <div class="row">
  <%- body %>
  </div>
</div>
</body>
</html>

Our authentication middleware sets req.locals.isAuthenticated, which means 
that any request can run a Boolean check on it. It also sets the req.locals.user 
object for the template. The partial function will search for the path that is passed 
to it beginning at the views directory. The following is a screenshot of what our site 
should look like now:

The following screenshot highlights our other partial that uses the logged in user's 
username and changes the link to Logout:

The final part of our app that we will add is flash messages. Flash messaging is  
when we have something to tell the user from one request to the next. It is called 
flash because we only want to show it once. A great example of this is when someone 
enters a wrong username or password, which is in fact what we are going to 
implement. Right now, our app just takes you back to the login page without  
letting you know why, which is a very bad user experience.



Chapter 1

[ 41 ]

We will use connect-flash to let the user know when something has happened. 
Connect-flash uses the session, so it must be after the session middleware.  
Let's initialize it and add it to our middleware stack:

//variable declarations
Var flash = require('connect-flash');
//middleware stack after session, but before the routes
app.use(flash());

This gives us access to req.flash to get and set flash messages. The first message we 
will set is our login failed message. Change the loginProcess function in index.js 
present in the routes folder to include our message, as follows:

function loginProcess(req, res){
  var isAuth = util.auth(req.body.username, req.body.password, req.
session);
  if (isAuth) {
    res.redirect('/chat');
  }else {
    req.flash('error', 'Wrong Username or Password');
    res.redirect('/login');
  }
};

The message is now in the session. To display this, we just have to get it out.  
The act of getting it out will also delete it from the session, so it is time to edit  
our login function in index.js present in the routes folder.

function login(req, res){
  res.render('login', {title: 'Login', message: req.flash('error')});
};

The message is now passed to the template, but the template is not ready to display 
it. Edit login.ejs, and add this code right under the form declaration:

<form method="post">
<% if (message.length > 0) { %>
    <div class="alert alert-danger"><%= message %></div>
  <% } %>



Backend Development with Express

[ 42 ]

The message will come out in an array. We do a quick check to see if there is at least 
one message, and then display it. Our users will now see that authentication has 
failed, as seen in the following screenshot:

Setting up a config file for our app
Currently, our app runs off of whatever is in the app.js file. If you want  
to change how the application runs, you will need to edit app.js. This is not  
very maintainable. As a simple example, what if our cookie secret changes? What 
happens when we only update one of the references to the cookie secret? Let's say 
our app grows and the secret is referenced in two other middleware. This will create 
a lot of pain and waste time tracking down weird bugs in the code. What we need is 
a config file to store all the application's settings.

The first thing is to create a file named config.js in the root of our app and add this 
to the file:

var config = {
  port: 3000,
  secret: 'secret',
  redisUrl: 'redis://localhost',
  routes: {
    login: '/login',
    logout: '/logout'
  }
};

module.exports = config;

We are creating an object and then returning it when this file is required. We have 
the port, cookie secret, Redis URL, and simple route map in our config. We now have 
to go find where all of these are used, and then update the code.



Chapter 1

[ 43 ]

Route mapping
A route map allows us to use a programmable name for a specific URL. Our new 
config does this for login and logout. A quick check of our application shows that we 
are using the string '/login' in four different places. Let's all make it in one place.

We will do this by creating another piece of middleware. Any backend file can get 
access to this by loading the config module with require(), but the templates 
do not have this ability. Also, if they did, we do not want to put a boilerplate 
requirement at the top of every view template. This is where our new middleware 
comes in. Add a reference at the top of the utitlities.js file present in the 
middleware folder, and create a new function in the file.

var config = require('../config');
//the other functions or you could put this at the top
exports.templateRoutes = function templateRoutes(req, res, next){
  res.locals.routes = config.routes;

  next();
};

We can see that this just adds the routes object from config to res.locals.  
Every template will now be able to use the login and logout routes.

Now, add it to the middleware stack. Thinking about our middleware execution 
order, we know that it just has to go before any templates render. The first 
middleware that renders is our app.router, so it must go before this.

app.use(flash());
app.use(util.templateRoutes);

Our app now has a config, so we must find all the references to the various settings.

Updating our app to use the config
The first thing to look at is app.js. We will need to add this object to the scope, so 
add this line as the last variable declaration:

Var config = require('./config');

Now, we must find each reference to the settings in our config. Let's update the secret.

app.use(cookieParser(config.secret));
app.use(session({
  secret: config.secret,



Backend Development with Express

[ 44 ]

  saveUninitialized: true,
  resave: true,
  store: new RedisStore(
   {url: config.redisUrl})
  })
  );

We fixed the issue that we had initially posed. The only change that we now need  
to make is in config.js, and all the secrets will be set.

We can now set up the route map's routes. We will change three of our routes  
in app.js.

app.get(config.routes.login, routes.login);
app.post(config.routes.login, routes.loginProcess);
app.get(config.routes.logout, routes.logOut);

The app now uses the route map to determine the actual URL to bind to. However, 
now we have an issue: if we update the route in the config, we have some functions 
that have hard coded '/login'. This will throw a 404 error. We need to track down 
all the references to login and logout.

The first reference, utilites.js, present in the middleware folder, is the 
requireAuthentication function. We will update isAuthenticated to  
redirect back to config.routes.login.

module.exports.requireAuthentication = function 
requireAuthentication(req, res, next){
  if (req.session.isAuthenticated) {
    next();
  }else {
    res.redirect(config.routes.login);
  }
};

Next is our index.js present in the routes folder; it is the loginProcess function. 
We will need to redirect back to login on an auth failure.

//add the config reference
var config = require('../config');
//change the function
function loginProcess(req, res){
  var isAuth = util.auth(req.body.username, req.body.password, req.
session);



Chapter 1

[ 45 ]

  if (isAuth) {
    res.redirect('/chat');
  }else {
    req.flash('error', 'Wrong Username or Password');
    res.redirect(config.routes.login);
  }
};

The last two files that we will update are the partials. Each partial file has a  
hard-coded URL that we will change to use config.route as follows:

• The user-loggedin.ejs file present in the views/partials folder: 
Hello <%= user.username %> <a href="<%= routes.logout 
%>">Logout</a>

• The user-loggedout.ejs file present in the views/partials folder: 
<a href="<%= routes.login %>">Login</a>

Here is where our middleware is valuable. Every template will have a route's object 
straight from the config. We are only using it for login and logout, but a site-wide 
URL should be here so that you can easily update it. For example, we can change the 
config.routes login and logout to '/account/login' and '/account/logout', 
and the app will not break.

Finally, we will update the port that the app listens on. This is in app.js:

app.listen(config.port);

Methods to extend an application
One thing you can do to extend an application if you are building a larger site is to 
build it using MVC (Model, View, Controller). We already have the view part sorted, 
so let's look at the other pieces. We have some sort of a controller setup with our 
routes directory. The next step will be to create a file for each. For example, we can 
have account.js, which will have the login, logout, and createAccount functions. 
We haven't really covered adding models to our app. We can create a directory called 
models, and then add a user model, for which we can find a user, update, and create a 
user to tie in with our account controller. Note that there are some other frameworks 
that build on Express in this way (sails.js is a good example). We are not using any 
so that you can see the insides, if you will, of the application.

www.allitebooks.com

http://www.allitebooks.org


Backend Development with Express

[ 46 ]

Another key point from this chapter is to learn how to use middleware. In our app, 
we had 6 routes and 14 pieces (15, if you include the middleware that only runs 
on the /chat route) of middleware. There are three great reasons for this. Firstly, 
middleware allows you to create flexible and reusable code. We built a quick and 
dirty authentication module in just two pieces of middleware. If we decide to create 
a profile page, we just create a route like the following:

app.get('/profile', [util.requireAuthentication], routes.profile);

Then, when we build our profile template, we will know that the user object will be 
populated with the user's username. No more copying/pasting if statements in our 
routes check a session whether the user is logged in or not!

Next, there is a great ecosystem of current middleware. Everything we built in 
this app has a package that can do the same thing. As we covered, Express uses 
Connect internally, so we can use any of the Connect middleware. Currently, it has 
18 bundled middleware (we have used quite a few already, such as csrf, sessions, 
body parsing, cookies, and static, to name a few). There are also many third-party 
middleware. We have used two: connect-redis and connect-flash. The Connect 
website has a list of the most popular third-party middleware on GitHub.

Finally, middleware functions are the perfect size for unit tests. We did not cover 
them here, but having a set of reusable and unit test-covered functions will make 
your life as a developer much better. We will cover unit testing with Nodeunit in 
Chapter 8, JavaScript Best Practices for Application Development.

Summary
Our app now looks and feels like a real application. We went from little knowledge 
of Express to actually using it to build a small yet fully functional site. At this point, 
we now know how to respond to different HTTP methods. We know how to wire 
up routes in a clean and extendable manner. Our app has 14 different pieces of 
middleware. This might seem like a lot, but our app is also doing a lot. We can 
use templates and partials to render our pages easily. Finally, we have a simple 
authentication system that uses sessions. We laid a very good base for our chat 
application, all in just over 40 lines, in our app.js.

In our next chapter, we will cover how to add real-time communication between the 
server and the browser using Socket.io.



Extending Our Development 
with Socket.IO

In the last chapter, we built a simple web application that can serve HTML pages.  
Let's add some more functionality to our application. We have to build a chat app,  
so we will need some sort of real-time event framework. Luckily for us, there is  
Socket.IO, which will provide us with this real-time communication. Socket.IO fits 
right into the entire evented nature of Node.js. The whole paradigm of Socket.IO is 
completely different from using a web server. Socket.IO uses WebSockets to create a 
connection between the server and client. You will need to understand all this to get 
Socket.IO to do what you want it to. In this chapter, we will cover the following topics:

• Sending and receiving events
• Creating rooms to divide users
• Adding and reading data from sessions
• Authenticating connections
• Integrating Socket.IO with what we have built already

Node package versions
We are going to create three different applications through out this chapter. The first 
two applications we create will only have the requirement for Socket.IO. The other 
application will be the application we started in Chapter 1, Backend Development with 
Express. So, the following is the list of packages in addition to everything we have 
already installed:

• socket.io: 1.0.6
• socket.io-redis: 0.1.3



Extending Our Development with Socket.IO

[ 48 ]

• connect: 3.0.2
• cookie: 0.1.1
• express-session: 1.6.5

Building a simple Socket.IO app
Before you add Socket.IO to your current PacktChat app, let's first build a couple  
of very simple apps. This will first allow us to understand what we are doing,  
and then build on it.

Installing the package
The first thing, of course, is to get the package from npm. We will do this exactly  
like we did in the last chapter, by adding all the packages to package.json and 
running npm install.

Socket.IO has quite a few dependencies, so this may take a minute or two. Once that 
is done, you can create your first app. Create a directory named first app, create an 
app.js file, and add the following code in it:

var io = require('socket.io').listen(4000);

io.sockets.on('connection', function(socket){
  socket.emit('ping');

  socket.on('pong', function(data){
    console.log('pong');
  });
});

Since Socket.IO is event driven, we start off by listening for a connection event.  
Do not think of this in terms of HTTP actions as it does not map to any. While we 
will run them on the server, HTTP and Socket.IO respond to requests in different 
ways. This event gives us access to the socket that we will then use to communicate 
with the client.

When we want to send an event to a client from the server-side socket, we use the 
emit method. It will send a message over the socket to the client. On the client side,  
it needs to have a listener with the same event name.



Chapter 2

[ 49 ]

For the opposite actions, we will need to listen for events sent from the client.  
This is where we use the on method. This will allow the client to send a message  
to the server.

Not much for now. Our app has no one to talk to. We need to build the client  
side now.

Building the client
Our Socket.IO server needs something to communicate with and that is what we  
will build now. The server is going to send a 'ping' event to the client and it will 
return a 'pong' event. Just as the server needs the Socket.IO server framework, our 
client needs the Socket.IO client framework. The Socket.IO client library is at the 
node_modules/socket.io/node_modules/socket.io-client directory. Inside  
this directory, there are the socket.io.js and socket.io.min.js files. We will 
create a symlink to the file by running the following command in the terminal:

ln –s node_modules/socket.io/node_modules/socket.io-client/socket.io.js

There are also a couple of flash objects. These flash objects are used to give older 
browsers that lack WebSocket abilities (mainly IE 8 and IE 9) the ability to use  
Socket.IO. If you are using a newer version of Chrome or Firefox, you can just  
use the JavaScript file.

We need to create our HTML page for the client to use. Create an index.html page 
alongside your app.js and socket.io.js. The following code is what the file 
should be like:

<!DOCTYPE html>
<html>
<head>
  <title>Ping Pong</title>
  <script type="text/javascript" src="socket.io.js"></script>
</head>
<body>
<script>
var socket = io.connect('http://localhost:4000');
socket.on('ping', function(data){
  console.log('ping');
  socket.emit('pong');
});
</script>
</body>
</html>



Extending Our Development with Socket.IO

[ 50 ]

This is a pretty empty page; in fact, there is nothing in it. We are just using it to load 
our JavaScript. We include the socket.io.js file in head so we can get access  
to the io variable. The first thing we want to do is connect to our Socket.IO server.  
We have the server listening on port 4000, so we tell the client to connect to it.

I know I mentioned earlier that Socket.IO is nothing like HTTP, but the connection 
does use HTTP to start. The initial HTTP request is upgraded to a WebSocket 
connection.

Now that the socket has been created, we can start listening for events. Exactly like 
the server side, we use on to listen for socket events. We know the server will be 
sending out a ping event, so we will need to listen for that. We will then log that a 
ping happened and send an event back to the server. Again, this is the exact same 
method the server uses. We send off a pong event with the emit method.

When we start our Socket.IO server and load our webpage, we should see the log 
'ping' browser to the console and then the log 'pong' server (this will actually 
happen very quickly). Let's go ahead and try this.

Using Python to serve our site
We have run into an issue. We can't serve our index.html page that we made. 
Python can help us out here. We will use Python later to build our deploy scripts, 
so hopefully we have it installed. I am using Mac OS X, which comes with Python 
already installed. This allows me to run a simple Python command to run an HTTP 
server in whichever directory I am in:

$ python -m SimpleHTTPServer

You don't have to write any code; just load a module, and it will run right in the 
console. By default, the server listens on port 8000. If you want to change this, just 
add the port number as the last parameter, as shown in the following command line:

$ python -m SimpleHTTPServer 8080

Python is a great glue language. It has a great standard library that allows you to 
build small scripts that do a lot.

We will just use the default port for now. Point your browser to  
http://localhost:8000, and you should see your blank page.



Chapter 2

[ 51 ]

Ping-Pong
Technically, nothing should happen on the web page. You should see the console of 
the Node server log pong.

Let's now take a look at the browser. Open your console. I always get to it using 
Chrome by right-clicking and selecting Inspect Element. Then, click on Console  
all the way to the right. You should see the following screenshot:

Creating some interaction
At this point, we have sent an event to the client and responded back. Technically, 
we could have easily done this with an Ajax call, so let's add some interaction 
between browsers to highlight what Socket.IO can do. First of all, clean out the 
socket.on('connection') function. We are going to write all new code.  
The following is what our app.js should look like:

var io = require('socket.io').listen(4000);

io.sockets.on('connection', function(socket){
  
socket.on('join', function(data){
    io.sockets.emit('userJoined', data);
    socket.username = data.username;
  });
  socket.on('ping', function(data){
    
    io.sockets.emit('ping', {username: socket.username});
  });
});

Let's look at each new event listener separately. The first listens for an event called 
join. The first thing it does is emit an event called userJoined. The socket.emit 
function will just send a message to the client in the connection. You will not have 
interaction between browsers. io.sockets.emit function will send a message  
to every single socket that is connected. With this, we can send some messages 
between browsers.



Extending Our Development with Socket.IO

[ 52 ]

Next, the function saves some information about this socket on its connection.  
We are expecting an object with a username attribute. We then attach this to the 
socket object. The other function is listening for a ping event, much like our original 
app. We will pull the username off the socket and send it out with io.sockets.emit 
to ping all the clients.

Adding the browser side
You could restart Node and not much would happen. For every change we make  
on the server side, we have to make equal and opposite changes on the client side.  
Open your index.html and add jQuery to head, as shown in the following code:

<head>
  <title>Ping Pong</title>
  <script type="text/javascript" src="socket.io.js"></script>
  <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/
libs/jquery/2.1.0/jquery.js"></script>
</head>

We are using cdnjs, which hosts many of the commonly used JavaScript and  
CSS libraries on the Internet. It's a great way to include a library quickly,  
without having to download and drop it in your web server folder.

Now, we need to add some elements to the body, as shown in the following code:

<input type="text" id="username">
<button id="ping">Ping</button>
<ul id="info">
</ul>

It's pretty straightforward: a text box, a button, and a blank unordered list. We have 
given these IDs, as this makes it very easy and efficient to find them in JavaScript. 
Remember that this must come before our JavaScript code, otherwise the elements 
will not be available.

Finally, let's add the JavaScript we need. Add all our new elements as variables at the 
top of our script tag:

var socket = io.connect('http://localhost:4000');
var $username = $('#username'),
  $ping = $('#ping'),
  $info = $('#info');



Chapter 2

[ 53 ]

If you haven't used jQuery before, the $ is jQuery object. jQuery also has a great 
selector engine that mimics CSS, so a # is reference to an ID. Each variable should 
now be connected to each element, respectively.

Now, let's add event handlers. Just like socket.io, jQuery allows you to listen for  
an event by using the on() function. We will take these one by one.

First, we will build a small utility function. It is just a quick and dirty way to add a 
list item to the list:

function addLi(message) {
  $info.append('<li>' + message + '</li>');
};

Next, our first event listener:

$username.on('change', function(){
  socket.emit('join', {username: $username.val()});
});

Anytime the username text box changes, we send a join event to the server. We will 
pass in the value of the text box as the username. If you remember, the server will 
listen for a join event and send a userJoined event out to everyone with the same 
data object. This brings us to our next listener:

socket.on('userJoined', function(data){
  addLi(data.username + ' has joined');
});

We are listening now for the event that comes back from the server when someone 
joins. We will then add a list item to our list:

$ping.on('click', function(){
  socket.emit('ping');
});

This is the listener for the click event on the Ping button. It just sends the event 
onto the server. Again, when we look back at the server, we see that it listens for a 
ping event. It then takes that event and sends it to all the socket connections, along 
with the username that was set for that connection. Here is the browser code that 
listens for the return ping. It pulls out the username that is passed in the data object 
and adds it to the list. The following code will replace what is currently in socket.
on('ping'):

socket.on('ping', function(data){
  addLi(data.username + ' has pinged!');
});



Extending Our Development with Socket.IO

[ 54 ]

Open up a browser and add your name to the text box. You should get the  
message, Josh has joined. Click on the Ping button and you will get the message,  
Josh has pinged!.

Open another tab and do the same thing (well, use a different name in this tab). 
Now, go back to the original tab. You will see that another person has joined and 
pinged. If you split the tabs into separate windows, you can see how quickly the 
events are sent. It is, for all intents and purposes, instantaneous. Open a few more 
tabs and see that the events are propagated to all the tabs this way. The following 
screenshot shows pings between two different tabs:

We have done all this in 14 lines of code on the server and 25 lines on the browser 
(this includes space between functions and the boilerplate code).

Acknowledgments
Sometimes we want to know if the last action had an error or not. Right now, we 
are currently working under the assumption that every event will fire off without 
a hitch. Luckily for us, Socket.IO has an acknowledgement system. On an emit 
event, we can add an extra function that the server can execute. Let's add this to the 
server side first in app.js. Update the socket.on('ping') listener, as shown in the 
following code:

socket.on('ping', function(data, done){
    socket.get('username', function(err, username){
        io.sockets.emit('ping', {username: username});
        done('ack');
    });
});



Chapter 2

[ 55 ]

The acknowledgement function comes in as the second parameter in an on listener 
function. We can then execute it at any point we want. We are doing it here after  
we send the data back to all the other clients. In this example, we are just sending 
ack. We could use it to send back an error. For example, the function can connect  
to a database and run a query. If there is an error at that point, you can send it back:

done({error: 'Something went wrong'});

This is the key if you are running a required action. There is no worse user 
experience than actions failing silently. Users will never trust your app. They will 
always ask, "is it doing something? Should I click on the button again? Is there 
something else I should have clicked?"

Now, we will update our client. We are going to add a function that will keep  
track of how many acknowledged pings we have sent. We will only update  
our count when the acknowledgement returns. We only have to update the  
socket.emit('ping'), as that is the function we want the acknowledgement on.

In the body, add a div with the sent ID, as shown in the following code:

<input type="text" id="username">
<button id="ping">Ping</button>
<div id="sent"></div>
<ul id="info">
</ul>

In the script tag, we need to initialize another variable and update the on click 
listener attached to the Ping button:

//with the other initialized variables
Var pingSent = 0;
//further down in the script tag
$ping.on('click', function(){
  socket.emit('ping', null, function(message){
    if (message === 'ack')
    {
      pingSent++;
      $sent.html('Pings sent: ' + pingSent);
    }
  });
});

www.allitebooks.com

http://www.allitebooks.org


Extending Our Development with Socket.IO

[ 56 ]

We have a third parameter on the emit function now. We are not sending data, so 
we pass null as our data object. Our final parameter is the callback (done()) that the 
server runs and then passes back our 'ack' message. We check this to make sure 
that 'ack' was passed, and if so, increment our pingSent counter. If not, we will not 
increment our counter. This is where we would put our error check. In our example, 
on the server side, we can do this but we won't. This is only a suggestion:

socket.emit('importantThing', importantData, function(ack){
  if (ack.error !== undefined){
    alert('Something went wrong');
  }else {
    //continue on
  }
});

The following screenshot is what it should look like:

Our app now is still very simple, but you should start to see what you can do 
with Socket.IO. We have completely real-time events that span multiple browsers. 
Acknowledgments are even sent on the ping requests. This is all done in 15 lines of 
code on the server. Guess what? We are not done yet. Let's add some more features 
to our little Ping-Pong app.

Broadcasting a message
The Ping-Pong app that we built shows all the events, regardless of their source. 
If someone else pings, it shows in our list. If we ping, it shows on our list. We do 
not want to do this. We only want the application to show if someone else pings. 
Showing our own pings isn't necessarily a bad feature to have. What makes it bad  
is that we send the ping to the server and the server sends it back to us. We can  
(and will) make it more efficient by only sending the ping to everyone else. How?



Chapter 2

[ 57 ]

Broadcast! This seems to be a misnomer. If you are broadcasting something, you 
think it goes out to everyone. This is very close to what Socket.IO does. Broadcast  
will send it out to everyone but you. If there are four clients connected, Socket.IO  
will send it to the other three. Let's wire it all up.

We will only have to change the server side, as we will use the same event names. 
We are just changing who they will go to. Inside app.js in the io.sockets.
on('connection'), we will change both the emits, as shown in the following code:

socket.on('join', function(data){
    socket.broadcast.emit('userJoined', data);
    socket.username = data.username;
  });

  socket.on('ping', function(data, done){
    socket.broadcast.emit('ping', {username: socket.username});
    done('ack');
  });

All we had to do was change io.sockets to socket.broadcast. We are still using 
the emit method in the same way.

It makes sense why we have to use socket instead of io.sockets. Remember  
that io is tied to the whole Socket.IO server. It is what is returned from 
require('socket.io').listen(4000). Then, we are getting all the sockets off  
io. This would be every connected client, including us. Finally, emit is called,  
which sends a message to each one.

The Socket.IO connection object is referenced from the callback when a socket  
is connected. The socket is in the context of one specific socket connection.  
socket.emit will send our message object back to the connected socket.  
socket.broadcast.emit will then send our message object back to all others,  
except for the connected socket that initiated the broadcast.

What will happen now is that any event you are sending to the server will not get 
an event back. The join event will return userJoined with our username. Now, we 
only get it when someone else joins. The same is true for our pings. Only other pings 
will show in our list. We will still get acknowledgements on the pings we send, so 
our ping counter will still work. Go ahead and load http://localhost:8000 in a 
couple of browser tabs and check out what happens.



Extending Our Development with Socket.IO

[ 58 ]

The following screenshot is how our Socket.IO application should function:

Using the disconnect event
Our app is only capturing connection and joining events. Remember that the 
connection happens automatically, as we do not check the client at all. As soon as the 
client's io.connect() is called, a connection event is fired. Then, when we change 
the text input, a join event is fired, which goes to all the other clients. Nothing 
happens when someone leaves.

Socket disconnection events are different than regular HTTP events. Because HTTP  
is request based, we never really know when someone leaves; we just know what 
their last request was. Users usually have to take an action to leave, for example, 
going to the logout page. Socket.IO creates and maintains a persistent connection,  
so we will know immediately when someone leaves. Let's add it to our application.

We will begin at the backend. Open app.js and add a new listener for the  
disconnect event:

socket.on('disconnect', function(){
    socket.broadcast.emit('userDisconnect', {username: socket.
username});
  });

There isn't really too much that is new. We know about event listeners, how to get 
data attached to a socket, and how to broadcast it to everyone but yourself.

Now, we have to go to the client and add the listener there. Add the following to our 
list of functions:

socket.on('userDisconnect', function(data){
    addLi(data.username + ' has left :(');
});



Chapter 2

[ 59 ]

This function is similar to the others we have written. It just takes the passed in 
username and adds a new list item to the list. Connect some users and then refresh 
the page, and you should get some disconnection events, which are shown in the 
following screenshot:

Creating namespaces
Socket.IO has another trick up its sleeve. We have been working in only one  
area so far, but Socket.IO has methods to connect to multiple areas. The first is 
namespaces. The other is rooms. Both of these ideas are very similar, and we  
will set both of them up.

We will use the same idea of users being able to ping, but we will add onto this idea. 
First of all, we will allow users to enter different areas and ping inside those areas. 
Secondly, we will allow users to send private pings that will only go to one specific 
user. For this, we will create a new project and start from scratch. We will use 
namespaces for the first project.

Here is all the boilerplate code that we need to do. Create a directory named  
second app, files named namespace.js and namespace.html, and a symlink  
to the socket.io.js client library (remember, it's in the node_modules directory  
after you install Socket.IO).

We can now build our little app. We will start on the backend. Open up  
namespace.js and add Socket.IO to our app:

var io = require('socket.io').listen(4000);

Now, add all your listeners. We will have three: join, ping, and privatePing.  
Our connection listener should have all three of these functions in it, as shown in  
the following code:

io.sockets.on('connection', function(socket){
  socket.on('join', function(data){
    socket.username = data.username;



Extending Our Development with Socket.IO

[ 60 ]

    socket.broadcast.emit('join', {username: data.username, socket: 
socket.id});
  });

  socket.on('ping', function(){
    socket.broadcast.emit('ping', {username: socket.username}); 
  });

  socket.on('privatePing', function(data){
    io.sockets.connected[data.socket].emit('ping', {username: socket.
username, priv: true});
  });
});

The join and ping events are very similar to the functions we built for our first app. 
The join event adds the username to the socket and then does a broadcast emit back. 
It also broadcasts the client's socket ID to everyone else. We will use this later. The 
ping event does almost the same, except it gets the username and sends that back.

This brings us to our new listener, privatePing. It starts off by getting the username, 
but now it uses io.sockets.connected[data.socket]. The data.socket JavaScript 
object contains the socket ID and io.sockets.connected has all the connected 
sockets. Put these together and we get a specific client connection. This is essentially a 
hash or dictionary of every connection with the socket ID as the key. Earlier, we sent 
the socket ID to the client, and this is the client sending it back to ping that user. We 
have a flag that shows this ping event is sent to only one client. So far, we have not 
really done anything too new and nothing that involves namespaces.

Well, let's add namespaces then. We will need to add another connection listener. 
The following code is what the file will look like:

io.of('/vip').on('connection', function(socket){
  socket.on('join', function(data){
    socket.username = data.username;
    socket.broadcast.emit('join', {username: data.username, socket: 
socket.id});
  });

  socket.on('ping', function(){
    socket.broadcast.emit('ping', {username: socket.username});});

  socket.on('privatePing', function(data){
    io.of('/vip').connected[data.socket].emit('ping', {username: 
socket.username, priv: true});
  });
});



Chapter 2

[ 61 ]

The first thing you should notice is that it is really similar to the code that doesn't use 
namespaces. In fact, there are only two lines of code that are different. The first line is 
where we tie to a namespace. This is done using the of method, as follows:

io.of('/vip').on('connection', function(socket){});

We just pass a string of the namespace. Inside the connection listener, we have the 
same object and can set up the same events. The socket variable here will only refer 
to clients that have connected to the '/vip' namespace.

The other changed line of code is in the privatePing listener. Here, we use the of 
method again. Anytime we use io.of('/namespace'), all the methods we use after 
it will be in the context of that namespace. If we used it the other way (io.sockets.
socket()), then the response would have been sent back in the default namespace 
instead of the '/vip' namespace. Go ahead, switch them and see what happens.

We have our server side built; now let's build our client side.

Building our namespace client
We know what events the server is listening for, so now we have to create a client 
that will send them. Open up your namespace.html and add the following code:

<!DOCTYPE html>
<html>
<head>
  <title>Ping Pong</title>
  <script type="text/javascript" src="socket.io.js"></script>
  <script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/
libs/jquery/2.1.0/jquery.js"></script>
  <style>
    .areas { float: left; width: 50%;}
  </style>
</head>
<body>
  <div>
    <input type="text" id="username">
  </div>
  <div class="areas default">
    Default
    <button class="join">Join</button>
    <button class="ping">Ping</button>
    <div>
      Users



Extending Our Development with Socket.IO

[ 62 ]

      <ul class="users">

      </ul>
    </div>
    <div>
      Events
      <ul class="events">      </ul>
    </div>
  </div>
  <div class="areas vip">
    VIP
    <button class="join">Join</button>
    <button class="ping">Ping</button>
    <div>
      Users
      <ul class="users">      </ul>
    </div>
    <div>
      Events
      <ul class="events">      </ul>
    </div>
  </div>
<script>
</script>
</body>
</html>

This is a simple HTML structure and div.areas are identical. They both have two 
buttons, Join and Ping, and two lists, users and events. This is our skeleton we 
will use to wire up all our JavaScript muscles. We are using the socket.io client 
(you did remember to link to it from node_modules, right?) and jQuery 2.1 from 
a content delivery network (we will talk about these in Chapter 8, Javascript Best 
Practices for Application Development). All the JavaScript code will go into our script 
tag at the end of the body (is HTML just one big biology metaphor?).

The first thing to do is to connect to our server. We will create two variables to hold  
our connections:

var socket = io.connect('http://localhost:4000'),
  vip = io.connect('http://localhost:4000/vip');



Chapter 2

[ 63 ]

The first connection we have is done already. The second is how we use namespaces. 
To connect to a namespace, just connect to the server and append the namespace 
you created. This object is now in the context of a namespace. Any methods we call 
or any event listeners we attach will only be for events from the '/vip' namespace. 
Let's finish up this app and then test it.

We will create two connections, but Socket.IO doesn't actually 
connect twice. It is able to just use one connection for both, 
including any and all namespace connections.

The next thing we will do is grab our key elements from the page, as follows:

var defaultArea = $('.default'),
  vipArea = $('.vip'),
  $username = $('#username');

We will create jQuery objects that are tied to div.default, div.vip,  
and input#username. If you are not familiar with jQuery, it gives us some  
cross-browser methods and easy selectors. We will cover more jQuery when  
we build out the frontend.

We now will create a simple utility function, as shown in the following code:

function createButton(user){
  return '<li>' + user.username + '<button class="private_ping" data-
socket="' + user.socket + '">Ping Me</button></li>';
};

We pass in a user object (which we will get from our socket events), and it will return 
an HTML string for a button with a private_ping class.

Finally, we will create the function that will wire everything up:

function wireEvents(area, socketio){
  var users = area.find('.users'),
    events = area.find('.events');

  area.on('click', function(e){
    if (e.target.className === 'join') {
      socketio.emit('join', {username: $username.val()});
    }else if (e.target.className === 'ping') {
      socketio.emit('ping');
    }else if (e.target.className === 'private_ping') {



Extending Our Development with Socket.IO

[ 64 ]

      socketio.emit('privatePing', {socket: e.target.
getAttribute('data-socket')});
    }
  });

  socketio.on('join', function(user){
    users.append(createButton(user));
  });

  socketio.on('ping', function(user){

if (user.priv === undefined){
      events.append('<li>Ping from ' + user.username + '</li>');
    }else{
      events.append('<li>Ping from ' + user.username + ' sent directly 
to you!</li>');
    }  });
};

The wireEvents function takes an area and a Socket.IO connection and will attach all 
the listeners for us.

The first thing we do is find the users list and events list. We will do this with the 
find function of jQuery. It will look in the object we pass in (which will be either 
div.default or div.vip) and find all the elements that have users or events in their 
class list. This gives us the reference to each list.

Next, we add a click listener on the entire area. This is better than adding multiple click 
handlers for each element that is clicked. We then check the event that is passed in for 
what element was clicked and what class the element has. With this info, we know 
what button was clicked, as each button has a specific class attached to it. From there, 
we pass the event to the server. The join and ping events are very straightforward. 
join uses the username as input and ping just sends the event. privatePing uses 
an attribute attached to the button. This attribute is added from the createButton 
function that uses the socket ID from the join event sent from the server. This function 
will create a button element, as shown in the following screenshot:



Chapter 2

[ 65 ]

This is where the socket ID is stored when the server broadcasts the join event.  
We send it back so the server can find that specific socket and send it to only  
that client.

Next, we add a listener for the join events from the server. We just add a list item 
with the button we just discussed.

Finally, we listen for ping events. If the event does not have the priv attribute set, 
then we know it was broadcast to everyone. If it is set, then we know it was sent to 
only us. We then append either of these to our events list.

We now have all our events covered. We are listening for clicks, joins, pings, and 
private pings.

We built this function to be reusable, so we can easily do this for both the default 
and vip areas, as shown in the following code:

wireEvents(defaultArea, socket);
wireEvents(vipArea, vip);

At this point, we can launch Node and our Python HTTP server. Load  
http://localhost:8000/namespace.html in a couple of tabs. Join a couple of 
areas, ping a few times, and send some private pings. We can see that everything 
works how we expect it to. All the events will be tied to a specific room. The 
following screenshot will show the output:

This is not a full-featured app. It is just an example on how to use namespaces in 
Socket.IO. Let's now modify our little ping app to use rooms instead of namespaces, 
so we can see what the differences are.



Extending Our Development with Socket.IO

[ 66 ]

Adding rooms
We will use our current app as the basis since most of it can be reused. Copy 
namespaces.js and namespace.html and create rooms.js and rooms.html.  
Open up rooms.js and get rid of the namespace connection listener, as we are  
only using rooms here. Then, we will modify the normal connection and add our 
room-specific elements to it. Your rooms.js should look like the following code:

var io = require('socket.io').listen(4000);
io.sockets.on('connection', function(socket){
  socket.on('join', function(data){
    socket.username = data.username;
    socket.join(data.room);
    socket.broadcast.to(data.room).emit('join', {username: data.
username, socket: socket.id, room: data.room});
  });
  socket.on('ping', function(data){
    socket.broadcast.to(data.room).emit('ping', {username: socket.
username, room: data.room});
  });
  socket.on('privatePing', function(data){
    io.sockets.connected[data.socket].emit('ping', {username: socket.
username, priv: true, room: data.room});
  });
});

So, let's talk about what's new and different. The initial thing to note is that every 
listener now is expecting data to be sent with it. This is because every event will  
need to send what room it came from.

On our connection event, we use socket.join(data.room). This is how we join a 
room. All it takes is a string of the room name. Rooms do not require an additional 
connection, but they do require us to join. The only exception to this is the default 
room of '' (an empty string). Every client on connection is in that room.

This brings us to our next new function: socket.broadcast.to(data.room).
emit(). When we add to(room), it will only send the emit event to the connections 
that have joined that room. Because it is not a separate connection such as a 
namespace, the client does not inherently know what room this event is coming 
from. That is why we are sending the room back out in the message.

Our ping event changes very much like the connection. We need to pass in the event 
with the room and then send it back out with the room as an attribute. Other than 
this, it is the same.



Chapter 2

[ 67 ]

Lastly, our privatePing is in the same boat. We need the room, so we can  
determine where it came from and where it is going. If you compare our emit 
function to namespace.js, you will see the only thing that changed is the addition  
of the room attribute.

Our server is ready, so let's update the client. Open rooms.html to edit it. We do  
not have to change any of the head or body, as it can be reused as is.

HTML should always just be structure. JavaScipt should be behavior. 
Do not mix them! Do not add onclick attributes to your HTML. 
Our examples here show this. The look of the page stays, so we do 
not touch HTML. The behavior does change, so we have to modify 
JavaScript. This same rule applies to CSS. Do not use inline styles.  
Use CSS that can target and style elements on a page. HTML is 
structure, JavaScript is behavior, and CSS is style. 

Inside the script tag, we will modify our JavaScript code. First, remove the 
reference to the vip namespace connection. The only Socket.IO connection we  
should have is our default connection:

var socket = io.connect('http://localhost:4000');

We also can leave the element references and the createButton utility function 
alone, as we will need them:

var defaultArea = $('.default'),
  vipArea = $('.vip'),
  $username = $('#username');
//some code
function createButton(user){
  return '<li>' + user.username + '<button class="private_ping" data-
socket="' + user.socket + '">Ping Me</button></li>';
};

This brings us to the key part we need to change: the wireEvents function.  
The following code is what it should eventually look like:

function wireEvents(area, room){
  var users = area.find('.users'),
    events = area.find('.events');

  area.on('click', function(e){
    if (e.target.className === 'join') {



Extending Our Development with Socket.IO

[ 68 ]

      socket.emit('join', {username: $username.val(), room: room});
    }else if (e.target.className === 'ping') {
      socket.emit('ping', {room: room});
    }else if (e.target.className === 'private_ping') {
      socket.emit('privatePing', {socket: e.target.getAttribute('data-
socket'), room: room});
    }
  });
  socket.on('join', function(user){
    if (user.room === room)
      users.append(createButton(user));
  });
  socket.on('ping', function(user){
    if (user.room === room){

if (user.priv === undefined){
        events.append('<li>Ping from ' + user.username + '</li>');
      }else{
        events.append('<li>Ping from ' + user.username + ' sent 
directly to you!</li>');
      }    }
  });
};

It is very similar to our wireEvents namespace. In fact, it has all the same listeners  
as the namespace function. 

The parameters coming in are different. In the room version, we pass in the element 
as the area and a string as the room. We changed the server side to expect a room  
on any incoming event and send a room on every outgoing event. Really, all we  
are doing is changing this to match that.

On our click handler, we only have added the room attribute to every event  
going to the server. We also have changed the socket object to use just the one  
default connection.

Finally, we have added a room check before doing anything with events sent from 
the server. This is because we only have one socket connection. A ping from different 
rooms will look exactly the same except for the room in the data object passed with 
the event. What we end up doing is adding two event handlers to the ping event and 
then just checking to see if it is sent to the room we are listening for. If so, then do 
something with it. If not, do nothing.



Chapter 2

[ 69 ]

The last thing we have to do is run wireEvents for our two rooms.

wireEvents(defaultArea, '');
wireEvents(vipArea, 'vip');

We can launch this and run the same exact type of test we did with namespaces. 
Launch Node and our Python server and go to http://localhost:8000 on a  
couple of tabs and click around.

One thing you may have noticed is that you will not get events in the vip room 
without first joining. This is different than our namespace app because we 
immediately connect to the vip namespace. This will send us all the events in that 
namespace whether or not we have clicked on Join. The room version does not put 
us in that room until we click on the Join button. We will get the default events as 
everyone is in the '' room.

Using namespaces or rooms
We have now used both and can see that rooms and namespaces in Socket.IO are 
really similar. They are both ways of segmenting all the connections into groups. 
This leads us to the question, when do we use either of them?

Namespaces
JavaScript is a scripted language that executes in essentially one context. If you  
create a function in a different file (without using any module or closure system),  
it is created in the global scope. Identically named functions will overwrite each 
other. If you have used any strongly typed object-oriented language (C#.NET or 
Java are two examples), you will have seen and used namespaces. Namespaces in 
those languages allow you to create objects with the same name, but they would be 
separate as they will live in different namespaces, otherwise known as scopes.

This is the same thought process you should have with Socket.IO namespaces.  
If you are building a modular Node web application, you will want to namespace 
out the different modules. If you look back at our namespace code, you will see  
that we were able to listen for the same exact events in different namespaces.  
In Socket.IO, the connection event on the default connection and connection event on 
a /vip namespace are different. For example, if you had a chat and comment system 
on your site and wanted both to be real time, you could namespace each. This allows 
you to build an entire Socket.IO application that lives only in its own context.



Extending Our Development with Socket.IO

[ 70 ]

This would also be true if you were building something to be packaged and  
installed. You cannot know if someone is already using certain events in the  
default namespace, so you should create your own and listen there. This allows  
you to not step on the toes of any developer who uses your package.

Finding namespaces
Now that we know how and why we use namespaces, let's look at namespaces so we 
can see what is going on. The following is the screenshot of the io.nsps object from 
our namespaces object:

We can see that each attribute of this object ties to a namespace. There is the default 
namespace and the /vip namespace. I have expanded the /vip, so you can see its 
attributes. The two attributes of note are the name, which is the string that we pass in 
when we first create it (io.of('/vip')), and the other is the connected object. This 
has all our sockets that are currently connected. The connections are mapped based 
on their socket ID.

When to use rooms
Namespaces allow us to carve up connections into different contexts. We can 
compare this to rooms, which allow us to group connections together. Everyone that 
connects joins the default '' (empty string) room by default. We can then have the 
same connection join other rooms, as well.



Chapter 2

[ 71 ]

Finding rooms
We should think of rooms as hashes of connections because that is exactly what they 
are! There is a rooms object right off of io.sockets.adapter that has each room and 
the clients that are in that room.

The objects may look a little weird because they say they are an array of 0.  
This is correct, as each socket is attached as a property of the array and not as  
a member. A little confusing, but it does allow us to use the array like a hash.

Using namespaces and rooms together
We can now discuss the fact that namespaces and rooms are not mutually exclusive. 
You can use them at the same time. Now that we have discussed how they work, this 
will make sense. Namespaces allow you to create different contexts for Socket.IO to 
work in. Rooms allow you to group client connections inside of those contexts.

Namespaces are farther up in the hierarchy so that you can use them together if 
they come first. As an example, let's say that we built our Ping-Pong app with a 
namespace of pingpong with two rooms, '' (empty string) and 'vip'. A lot of code 
can stay exactly the same because the socket object inside of a connection event is 
already tied to the namespace. If you were outside of the namespace, though, you 
still could get a list of clients in a room.

We don't have to view these as an exclusive option. We should view them as options. 
Most likely, you will need both in any moderately complex project.



Extending Our Development with Socket.IO

[ 72 ]

Using Socket.IO and Express together
We previously created an Express application. This application is just the foundation. 
We are going to add features until it is a fully usable app. We currently can serve web 
pages and respond to HTTP, but now we want to add real-time communication. It's 
very fortunate that we just spent most of this chapter learning about Socket.IO; it does 
just that! Let's see how we are going to integrate Socket.IO with an Express application.

We are going to use Express and Socket.IO side by side. As I mentioned before, 
Socket.IO does not use HTTP like a web application. It is event based, not request 
based. This means that Socket.IO will not interfere with Express routes that we have 
set up, and that's a good thing. The bad thing is that we will not have access to all the 
middleware that we set up for Express in Socket.IO. There are some frameworks that 
combine these two, but it still has to convert the request from Express into something 
that Socket.IO can use. I am not trying to knock down these frameworks. They 
simplify a complex problem and most importantly, they do it well (Sails is a great 
example of this). Our app, though, is going to keep Socket.IO and Express separated 
as much as possible with the least number of dependencies. We know that Socket.IO 
does not need Express, as all our examples have not used Express in any way. This 
has an added benefit in that we can break off our Socket.IO module and run it as its 
own application at a future point in time. The other great benefit is that we learn how 
to do it ourselves.

We need to go into the directory where our Express application is. Make sure that 
our pacakage.json has all the additional packages for this chapter and run npm.
install. The first thing we need to do is add our configuration settings.

Adding Socket.IO to the config
We will use the same config file that we created for our Express app. Open up 
config.js and change the file to what I have done in the following code:

var config = {
  port: 3000,
  secret: 'secret',
  redisPort: 6379,
  redisHost: 'localhost',
  routes: {
    login: '/account/login',
    logout: '/account/logout'
  }
};
module.exports = config;



Chapter 2

[ 73 ]

We are adding two new attributes, redisPort and redisHost. This is because of 
how the redis package configures its clients. We also are removing the redisUrl 
attribute. We can configure all our clients with just these two Redis config options.

Next, create a directory under the root of our project named socket.io. Then, create 
a file called index.js. This will be where we initialize Socket.IO and wire up all 
our event listeners and emitters. We are just going to use one namespace for our 
application. If we were to add multiple namespaces, I would just add them as files 
underneath the socket.io directory.

Open up app.js and change the following lines in it:

//variable declarations at the top
Var io = require('./socket.io');
//after all the middleware and routes
var server = app.listen(config.port);
io.startIo(server);

We will define the startIo function shortly, but let's talk about our app.listen 
change. Previously, we had the app.listen execute, and we did not capture  
it in a variable; now we are. Socket.IO listens using Node's http.createServer. 
It does this automatically if you pass in a number into its listen function. When 
Express executes app.listen, it returns an instance of the HTTP server. We capture 
that, and now we can pass the http server to Socket.IO's listen function. Let's 
create that startIo function.

Open up index.js present in the socket.io location and add the following lines  
of code to it:

var io = require('socket.io');
var config = require('../config');

var socketConnection = function socketConnection(socket){
  socket.emit('message', {message: 'Hey!'});
};

exports.startIo = function startIo(server){
  io = io.listen(server);
  var packtchat = io.of('/packtchat');
  packtchat.on('connection', socketConnection);

  return io;
};



Extending Our Development with Socket.IO

[ 74 ]

We are exporting the startIo function that expects a server object that goes right 
into Socket.IO's listen function. This should start Socket.IO serving. Next, we get 
a reference to our namespace and listen on the connection event, sending a message 
event back to the client. We also are loading our configuration settings.

Let's add some code to the layout and see whether our application has  
real-time communication.

We will need the Socket.IO client library, so link to it from node_modules like 
you have been doing, and put it in our static directory under a newly created js 
directory. Open layout.ejs present in the packtchat\views location and add the 
following lines to it:

<!-- put these right before the body end tag -->
<script type="text/javascript" src="/js/socket.io.js"></script>
<script>
var socket = io.connect("http://localhost:3000/packtchat");
socket.on('message', function(d){console.log(d);});
</script>

We just listen for a message event and log it to the console. Fire up the node and load 
your application, http://localhost:3000. Check to see whether you get a message 
in your console. You should see your message logged to the console, as seen in the 
following screenshot:

Success! Our application now has real-time communication. We are not done though. 
We still have to wire up all the events for our app.

Who are you?
There is one glaring issue. How do we know who is making the requests? Express 
has middleware that parses the session to see if someone has logged in. Socket.IO 
does not even know about a session. Socket.IO lets anyone connect that knows the 
URL. We do not want anonymous connections that can listen to all our events and 
send events to the server. We only want authenticated users to be able to create a 
WebSocket. We need to get Socket.IO access to our sessions.



Chapter 2

[ 75 ]

Authorization in Socket.IO
We haven't discussed it yet, but Socket.IO has middleware. Before the connection 
event gets fired, we can execute a function and either allow the connection or deny it. 
This is exactly what we need.

Using the authorization handler
Authorization can happen at two places, on the default namespace or on a named 
namespace connection. Both authorizations happen through the handshake. The 
function's signature is the same either way. It will pass in the socket server, which 
has some stuff we need such as the connection's headers, for example. For now,  
we will add a simple authorization function to see how it works with Socket.IO.

Open up index.js, present at the packtchat\socket.io location, and add a  
new function that will sit next to the socketConnection function, as seen in the 
following code:

var io = require('socket.io');

var socketAuth = function socketAuth(socket, next){
return next();
  return next(new Error('Nothing Defined'));
};

var socketConnection = function socketConnection(socket){
  socket.emit('message', {message: 'Hey!'});
};

exports.startIo = function startIo(server){
  io = io.listen(server);
  var packtchat = io.of('/packtchat');

  packtchat.use(socketAuth);
  packtchat.on('connection', socketConnection);

  return io;
};



Extending Our Development with Socket.IO

[ 76 ]

I know that there are two returns in this function. We are going to comment one out, 
load the site, and then switch the lines that are commented out. The socket server that 
is passed in will have a reference to the handshake data that we will use shortly. The 
next function works just like it does in Express. If we execute it without anything, the 
middleware chain will continue. If it is executed with an error, it will stop the chain. 
Let's load up our site and test both by switching which return gets executed.

We can allow or deny connections as we please now, but how do we know who is 
trying to connect?

Cookies and sessions
We will do it the same way Express does. We will look at the cookies that are passed 
and see if there is a session. If there is a session, then we will load it up and see 
what is in it. At this point, we should have the same knowledge about the Socket.IO 
connection that Express does about a request.

The first thing we need to do is get a cookie parser. We will use a very aptly named 
package called cookie. This should already be installed if you updated your 
package.json and installed all the packages.

Add a reference to this at the top of index.js present in the packtchat\socket.io 
location with all the other variable declarations:

Var cookie = require('cookie');

And now we can parse our cookies. Socket.IO passes in the cookie with the socket 
object in our middleware. Here is how we parse it. Add the following code in the 
socketAuth function:

var handshakeData = socket.request;
var parsedCookie = cookie.parse(handshakeData.headers.cookie);

At this point, we will have an object that has our connect.sid in it. Remember  
that this is a signed value. We cannot use it as it is right now to get the session ID. 
We will need to parse this signed cookie.

This is where cookie-parser comes in. We will now create a reference to it, as follows:

Var cookieParser = require('cookie-parser');



Chapter 2

[ 77 ]

We can now parse the signed connect.sid cookie to get our session ID. Add the 
following code right after our parsing code:

var sid = cookieParser.signedCookie (parsedCookie['connect.sid'], 
config.secret);

This will take the value from our parsedCookie and using our secret passphrase, 
will return the unsigned value. We will do a quick check to make sure this was a 
valid signed cookie by comparing the unsigned value to the original. We will do  
this in the following way:

if (parsedCookie['connect.sid'] === sid)
    return next(new Error('Not Authenticated'));

This check will make sure we are only using valid signed session IDs.

The following screenshot will show you the values of an example Socket.IO 
authorization with a cookie:

Getting the session
We now have a session ID so we can query Redis and get the session out.

If you recall in Chapter 1, Backend Development with Express, when we added Redis 
as our session store, we mentioned that connect-redis extends the default session 
store object of Express. To use connect-redis, we use the same session package as we 
did with Express, express-session. The following code is used to create all this in 
index.js, present at packtchat\socket.io:

//at the top with the other variable declarations
var expressSession = require('express-session');
var ConnectRedis = require('connect-redis')(expressSession);
var redisSession = new ConnectRedis({host: config.redisHost, port: 
config.redisPort});

The final line is creating the object that will connect to Redis and get our session. 
This is the same command used with Express when setting the store option for the 
session. We can now get the session from Redis and see what's inside of it. What 
follows is the entire socketAuth function along with all our variable declarations:

var io = require('socket.io'),
  connect = require('connect'),



Extending Our Development with Socket.IO

[ 78 ]

  cookie = require('cookie'),
  expressSession = require('express-session'),
  ConnectRedis = require('connect-redis')(expressSession),
  redis = require('redis'),
  config = require('../config'),
  redisSession = new ConnectRedis({host: config.redisHost, port: 
config.redisPort});

var socketAuth = function socketAuth(socket, next){
  var handshakeData = socket.request;
  var parsedCookie = cookie.parse(handshakeData.headers.cookie);
  var sid = connect.utils.parseSignedCookie(parsedCookie['connect.
sid'], config.secret);

  if (parsedCookie['connect.sid'] === sid)
    return next(new Error('Not Authenticated'));

  redisSession.get(sid, function(err, session){
    if (session.isAuthenticated)
    {
      socket.user = session.user;
      socket.sid = sid;
      return next();
    }
    else
      return next(new Error('Not Authenticated'));
  });
};

We can use redisSession and sid to get the session out of Redis and  
check its attributes. As far as our packages are concerned, we are just another 
Express app getting session data. Once we have the session data, we check the 
isAuthenticated attribute. If it's true, we know the user is logged in. If not,  
we do not let them connect yet.

We are adding properties to the socket object to store information from the session. 
Later on, after a connection is made, we can get this information. As an example,  
we are going to change our socketConnection function to send the user object to 
the client. The following should be our socketConnection function:

var socketConnection = function socketConnection(socket){
  socket.emit('message', {message: 'Hey!'});
  socket.emit('message', socket.user);

};



Chapter 2

[ 79 ]

Now, let's load up our browser and go to http://localhost:3000. Log in and then 
check the browser's console. The following screenshot will show that the client is 
receiving the messages:

Adding application-specific events
We have extended our Express application we created in Chapter 1, Backend 
Development with Express, to include real-time communications using Socket.IO.  
The next thing to do is to build out all the real-time events that Socket.IO is going to 
listen for and respond to. We are just going to create the skeleton for each of these 
listeners. In Chapter 7, Using Backbone and React for DOM Events, we will add the code 
to respond to these events, as they are going to retrieve and add data to Redis.

Open up index.js, present in packtchat\socket.io, and change the entire 
socketConnection function to the following code:

var socketConnection = function socketConnection(socket){
  socket.on('GetMe', function(){});
  socket.on('GetUser', function(room){});
  socket.on('GetChat', function(data){});
  socket.on('AddChat', function(chat){});
  socket.on('GetRoom', function(){});
  socket.on('AddRoom', function(r){});
  socket.on('disconnect', function(){});
};

Most of our emit events will happen in response to a listener.

Using Redis as the store for Socket.IO
The final thing we are going to add is to switch Socket.IO's internal communication 
about room participation. By default, Socket.IO will not let other Socket.IO nodes 
know about room changes. As we know now, we cannot have an application state 
that is stored only on one server. We need to store it in Redis. Therefore, we add it  
to index.js, present in packtchat\socket.io. Add the following code to the 
variable declarations:

Var redisAdapter = require('socket.io-redis');



Extending Our Development with Socket.IO

[ 80 ]

An application state is a flexible idea. We can store the application state 
locally. This is done when the state does not need to be shared. A simple 
example is keeping the path to a local temp file. When the data will be 
needed by multiple connections, then it must be put into a shared space. 
Anything with a user's session will need to be shared, for example.

The next thing we need to do is add some code to our startIo function.  
The following code is what our startIo function should look like:

exports.startIo = function startIo(server){
  io = io.listen(server);

  io.adapter(redisAdapter({host: config.redisHost, port: config.
redisPort}));

  var packtchat = io.of('/packtchat');

  packtchat.use(socketAuth);
  packtchat.on('connection', socketConnection);

  return io;
};

The first thing is to start the server listening. We create a new redisStore and set all 
the Redis attributes (redisPub, redisSub, and redisClient) to a new Redis client 
connection. The Redis client takes a port and the hostname.

Socket.IO inner workings
We are not going to completely dive into everything that Socket.IO does, but we will 
discuss a few topics.

WebSockets
This is what makes Socket.IO work. All web servers serve HTTP, that is, what makes 
them web servers. This works great when all you want to do is serve pages. These 
pages are served based on requests. The browser must ask for information before 
receiving it. If you want to have real-time connections, though, it is difficult and 
requires some workaround. HTTP was not designed to have the server initiate the 
request. This is where WebSockets come in.



Chapter 2

[ 81 ]

WebSockets allow the server and client to create a connection and keep it open. 
Inside of this connection, either side can send messages back and forth. This is  
what Socket.IO (technically, Engine.io) leverages to create real-time communication.

Socket.IO even has fallbacks if you are using a browser that does not support 
WebSockets. The browsers that do support WebSockets at the time of writing include 
the latest versions of Chrome, Firefox, Safari, Safari on iOS, Opera, and IE 11. This 
means the browsers that do not support WebSockets are all the older versions of IE. 
Socket.IO will use different techniques to simulate a WebSocket connection. This 
involves creating an Ajax request and keeping the connection open for a long time.  
If data needs to be sent, it will send it in an Ajax request. Eventually, that request  
will close and the client will immediately create another request.

Socket.IO even has an Adobe Flash implementation if you have to support really old 
browsers (IE 6, for example). It is not enabled by default.

WebSockets also are a little different when scaling our application. Because each 
WebSocket creates a persistent connection, we may need more servers to handle 
Socket.IO traffic then regular HTTP. For example, when someone connects and 
chats for an hour, there will have only been one or two HTTP requests. In contrast, 
a WebSocket will have to be open for the entire hour. The way our code base is 
written, we can easily scale up more Socket.IO servers by themselves.

Ideas to take away from this chapter
The first takeaway is that for every emit, there needs to be an on. This is true whether 
the sender is the server or the client. It is always best to sit down and map out each 
event and which direction it is going.

The next idea is that of note, which entails building our app out of loosely coupled 
modules. Our app.js kicks everything that deals with Express off. Then, it fires the 
startIo function. While it does pass over an object, we could easily create one and use 
that. Socket.IO just wants a basic HTTP server. In fact, you can just pass the port, which 
is what we used in our first couple of Socket.IO applications (Ping-Pong). If we wanted 
to create an application layer of Socket.IO servers, we could refactor this code out and 
have all the Socket.IO servers run on separate servers other than Express.



Extending Our Development with Socket.IO

[ 82 ]

Summary
At this point, we should feel comfortable about creating and using real-time  
events in Socket.IO. We should also know how to namespace our io server and  
create groups of users. We also learned how to authorize socket connections to 
only allow logged-in users to connect. We did this in the context of our Express 
application that we created in the previous chapter.

Our next chapter will demonstrate the correct way to authenticate users  
using Passport.



Authenticating Users
We technically have built authentication into our application already, but it is 
definitely not ready for production. We are going to need an authentication 
framework that will allow users to sign up using accounts they already have and 
to create a local user account. Node.js has a great and extensible authentication 
framework: Passport. It has a foundation package that will easily integrate with 
Express. In addition to this, it has over 140 strategies (what Passport calls its 
authentication plugins) to use. If Passport cannot authenticate it, no one is probably 
using it. We will cover the following topics in this chapter:

• How to register applications for Facebook and Google
• How to authenticate to Facebook
• How to authenticate to Google
• How to authenticate locally

Node package versions
We need to install Passport, and the three strategies we will use: local, Facebook, 
and Google. We are extending our application that we created in Chapter 1, Backend 
Development with Express; so, these are in addition to all the packages we already 
have installed. The following list details out the versions for each package. We will 
only be working in our main application, so add them to our current list of packages 
in package.json and run npm install:

• passport: 0.2.0
• passport-local: 1.0.0
• passport-facebook: 1.0.3
• passport-google-oauth: 0.1.5
• scmp: 0.0.3



Authenticating Users

[ 84 ]

Let's build our authentication
With our packages installed, we now have the basis to build our authentication 
system. The first thing to do is create a folder named passport and create a file 
named index.js in that folder. Inside index.js, we will get a reference to  
Passport and pass it back to the main app.js, as shown in the following code:

var passport = require('passport');

exports.passport = passport;

We could have done this in app.js, but we are going to set some things up and add 
some utility functions to this object. This will help keep our app.js file clean and 
easy to understand. We can now jump over to app.js and use our new module.  
Add the following lines to app.js:

//at the top with variable declarations
passport = require('./passport');
//in the middleware section
app.use(session({
  secret: config.secret,
  saveUninitialized: true,
  resave: true,
  store: new RedisStore(
    {url: config.redisUrl})
  })
);
app.use(passport.passport.initialize());
app.use(passport.passport.session());
app.use(bodyParser.json());

It might seem redundant to have passport.passport. This is because we pass 
the passport object back off of exports. We are doing this so that we can expose 
other functions later into the app.js scope. We will need to put Passport's session 
middleware after Express' session middleware. This is because Passport extends 
Express' session. Before Passport can do that, the session must exist off the request 
object. Before we can use Passport's session, we will need to initialize it. At this point, 
we can start our Node server and whether it is working. We are using Passport! It's 
not doing anything, but we are using it.



Chapter 3

[ 85 ]

Registering a Facebook application
Our next step will be to create a Facebook application. The passport-facebook 
package requires a client ID and a client secret. We cannot just make them up,  
even for test. We will have to create a valid Facebook application. Let's do that.

The first thing we need to do is go to https://developers.facebook.com/.  
You will need to log in and register as a new developer. Click on Apps | Create a 
New App from the header, as shown in the following screenshot:

Now would be a good time to note that this may all look different. 
In the past, Facebook has not been shy about changing the layout 
and look of their site.

A dialog will appear for Create a New App. Fill Display Name (what the app is 
called), Namespace (this must be unique in all of Facebook), and choose Category. 
Then, click on Create App. The following screenshot shows my choices:

https://developers.facebook.com/


Authenticating Users

[ 86 ]

Most likely, you will have to pass a captcha security check next. You will then be 
taken to your application's dashboard. Here you can see your App ID and App 
Secret, as shown in the following screenshot:

Do not let your App ID and App Secret get out! Someone can make 
calls in the context of your application. I have redacted them here. Our 
App ID is actually public information and is used in our redirect URLs 
from the client. Your App Secret should always be protected. Because 
anyone can find our App ID, our App Secret is how we let Facebook, 
or any other OAuth server, know it is our application.

Before we can use this app, we will have to set it up.



Chapter 3

[ 87 ]

Click on the Settings link to the left. Here, you will see your App ID and App Secret 
again. This is where we let Facebook know where the authentication requests will 
be coming from. Click on Add Platform and select Website, which is shown in the 
following screenshot:

Under Site URL, enter our development URL: http://localhost:3000/.  
Finally, click on Save Changes. Your Settings should look similar to  
the following screenshot:



Authenticating Users

[ 88 ]

As shown in the following screenshot, you can click on App Details and update 
information about our application. You can set descriptions, why you want certain 
permissions, any service URLs (for example, terms of service or privacy), a logo,  
and an icon. This is where you will build a custom dialog box for your app. This is  
just for test, so we won't do any of this. The following screenshot shows what options 
are available:

Using Passport to authenticate to 
Facebook
We are now ready to make Passport work with Facebook. We also are going to  
do this correctly from the start by adding our configuration to the config file from 
the start. We want our code to be modular. This allows us to replace certain parts 
and config settings without disturbing other parts. So, let's start there. Open up 
config.js in the root of our folder and add the following lines to it:

routes: {
    login: '/account/login',
    logout: '/account/logout',
    chat: '/chat',
    facebookAuth: '/auth/facebook',
    facebookAuthCallback: '/auth/facebook/callback'
  },



Chapter 3

[ 89 ]

  host: 'http://localhost:3000',
  facebook: {
    appID: 'YOUR_APP_ID',
    appSecret: 'YOUR_APP_SECRET',
  }

We are adding three more routes, facebookAuth, facebookAuthCallback, and  
chat as we will need to use these in at least two different places. We want to add any 
URLs here that need to be definitively defined. Any authentication URL will fit this 
description. Next, we are adding a host attribute. We need this because Facebook 
needs a fully qualified domain name (FQDN) to redirect to after authentication. 
Finally, we are adding appID and appSecret in the config file.

We are keeping our secret in the config file for ease here, but we 
should never have this information accessible in a public repo. 
We will cover where to put this info in Chapter 8, JavaScript Best 
Practices for Application Development.

As a quick aside, we have to change the chat route in two other files. The first is  
app.js and the other is in index.js present in the routes folder. Both of the files 
reference/chat and we need to update these references to config.routes.chat.

We are ready to build out our Passport authentication object now. Open up index.js 
present in the passport folder to add the following lines at the top of the file:

var passport = require('passport'),
  facebook = require('passport-facebook').Strategy,
  config = require('../config');

passport.use(new facebook({
  clientID: config.facebook.appID,
  clientSecret: config.facebook.appSecret,
  callbackURL: config.host + config.routes.facebookAuthCallback
},
function(accessToken, refreshToken, profile, done){
  done(null, profile);
}));
exports.passport = passport;

We start off by getting a reference to all the objects we will need. Then, we tell 
Passport that we are going to be using Facebook. We configure the Facebook 
authentication strategy with our config object. Here, we can see that we need  
to use host and route to build a FQDN for Facebook to redirect back to. 



Authenticating Users

[ 90 ]

The anonymous function is what Passport will run after a successful authentication 
request. For Facebook, this will involve some tokens, a user profile object, and a 
callback. We are not doing anything special here. We just take the user profile and pass 
it to the next function. If we had a database, we could use it to check whether that 
Facebook ID existed on a user, and then return that user or create a new user if that 
Facebook ID was not used. Now, we need to build the functions that takes the user in 
and out of the session. This is what our done(null, profile) callback will call.

Add the following two functions in index.js present in the passport folder,  
right before the final exports:

passport.serializeUser(function(user, done){
  done(null, user);
});

passport.deserializeUser(function(user, done) {
    done(null, user);
});
exports.passport = passport;

We have configured Passport to use a session (in app.js with app.use(passport.
passport.session())), so Passport needs to know how to serialize the user to go 
into the session and how to get it back out. If we have our own database backend, 
we can just store the user ID that we could have looked up in the callback from 
the authentication method. In this example, we are just storing the user object as is 
to the session. I personally think that storing the whole user object is the best way 
to do this, as I don't want to make a query to look up the user on every request. 
This is especially true when we have a super-fast backend for our session, such as 
Redis. We will now have an object at req.session.passport.user when someone 
authenticates their details. We will use this in just a few paragraphs. Next, we need 
to build our routes for Facebook.

The last lines we are going to add in index.js present in the passport folder are the 
routes function and exports, as shown in the following code:

var routes = function routes(app){
  app.get(config.routes.facebookAuth, passport.
authenticate('facebook'));
  app.get(config.routes.facebookAuthCallback, passport.
authenticate('facebook', 
    {successRedirect: config.routes.chat, failureRedirect: config.
routes.login, failureFlash: true}));
};

exports.passport = passport;
exports.routes = routes;



Chapter 3

[ 91 ]

We built our routes in the config file, so we just reference them here. The routes 
function will need a reference to Express, so it is passed in as a parameter. We can 
then use it to tell Express how to respond to these requests. Each function is just 
a simple Express route with a Passport authentication middleware added. The 
first route is where we should send the initial Facebook authentication request. It 
will redirect the user to Facebook to approve the request. Facebook will then send 
the request back to our second route. This will finalize the authentication. We can 
configure this middleware by passing in an options object as the second parameter. 
We are doing this with the Facebook callback route and specifying where to redirect 
on success and failure. In addition to this, we also tell it to use the flash middleware 
to log for any errors.

To make this work, we need to tell Express about these routes. In app.js, after all the 
other routes have been created, add the following line:

passport.routes(app);

The passport.routers function is executed with app, which is our Express server 
object. Express now knows about our two Facebook routes.

Because we have updated our authentication process, we will need to update some 
middleware utilities and views. Let's start with the middleware.

Our old authenticate middleware will not pick up a Passport authentication. Open 
up utilities.js present in the middleware folder and change the authenticated 
function to the following code:

Module.exports.authenticated = function authenticated(req, res, next){
  req.session.isAuthenticated = req.session.passport.user !== 
undefined;
  res.locals.isAuthenticated = req.session.isAuthenticated;
  if (req.session.isAuthenticated) {
    res.locals.user = req.session.passport.user;
  }
  next();
};

Before, we were manually setting the isAuthenticated variable in the session in 
the auth function. Now, we will check to see whether there is a passport user in the 
session. If so, set the res.locals.user to that user. Authentication through Passport 
will now work correctly. If we do not change this function, it will not see a Passport 
authentication as valid.



Authenticating Users

[ 92 ]

Next, we need to change the logOut function in the same file, as follows:

Module.exports.logOut = function logOut(req){
  req.session.isAuthenticated = false;
  req.logout();
};

Passport adds a logout function off of the request that will take care of removing the 
user from the session; we will use this. We did change the function signature of this, 
so we will need to update any other functions that call this. Luckily, this is just one. 
Open index.js present in the routes folder and modify the logOut function there, 
as shown in the following code:

exports.logOut = function logOut(req, res){
  util.logOut(req);
  res.redirect('/');
};

Now, we can edit the views. Our user object has changed, so our reference in  
user-loggedin.ejs present in the views/partials folder is not correct anymore. 
Open that file and change it to the following:

Hello <%= user.displayName %> <a href="<%= routes.logout %>">Logout</
a>

Finally, we will make the Facebook button on our login form actually take us to 
Facebook. Open login.ejs present in the views folder and change the Facebook 
button to the following:

<div class="col-sm-6">
                  <a class="btn btn-block facebook" href="<%= routes.
facebookAuth %>"><i class="fa fa-facebook"></i> Facebook</a>
</div>

We changed the button to an anchor tag. We could have left it as a button and  
tied a click handler to it, but I always try to let the browser execute the default  
action if possible. We then set the href to our facebookAuth route. This is a  
perfect example of why we want a route map. At this point, we should be able  
to authenticate to Facebook.



Chapter 3

[ 93 ]

Load our app in Node and go to the login page and click on Facebook. The following 
screenshot is what you should see (with your Facebook photo of course!):

If you had added an application icon, it would show up here. This is the first time  
we will select Cancel to see what happens. The following screenshot shows what 
should happen:



Authenticating Users

[ 94 ]

This is exactly what we wanted. It redirects back to the login and has a flash message 
of what went wrong. Let's do it again, except this time approve the request. Success! 
We should now see that we are logged in and it displays our name from Facebook. 
The following screenshot is what it should look like:

Our middleware are all working together as we designed. Even though we have 
completely changed how our application authenticates, all our pieces are working  
as they should.

If you are trying to test your Facebook authentication and you 
approve the application, you can still remove that approval. Go to 
https://www.facebook.com/appcenter/my and remove the 
application from your profile. This may change in the future.

Using Google for authentication
We have Facebook working great. Let's authenticate to Google now. The process will 
be very similar, so this shouldn't be too hard. The first thing we have to do is register 
an application with Google.

Go to https://console.developers.google.com/project. This page will list out 
all the applications that you have created with Google before. This includes any App 
Engine or OpenID projects. I have tried a few different services with Google, so I 
have a few projects here. 

https://www.facebook.com/appcenter/my
https://console.developers.google.com/project


Chapter 3

[ 95 ]

We want to click on the CREATE PROJECT button shown in the  
following screenshot:

A New Project dialog will pop up. Filling this out will be similar to Facebook's 
process. Project name is the name by which we will call the project. Project ID is  
the Google identifier for our application. It defaults to a randomly created name 
which we will use here. Then, click on the Create button. This can be seen in the 
following screenshot:



Authenticating Users

[ 96 ]

Our newly created application will be on our list now. Click on the application name 
and you will see a screen that asks us, Not sure what to do next? To be honest, it is 
not really clear what you are supposed to do next. There are a lot of options here. 
The Google Developers Console allows you to create everything from OAuth 
applications (what we want to do now) to using Google Compute Engine. Our next 
step is to click on Apis & auth and then on Credentials from the menu that comes 
up. You will see Compute Engine and App Engine credentials, but we cannot use 
those. You can see it in the following screenshot:



Chapter 3

[ 97 ]

You need to click on CREATE NEW CLIENT ID. This will pop up a new  
dialog. The application type is Web application, Authorized JavaScript  
origins is http://localhost:3000, and Authorized redirect URI is  
http://localhost:3000/auth/google/callback. Your dialog should  
look like the following screenshot:



Authenticating Users

[ 98 ]

We can now click on Create Client ID. Our API Credentials list should now have a 
new Client ID and Client secret for us. You can see this in the following screenshot:

The last thing we can do is modify Consent Screen. This is the page that you will be 
redirected to to authorize the application. You can add logos, privacy policies, terms 
of service, and a few other things. The one setting you will want to change is Product 
name. If you don't do so, your application will show up as Project Default Service 
Account, which is not very user friendly.

This process is very similar to Facebook's. We also come out of it with the same  
exact type of data, a client ID, and secret. Setting up the authentication will be  
very easy as well.

Adding Google authentication to  
our application
First, we need to add our Google-specific information to our config.  
Open config.js and add the following lines:

routes: {
    login: '/account/login',



Chapter 3

[ 99 ]

    logout: '/account/logout',
    chat: '/chat',    facebookAuth: '/auth/facebook',
    facebookAuthCallback: '/auth/facebook/callback',
    googleAuth: '/auth/google',
    googleAuthCallback: '/auth/google/callback'
  },
//host and facebook
google: {
    clientID: 'YOUR_GOOGLE_ID',
    clientSecret: 'YOUR_GOOGLE_SECRET'
  }

We haven't added anything different. We just had to create the two Google 
authentication routes and add the ID and secret.

The package we will use is passport-google-oauth. This should be installed 
already at this point through npm install. Notice that this is not passport-google. 
That package is used to authenticate with OpenID, and we want to use OAuth2.

Open index.js present in the passport folder and add a reference to our Google 
strategy as follows:

//other variable declarations
google = require('passport-google-oauth').OAuth2Strategy,

The next step is to tell Passport that we want to use Google as an authentication 
provider. Add this middleware to our auth stack.

//right under the Facebook passport.use
passport.use(new google({
    clientID: config.google.clientID,
    clientSecret: config.google.clientSecret,
    callbackURL: config.host + config.routes.googleAuthCallback
},
function(accessToken, refreshToken, profile, done) {
  done(null, profile);
}));

If you compare this chunk of code to the Facebook portion, you will see that they  
are almost exactly the same. This is because we are trying to do the exact same thing. 
We need to pass in our client ID and client secret. Then, we need to tell Google what 
URL to use as a callback. The final function is how we would tie this together with  
a database. We would be able to find or create a user based on their Google ID.  
Here, we are not doing that; we are just using the profile as is from Passport.



Authenticating Users

[ 100 ]

This is important enough to repeat; do not let your client ID 
and secret get out! With them, other apps can masquerade 
using your identity.

The next step is to set up routes to start authentication and our authentication 
callback. Inside index.js, present in the passport folder, add the following  
routes to the routes function:

var routes = function routes(app){
  app.get(config.routes.facebookAuth, passport.
authenticate('facebook'));
  app.get(config.routes.facebookAuthCallback, passport.
authenticate('facebook', 
    {successRedirect: config.routes.chat, failureRedirect: config.
routes.login, failureFlash: true}));
  app.get(config.routes.googleAuth, passport.authenticate('google', 
    { scope: ['https://www.googleapis.com/auth/userinfo.
profile','https://www.googleapis.com/auth/userinfo.email'] }));
  app.get(config.routes.googleAuthCallback, passport.
authenticate('google', 
    {successRedirect: config.routes.chat, failureR edirect: config.
routes.login, failureFlash: true}));
};

Again, these lines of code are very similar to our Facebook routes. The main 
difference here is that our initial Google authentication URL has an extra object 
passed into it. This is the scope. The scope tells Google what we want to access 
from the user. Google then shows that to the user, so they can approve or deny the 
request. Other than that difference, these routes are here to do the same thing the 
Facebook routes do.

Facebook also can use scope. If you do not specify a scope, 
Facebook will use a default scope. Google requires that a 
scope be explicitly defined.

Finally, we need to add our Google Auth URL to the login view. Open up  
login.ejs present in the views folder and change the Google button HTML  
code to the following:

<div class="col-sm-6">
<a class="btn btn-block google" href="<%= routes.googleAuth %>"><i 
class="fa fa-google-plus"></i> Google</a>
</div>



Chapter 3

[ 101 ]

We can now test Google authentication. Fire up your app with Node and go  
to http://localhost:3000/login. Then, click on the Google login button.  
You should see the following screenshot:

We can see our scope is passed as Google tells us that the application wants our 
e-mail address and basic profile information. Click on Accept, and you should be 
redirected to http://localhost:3000/chat and be logged in. We have wired up 
Google OAuth and it works!

If you are testing Google authentication, you may want to remove 
access to your application. If not, subsequent authentication calls 
automatically return. Just go to your Google account and then click 
on the Security tab, and then Account Permissions. You will see a 
list of all the applications you have approved from your account.

Adding more OAuth providers
At this point, hopefully, we can see that adding more authentication providers 
should be easy with Passport. At the time of writing this book, Passport has 140 
authentication packages we can use. Many of them are OAuth wrappers because 
OAuth is a great way to maintain security and give access to third parties. Each new 
provider that you add will roughly follow the process we have just done. First, you 
will sign up with the provider and create an application/client. Most likely, you will 
get an ID and a secret. Plug those into your application config along with your initial 
route and callback route. Finally, create the routes using Passport's middleware and 
add the link to a view. Congratulations! You have added a new provider!



Authenticating Users

[ 102 ]

Adding secure local authentication
We have Facebook and Google authentication working perfectly. We should be able 
to sign in and go to http://localhost:3000/chat and get an authorized Socket.IO 
handshake, although we now cannot sign in using our local username and password.

Technically, the function does come back as authorized, but we do 
not set the correct variables in the session anymore.

We also want to create a function that is much more secure than just a  
username check.

The passport-local module will work in the passport.authenticate 
middleware, but we will have to write our own logic. This is different than the  
other modules where the logic is written, and we just have to add our application 
specific parts. Let's build our authentication logic.

Open your config.js file in the root directory. We are going to add some 
cryptographic settings as follows:

crypto: {
    workFactor: 5000,
    keylen: 32,
    randomSize: 256
  }

We will talk about and use the workFactor later. The keylen Integer is the size of 
our hash that comes back and randomSize is the size of the salt. We will use all of 
these and discuss what they do later in this chapter.

Now that we have our crypto settings, we will create a file in the passport directory 
named password.js. This will hold all of our password utilities.

The first thing we will do is use a package name scmp. This will allow us to do constant 
time comparisons. We will discuss why this is important later in the chapter.

Add the following code to password.js present in the passport folder:

var crypto = require('crypto'),
    scmp = require('scmp'),
    config = require('../config');

var passwordCreate = function passwordCreate(password, cb){
  crypto.randomBytes(config.crypto.randomSize, function(err, salt){



Chapter 3

[ 103 ]

    if (err)
      return cb(err, null);
        crypto.pbkdf2(password, salt.toString('base64'), config.
crypto.workFactor, config.crypto.keylen, function(err, key){
            cb(null, salt.toString('base64'), key.toString('base64'));
        });
    });
};

var passwordCheck = function passwordCheck(password, derivedPassword, 
salt, work, cb){
    crypto.pbkdf2(password, salt, work, config.crypto.keylen, 
function(err, key){
        cb(null, scmp(key.toString('base64'), derivedPassword));
    });
};

exports.passwordCreate = passwordCreate;
exports.passwordCheck = passwordCheck;

Crypto is a built-in Node.js module, so we don't have to install anything to use it. 
Our passwordCreate function takes a password and will create a secure hash. The 
function first uses randomBytes that will return 256 random bytes of data. The 256 
bytes of data is based on our config setting. We then take that as salt and the clear 
text password and send it to Password-Based Key Derivation Function 2 (PBKDF2), 
which is a function that will create a derived key based on salt, our password, and 
a work factor. We then return salt and the derived key back so that we can store it 
somewhere (most likely a database).

The passwordCheck function will do the opposite of that. It will take a password, a 
derived password, a work factor, and salt, and rerun the hashing function. Then, 
it will compare the values using scmp (we will cover why we do this later in the 
chapter). If they match, then the password was correct, and if not, it was not a valid 
password. We now have the two basic password functions that any application 
requires: creation and checking.

We will now create a user object to find and add users to our application. Create a 
file at user.js present in the passport folder. We will not be using a database here, 
but this is where you would pull in your database to look up users. We will just use a 
simple object to store all of our users, as shown in the following code:

var passUtil = require('./password');

var Users = {



Authenticating Users

[ 104 ]

  josh: {
    salt: 'G81lJERghovMoUX5+RoasvwT7evsK1QTL33jc5pjG0w=',
        password: 'DAq+sDiEbIR0fHnbzgKQCOJ9siV5CL6FmXKAI6mX7UY=',
        work: 5000,
        displayName: 'Josh',
        id: 'josh',
        provider: 'local',
        username: 'josh'
  }
};

This could be the schema for your database. It mimics Passport's profile object with 
the addition of our password-related fields. The salt is much smaller here than you 
will get if you run the application. If I used a salt for the length we configured, it 
will take a page or two to display. If you were using a database, you will most likely 
tie the Users object to the users table or schema in your database. Now, let's add our 
functions as follows:

var findByUsername = function findByUsername(username, cb){
  cb(null, Users[username]);
};

var addUser = function addUser(username, password, work, cb){
  if(Users[username] === undefined)
  {
    passUtil.passwordCreate(password, function(err, salt, password){
      Users[username] = {
        salt: salt,
        password: password,
        work: work,
        displayName: username,
        id: username,
        provider: 'local',
        username: username
      };

      return cb(null, Users[username]);
    });
  }else{
    return cb({errorCode: 1, message: 'User exists!'} 'User exists!', 
null);
  }
};



Chapter 3

[ 105 ]

var updatePassword = function(username, password, work){
  passUtil.passwordCreate(password, function(err, salt, password){
    Users[username].salt = salt;
    Users[username].password = password;
    Users[username].work = work;
  });
};

exports.findByUsername = findByUsername;
exports.addUser = addUser;
exports.updatePassword = updatePassword;

findByUsername is pretty straightforward. It looks in the object for an attribute 
of our username and returns that. This is just a simple example. We should never 
trust data that was sent from the client. This is a perfect example of SQL injection 
(or object injection in the case here). We could add your SQL here for finding a 
user with a database or a key lookup in Redis. The next function adds a user. This 
function uses our passwordCreate function and adds an attribute to our object 
with their username, password, and salt. Finally, we have an updatePassword 
function which will update a user's password in the object based on the output of 
the passwordCreate function. If you were using a database, these last two functions 
would require an INSERT and UPDATE SQL commands, respectively inside a 
transaction. Without using a transaction, we can leave the data in an unusable state.

Because the user list is an object, restarting the server will clear out 
all the added users. This is also true if you are running multiple web 
servers. Each one will have their own view of this data. This is not 
production safe, and we are using it here to demonstrate what will 
be stored over how to store it.

We can now create our Passport strategy to authenticate local users. In index.js, 
present in the passport folder, add the following variable declarations:

local = require('passport-local').Strategy,
  passwordUtils = require('./password'),
  user = require('./user'),

We can now put in our authentication middleware. Add the following line after 
Facebook and Google:

passport.use(new local(function(username, password, done){
  user.findByUsername(username, function(err, profile){
    if(profile)
    {



Authenticating Users

[ 106 ]

      passwordUtils.passwordCheck(password, profile.password, profile.
salt, profile.work, function(err,isAuth){
        if(isAuth)
        {
          if (profile.work < config.crypto.workFactor)
          {
            user.updatePassword(username, password, config.crypto.
workFactor);
          }
          done(null, profile);
        }
        else
        {
          done(null, false, {message: 'Wrong Username or Password'});
        }
      });
    }
    else
    {
      done(null, false, {message: 'Wrong Username or Password'});
    }
  });
}));

Passport's local strategy requires us to build our own logic to determine if someone 
is authorized. If they are, Passport will take care of adding them to the session. The 
first thing we do is check to see if a user exists; if not, return with the message Wrong 
Username or Password. Remember, you do not want to give attackers information, 
such as whether or not a username is in use. Next, we use our passwordCheck 
function. It will return a Boolean that states whether or not the password matched 
what was stored. Again, if it doesn't match, we will send our message back to the 
user. If the password does match, we perform one last check to see whether the work 
factor is smaller than our config. If so, update the salt, derived password, and work 
factor. This allows us to update our work factor, and as users authenticate, we will 
store their password more securely.

We will cover a little theory after we create all of our new functions 
and files. First the practical, what you need to know, then we will 
have the theory.



Chapter 3

[ 107 ]

Finally, return the profile back. At this point, it is handed over to Passport to serialize 
and store the information in the session.

The last thing we must do to make this work is create the route URL. Inside of the 
routes function, add these lines:

app.post(config.routes.login, passport.authenticate('local', 
    {successRedirect: '/chat', failureRedirect: config.routes.login, 
failureFlash: true}));

This should look like our other routes. Any POST to the login URL will run our local 
authentication function. It will also process our redirects. Before we test this, we will 
need to remove our other functions that listen for a POST on the login URL. Open 
app.js, and remove the following line from the routes:

app.post(config.routes.login, routes.loginProcess);

We can also remove the loginProcess function from index.js present in the 
routes folder and the auth function from index.js present in the middleware 
folder, as we will not need them anymore.

Start Node with our application and browse to http://localhost:3000 and test 
logging in. The user we have loaded has josh as the username and a password of 
password. If you are using the code from Packt Publishing, you will also have two 
more users: brian and test. Both of these users have the same password: password. 
If you forget to pass either a username or password, then you will get an alert. This is 
shown in the following screenshot:



Authenticating Users

[ 108 ]

This is built into Passport's local strategy. If you pass in the wrong username or 
password, you will get our message of Wrong Username or Password.

Our authentication now works locally through Facebook and through Google. 
Unfortunately, we can only authenticate a few users locally.

Adding registration
We have built most of everything we need to enable registrations, so let's do that.  
We will want to create our registration URL, so open config.js and add the 
following line to the route map:

logout: '/account/logout',
register: '/account/register',
facebookAuth: '/auth/facebook',

Next, we will create our view. Create a file named register.ejs in the views 
directory. The file should have the following HTML code in it:

<div class="row">
    <div class="col-sm-8 col-sm-offset-2">
        <div class="row">
            <div class="col-sm-12">
              <form method="post">
                <% if (message.length > 0) { %>
                  <div class="alert alert-danger"><%= message %></div>
                <% } %>
                <input type="hidden" name="_csrf" value="<%= token 
%>">
                <div class="form-group">
                    <label for="username">Username</label>
                    <input type="text" class="form-control" 
id="username" placeholder="username" name="username">
                </div>
                <div class="form-group">
                    <label for="password">Password</label>
                    <input type="password" class="form-control" 
id="password" placeholder="password" name="password">
                </div>
                <button class="btn btn-primary btn-block">Register</
button>
            </div>
          </form>
        </div>
    </div>
</div>



Chapter 3

[ 109 ]

This form is actually the login form with the Facebook and Google buttons 
removed. Now, we need to add a link to this page. Open user-loggedout.ejs 
present in the views/partials folder and add the following line to it:

<a href="<%= routes.login %>">Login</a> or <a href="<%= routes.
register %>">Register</a>

When you are logged out, the upper right of the page will now have links for  
logging in and registering.

The next step is to create our route function to respond to the routes.  
Open index.js present in the routes folder and add the following variable  
and two functions to it:

//variable declaration
var user = require('../passport/user');
//exports
module.exports.register = register;
module.exports.registerProcess = registerProcess;
//functions
function register(req, res){
  res.render('register', {title: 'Register', message: req.
flash('error')});
};

function register Process (req, res){
  if (req.body.username && req.body.password)
  {
    user.addUser(req.body.username, req.body.password, config.crypto.
workFactor, function(err, profile){
      if (err) {
        req.flash('error', err);
        res.redirect(config.routes.register);
      }else{
        req.login(profile, function(err){
          res.redirect('/chat');
        });
      }
    });
  }else{
    req.flash('error', 'Please fill out all the fields');
    res.redirect(config.routes.register);
  }
};



Authenticating Users

[ 110 ]

The first register function is just a simple render passing in the title and any 
messages. The next function does all the work of registering. registerProcess will 
be tied to POST action, so we can check the body for values. That is the first thing 
we do. We make sure both the username and password are filled out. If not, let the 
user know that they need to fill them both out. Then, we run our addUser function 
passing in the form values and our config's work factor. This function will first check 
if the user exists, as we don't want to just overwrite any user. If that happens, we set 
a flash message and redirect them back to the register form. If everything works out, 
then the user is returned. We then run req.login a Passport function that will set 
all the session variables for a logged-in user. req.login does not take a password 
because it assumes you have already done authentication checks.

Now we can add these functions to our main app.js. Open it and add the  
following routes:

app.get(config.routes.register, routes.register);
app.post(config.routes.register, routes.registerProcess);

We can now test this. Restart the Node and browse to http://localhost:3000/
account/register. Create a new user and you will see that you are logged in.  
Then, log out and you will be able to log in again with the credentials you created. 
Just remember that this user will not last between server restarts.

Adding a database
If we wanted to add a database, it would be very easy. There are possibly two files 
we would change. The first file we would have to change is user.js present in the 
passport folder. This is the file that stores all our users. We would need to point it 
to our database. It's not really in the scope of this book to cover all the different types 
of databases you could use, but you would just have to look up users, add users, 
and update users. If you used the same schema as the Users object does in user.js 
(present in the passport folder), you will not need to update any other files. If you 
use a different schema, you will need to update index.js present in the passport 
folder. This file assumes that salt, password, and the work factor are separate 
columns. If they are not, you will just have to update any functions that look for 
these columns. Other than that, all the other functions are not dependent on where 
the data comes from.



Chapter 3

[ 111 ]

Password-storing theory
We did not spend any time on why we chose PBKDF2 as our password-storing 
function. We will step through different levels of password security and talk about 
why we did not choose these methods.

First up is clear text passwords. I think this is very clear why this is a bad security 
practice. If attackers ever get your database, they have every user's username and 
password without doing any work. Most users reuse passwords, so this could give 
the attackers access to many people's Facebook, Gmail, and even the users' bank 
accounts. Never do this, especially when doing it correctly is very easy.

The next step up in storing passwords is using a hash function. A couple of popular 
functions are MD5 and SHA-256. These functions will take a clear-text password 
and turn it into a one-way hash of the password. When we check the password, we 
hash what a user has entered and compare it against what is in the database. If they 
match, then we know it is the correct password. This seems like it is all we would 
need to do, but there is one large issue here. There are files called rainbow tables 
which have thousands, millions, or even billions of password hashes. An attacker 
can just download an MD5 or SHA-256 rainbow table and then compare the hashes 
to our database. Not as easy as clear text, but if the hash exists in the rainbow table, 
that password is compromised.

We can protect against rainbow tables using a salt. This is some value that is 
used with the password. For example, if our salt was salt and the password was 
password, then the value we will hash would be salt password. This negates 
rainbow tables as each password will have a random value added to each password 
and would not be in the rainbow table. The most effective way for this to work 
would be to have a different salt for each password. If there is only one salt, then 
the attacker could create a salted rainbow table. Again, there is a problem here. It 
is the speed of hashing. MD5 and SHA-256 are designed to be fast. These hashing 
algorithms were not designed for passwords. Have you ever downloaded an ISO 
or file and there was an MD5 hash of the file? MD5 is fast so that you can quickly 
calculate the hash of the file and compare it to see whether there was any corruption. 
An attacker could go to Amazon Web Services run a few servers that can create 
10,000 hashes a second on each CPU and go through every salted password hash in 
a matter of weeks, maybe even days. As each year goes by and CPUs become more 
efficient, this will become increasingly easier.



Authenticating Users

[ 112 ]

This brings us to what we are doing in this application. You should notice that  
we are using distinct salts for each password. The concept of salting a password 
is good; the use of MD5 or SHA-256 was the bad practice. That is where PBKDF2 
(Password-Based Key Derivation Function 2) comes in. PBKDF2 allows you to add 
a work factor that will make the algorithm slower to compute. Instead of checking 
a hash every 1/10000th of a second, we are now talking about every half-second or 
second. Given enough time, the attacker can still crack each password, but it would 
take thousands of times longer. Now, we are talking about years or even decades to 
crack an entire database. In addition to this, the site is set up to allow us to increase 
the work factor. You will just need to change the value in config.js, and as users 
log in, it will recompute the stored value and a higher work factor. This helps as 
computers get faster.
The last security best practice we will cover is using scmp, which is constant-time 
comparison package. There are attacks named timing attacks that measure how long 
our application returns from a password check and uses that to determine what each 
letter of a password is. If it returns in 1 millisecond compared to 3 milliseconds, then 
the attack knows that the first few characters are correct. It then continues on down 
the password. This is done over thousands of calls. The protection for this is to run 
a constant-time comparison, which will return the same amount of time every time. 
This stops this type of attack in its tracks.

OAuth process
We are using OAuth for Facebook and Google for our current app. If we add 
anymore providers, there is a large chance that they will be using OAuth.  
OAuth has almost become the standard for remote authentication.

OAuth is great in that the user has control over their own permissions, and we do 
not have to store a password for them. Our application's flow is first, the user decides 
which service to authenticate with. We then ask for a URL from the provider that we 
can redirect the user to. This URL will let the provider know which application is 
asking for permissions. This will involve our application ID, referring domain, and 
application secret. Once the user logs in and approves our application, the provider 
will create a redirect back to our servers. We then get a code that we can exchange 
for a token. That token uniquely identifies our application's access to that specific 
user. No passwords are exchanged, and the user can later change the access.

OAuth can be very complex. Depending on how the site is accessed, 
some of these steps could be different. OAuth is great for users, 
but can be a pain for developers, as each provider can have small 
differences. This is where a great library like Passport comes in handy.



Chapter 3

[ 113 ]

Summary
We now have broad and secure authentication. We can check against Facebook and 
Google, which can account for 100 percent of the users. In addition to this, we can 
allow users to register and login locally, storing their passwords securely. Because 
we used Passport, we have access to hundreds of other authentication providers.  
The Passport site lists them out if you are curious.

In the next chapter, we are going to look at adding message queues to our 
application using RabbitMQ.





RabbitMQ for Message 
Queuing

We are going to cover a concept that relates to making our application scalable: 
message queuing. Message queues allow us to break down our application into 
smaller pieces and hand out these pieces to be worked on. Message queues also help 
with scalability. We can parcel out the work to many different nodes, increasing our 
reliability and the handling of burst traffic. We will need a message queuing server 
to do this. This is where RabbitMQ (https://www.rabbitmq.com) comes in. So far, 
everything has been running on Node.js, and now we are adding another server 
application. We will cover the following topics in this chapter:

• Installing RabbitMQ
• Creating exchanges
• Creating queues
• Building workers
• Passing messages
• Replying to specific processes
• Adding message queues to our app

Node package versions
We are again adding to our current application, so all the previous Node packages 
are going to use the same version. We are also creating a couple of example 
applications that will use their own package.json. Each new example application 
will need npm install executed. We are only adding two packages here. 

https://www.rabbitmq.com


RabbitMQ for Message Queuing

[ 116 ]

The first package is amqp. This package was not designed specifically for RabbitMQ, 
but it implements a protocol that RabbitMQ can understand. The other package 
is q, which gives us promises. Promises allow us to use asynchronous objects 
synchronously. The following are the new packages that we will be using in  
this chapter:

• amqp: 0.2.0
• q: 1.0.1

As always, add these two packages to your main application's package.json file 
and run npm install.

Getting RabbitMQ
RabbitMQ is one of the leading message queuing servers today. It runs on every OS 
and has clients in almost every programming language you can think of. It also can 
use many different queuing protocols. The main protocol we are concerned with 
is Advanced Message Queuing Protocol (AMQP). Let's get started by installing 
RabbitMQ so we can build something with it.

Installing on Mac OS X
I have noted earlier that most of my development for this book is being done  
on Mac OS X, so that is where we are going to start. RabbitMQ has an installation 
page that details each of these installations. RabbitMQ's page will always have the 
latest versions and instructions, and I recommend you check it to ensure you get the 
most up-to-date information.

We are going to use Homebrew (http://brew.sh/), which is a package manager  
for Mac OS X. It allows you to easily install applications with only one line,  
which is what we are going to do now. In your terminal application, type the 
following command:

brew install rabbitmq

http://brew.sh/


Chapter 4

[ 117 ]

If everything went smoothly, you should see something similar to the following 
screenshot. The version may vary depending on when you run the command:

It installs in /usr/local/sbin/, so you can either add this to your path or  
prepend it to all your commands. Let's start up our RabbitMQ server by typing  
the following command:

/usr/local/sbin/rabbitmq-server

You should see the server start with a little ASCII rabbit, as shown in the  
following screenshot:



RabbitMQ for Message Queuing

[ 118 ]

The RabbitMQ management plugin
You can also connect to the RabbitMQ management plugin by browsing to  
http://localhost:15672. The default username and password are guest.  
For now, we are not going to worry about the configuration, as this is just going to be 
our development server. It should only have connections coming from the localhost.

This is a very insecure setup. Do not run RabbitMQ in this manner 
on the open Internet.

Installing on Linux
I am going to use Xubuntu 13.10 as my Linux distribution. Covering how to  
install RabbitMQ across many different distributions is outside the scope of this 
book. RabbitMQ does have instructions for a few other distributions on its web  
site (https://www.rabbitmq.com/download.html).

The version of RabbitMQ in the repository is 3.1.3. This version is a little too  
old, so we will use RabbitMQ's packaged version. If you browse to RabbitMQ's  
Debian/Ubuntu Installation page, it will have a link to a .deb package of the  
current version. At the time of writing this book, it is 3.3.0. It is a little newer than our 
Mac OS X installation, but that's all right. Click on the link for the package and install 
it. Technically, this is all you have to do. The server should be running at this point. 
The Mac OS X version has the management plugin turned on by default; if you want 
to enable the management web server, you can run the following commands:

sudo rabbitmq-plugins enable rabbitmq_management

sudo service rabbitmq-server restart

These commands will start the management server and then restart RabbitMQ,  
as the change does not take effect until after a restart. In our Linux install, we can 
now browse to http://localhost:15672/ and log in with guest as the username 
and password.

There is also a command-line application, rabbitmqadmin, which you can download 
from the management server at http://localhost:15672/cli/. You can use this to 
view information about the RabbitMQ server from the terminal. In Mac OS X, this is 
already installed and ready.

We will cover the other ways of installing RabbitMQ using Linux in Chapter 9, 
Deployment and Scalability. Right now, we just want a test server close to the version 
we will be using for production.

https://www.rabbitmq.com/download.html


Chapter 4

[ 119 ]

Installing on Windows
The Windows install is going to be very similar to the other installs, except for one 
thing. We will need to install Erlang first. You can still go to the installation page,  
as the Windows executable will kick you over to the Erlang download page if you 
don't have it installed. Download and install the version that matches your OS  
(32-bit or 64-bit). Once Erlang is installed, you can install RabbitMQ. You can just 
click on Next in the main installation screen, as shown in the following screenshot:

You will now have a RabbitMQ Server folder in your Start menu. Open up this 
menu, click on RabbitMQ Command Prompt, and enter the following command:

rabbitmq-plugins.bat enable rabbitmq_management



RabbitMQ for Message Queuing

[ 120 ]

Then, use the Start menu to find RabbitMQ Service - stop and RabbitMQ  
Service - start. The menu is shown in the following screenshot:

You can also use the Services Management Console to restart RabbitMQ. After this, 
you can go to http://localhost:15672 and see the management interface. The 
username and password is...yep, you guessed it right: guest. You should have a 
working RabbitMQ server on almost any operating system you are running.

The RabbitMQ servers we installed will be for local, initial development only.  
We will cover production and testing environments fully when we get to them.

Our first message queue
Now that we have a working RabbitMQ server, let's use it to build something.  
We will create a simple web server that will add a message to a queue on each 
request. We will also have a worker script that will work the queue.

First, create a new directory named rabbit_first. Create a package.json file  
and add the following code to it:

{
  "dependencies": {
    "amqp": "0.2.0"
  }
}

Then, run npm install. After this command finishes, create the app.js file and  
add the following code to it:

var http = require('http'),
  amqp = require('amqp');



Chapter 4

[ 121 ]

var rabbit = amqp.createConnection();

rabbit.on('ready', function(){
  rabbit.exchange('my-first-exchange', {type: 'direct', autoDelete: 
false}, function(ex){
    startServer(ex);
  });
});

function startServer(ex)
{
  var server = http.createServer(function(req, res){
    console.log(req.url);
    ex.publish('first-queue', {message: req.url});

    res.writeHead(200, {'Content-Type': 'text/html'});
    res.end('<h1>Simple HTTP Server in Node.js!</h1>');
  });

  server.listen(8001);
}

Here we create a connection to our RabbitMQ server (make sure it is running).  
By default, it will try to connect to the localhost on port 5672, which is great because 
this is what our server is running on. Next, we listen for the ready event, as the 
connection is asynchronous. When the connection is ready, we create an exchange. 
An exchange is essentially a router. We will give it jobs, and the exchange will figure 
out which queues get the jobs. The job can be sent to one or many exchanges based 
on the type of exchange and configuration. Possible types of exchanges are direct, 
fanout, topic, and headers. We will explore direct and topic types in this chapter. 
Note that the publisher (here, the HTTP server) does not have any knowledge nor 
should it care about who/what actually does the job. We create the exchange to be 
direct, which means that it's the exchange that maps one message to one queue. We 
also turn the autodelete off. This will keep the exchange alive if we disconnect for 
any reason. This call takes a callback when the exchange is created and connected. 
At this point, we have configured the exchange and it is ready. We take the exchange 
reference and pass it to our HTTP server, which we have wrapped in a function. 
Now, on every request, we will log which URL was requested in our console 
and pass the same information to the exchange. We do this by using the publish 
command and a routing key of 'first-queue'.



RabbitMQ for Message Queuing

[ 122 ]

Similar to the previous chapter, we will create the code first and 
then cover the whys of the code at the end of the chapter. We will 
cover all the different types of exchanges and routing and why 
you will use them.

Let's open up our management interface by going to http://localhost:15672. 
Then, start up the Node and load the page a few times. If you jump back to the 
RabbitMQ management page, you will see that you have one connection, one 
channel, and some activity. If you do not see this, you may have to reload the  
page. It should look similar to the following screenshot:

We don't have anything to work the queue, so let's fix this. Create a file named 
worker.js and add the following code to it:

var amqp = require('amqp');

var rabbit = amqp.createConnection();

rabbit.on('ready', function(){
  rabbit.queue('first-queue-name', {autoDelete: false}, function(q){
    q.bind('my-first-exchange', 'first-queue');
    q.subscribe(function(message, headers, deliveryInfo, 
messageObject){
      console.log(message);
      console.log(headers);
      console.log(deliveryInfo);
      console.log(messageObject);
    });
  });
});



Chapter 4

[ 123 ]

This code starts off in a very similar way to our HTTP server code. We will need a 
reference to amqp and will also need to wait for the connection to be ready. After this, 
we create a queue, passing in the option to turn off autoDelete. Auto delete does 
the same thing here as it did with the exchange—if we get disconnected, the queue 
will still exist. We have named this queue first-queue-name. This method uses a 
callback to ensure that the queue gets created and is ready. We then bind the queue 
to an exchange using the exchange's name and a routing key. Our routing key here 
is first-queue, which is what our HTTP server was sending the jobs with. We now 
have an exchange and a queue for the jobs to route to. Finally, we subscribe to the 
queue to get any of the messages that are routed through the queue. In this example, 
our worker will log every object passed to it from the queue so that we can see what 
is sent. We can now start our worker by running node worker.js.

Using the management interface
Before we send any messages, we will check out the management interface.  
Click on Exchanges from the header menu and then click on our exchange,  
my-first-exchange. Then, go to the Bindings tab. You should see that our  
queue (first-queue-name) is bound to this exchange. This is shown in the  
following screenshot:



RabbitMQ for Message Queuing

[ 124 ]

Next, click on Queues from the header, click on your queue, first-queue-name,  
and then go to Bindings. You should now see the same information, but from the 
queue's perspective. This is shown in the following screenshot:

We can see that any message sent to my-first-exchange with the routing key  
of first-queue will be put in the first-queue-name queue. Our HTTP server is 
configured to add these exact messages, and our worker is subscribed to this queue.

Sending messages
Open another console tab or window and launch Node with worker.js.  
You should now have two Node processes running, app.js and worker.js.  
When you turned on your worker, did you expect to see some messages come 
through? We did create some from the HTTP server. Unfortunately, if an exchange 
does not have a queue to put in messages, they are lost, which is what happened to 
our first few messages.

Let's now load http://localhost:8001 a few times. Upon logging in your console, 
you should see where the worker is running. Most likely, each request will create 
two messages (one for the root/ and one for the favicon/favicon.ico). The first 
object logged should be your JSON object from the HTTP server. The next blank 
object is headers. Then comes the deliveryInfo object. Finally, the last large object 
is messageObject. We will need to use all of these at different times. Each time we  
load the web page a message is sent.



Chapter 4

[ 125 ]

Queuing messages
Let's clean up our worker by commenting out everything but the message.  
Our subscribe callback should have the following code as the body:

console.log(message);
      //console.log(headers);
      //console.log(deliveryInfo);
      //console.log(messageObject);

Next, we will kill our worker, but don't restart it right away. We are going to run 
some quick tests. Our queue should still exist because it should not have auto deleted 
and there should be no RabbitMQ message consumers. We can easily verify this by 
going to the RabbitMQ management interface and checking the queue by clicking 
on Queues from the tabs in the header. We should see that the queue is present and 
after going into details, we can also see that there are no consumers.

Now, let's load our page a few times to add some messages. If we check the queues 
page again by clicking on Queues, we should see that the queue has some messages 
queued up! This is exactly what we wanted and expected. Let's add one more message.

Using the management interface, click on Exchanges and select my-first-exchange. 
Near the bottom of the page, there is a Publish message heading. Create a message 
with the only key piece of data being the routing key, which must be first-queue.  
We should have something similar to the following screenshot:



RabbitMQ for Message Queuing

[ 126 ]

Click on Publish message. We should get a confirmation that it was published.  
We can then check out the queue again, by clicking on the Queues tab, and see 
whether it was added. The following screenshot is how it should look; the count  
of queued messages will depend on how many times you loaded the page:

We can now start our worker. The worker should pull out every message from 
the queue and log it to the console. The following are all the messages that we just 
looked at in the queue:

We can see that our HTTP server created JSON objects and our manual message 
created a data buffer. Our worker then cleaned up the queue. We can verify this by 
checking the queue in the management interface.

Adding another worker
We can test what will happen if we add another worker. This should be extremely 
easy as we already have the code ready in worker.js; we do not need to make any 
code changes. Launch another Node process running worker.js. Then, load your 
web page a few times. You will see that each worker will work the queue in a  
round-robin fashion. We can connect as many workers as we want to this queue.  
We are able to see each connection in the Connections tab of the management 
interface and also under the Queues tab as consumers of first-queue-name.

This test application has demonstrated horizontal scalability perfectly. If we are able 
to break down tasks that our application needs to get done, we can then package 
them and pass them around in queues. When the queues start to get backed up, we 
can then bring on more workers, which is what horizontal scaling means. Depending 
on what the work is and if there are any patterns to the workload, we can even 
schedule workers to come up when needed and then go down when not needed.



Chapter 4

[ 127 ]

This idea of having reusable jobs allows you to decouple tasks in separate 
applications. The main service of what we are building is to serve web pages.  
We should build an application that serves web pages very efficiently and does not 
worry about anything else. In addition to this, our application will most likely need 
to do other things, as well, such as logging, transaction e-mails, computing statistics, 
and many other things. We can then create small applications that can do these jobs. 
This allows you to control how the task should be implemented and also how many 
workers perform the task.

Sending messages back
Our first application that we built in this chapter is very simple. It had one queue, 
where the publisher did not care what happened to the job and the worker did not 
have to let the publisher know the job was done. We will cover one more example 
of message queues. We are now going to create an application where the publisher 
needs to know when the worker is done. A great example of this is charging a credit 
card. We are not going to build out an entire charging application, but we will 
mimic one. Let's build it! Create another folder named rabbit_second, and create a 
package.json file with the following code (remember to run npm install in order 
to get all the packages):

{
  "dependencies": {
    "amqp": "0.2.0",
    "socket.io": "1.0.6"
  }
}

We are going to use Express to give us easy static file serving, and routing, and 
Socket.IO for the real-time charging of credit cards (we will build the structure, but 
we will not actually charge any cards). We can now create an app.js file and get a 
reference to all our packages. Start app.js with the following code:

var express = require('express'),
  amqp = require('amqp'),
  io = require('socket.io');

var app = express();

app.use(express.static(__dirname));

var rabbit = amqp.createConnection();



RabbitMQ for Message Queuing

[ 128 ]

We have previously discussed everything in the preceding code. This code is just 
initializing our application.

We have configured Express to serve static files out of the root, so let's create  
the static file we need, index.html. Add the following code to it:

<!DOCTYPE html>
<html>
<body>
  <h1>Simple Reply Message Application</h1>
  <a href="/credit_charge">Charge my Card</a>
  <button id="socket_credit">Charge my Card</button>
  <script src="/socket.io/socket.io.js"></script>
  <script>
    var socket = io.connect('http://localhost:8002');
    socket.on('charged', function(){alert('Charged!');});
    document.getElementById('socket_credit').addEventListener('click', 
function(){
      socket.emit('charge');
    });
  </script>
</body>
</html>

The first thing we are doing here is creating a link to /credit_charge so that we can 
see a request-based message queue reply. We also have a real-time message queue 
reply with Socket.IO. The client-side Socket.IO code is very simple. We connect to 
the server and then listen for a charged event, which will create an alert and listen 
for a button click event to tell the server to charge the credit card. Let's go back to the 
server side to set this up.

Open up app.js and add the following code:

rabbit.on('ready', function(){
  rabbit.exchange('credit_charge', {autoDelete: false}, function(ex){
    rabbit.queue('charge', {autoDelete: false}, function(q){
      q.bind('credit_charge', q.name);
      q.close();
      startServer(ex);
    });
  });
});



Chapter 4

[ 129 ]

This code creates the exchange and queue that we need. We will have an exchange 
named credit_charge and a queue named charge that is bound to our exchange. 
Both will not auto delete on disconnect. Because we don't need the queue now, we 
close our connection. Without doing this, we will keep resources open on both the 
Node.js server and the RabbitMQ server. We then start everything off using the 
startServer function, passing in a reference to the exchange.

Creating StartServer
Create the startServer function with this code. First, we will create the code that 
responds to the /credit_charge GET request, as shown in the following code:

function startServer(ex){
app.get('/credit_charge', function(req, res){
    rabbit.queue('', {exclusive: true, autoDelete: true}, function(q){
      q.bind('credit_charge', q.name);
      ex.publish('charge', {card: 'details'}, {replyTo: q.name});
      q.subscribe(function(message){
        console.log(message);
        q.destroy();
        q.close();
        res.send('Charged! Thanks!');
      });
    });
  });

var server = app.listen(8002);
};

This is a simple Express route. The first thing we do is create a queue for our worker 
to respond to our request. We do this by passing in a blank routing key in queue 
creation. This will give us a random, unique queue name. Even if we tried to do 
this with random numbers or time in milliseconds, we could create duplicates 
with enough clients connecting. The next new thing we do is create the queue as 
exclusive. This means, as you've probably guessed, that only the client that created 
it can connect and get messages from it. Then we bind it to our exchange name, 
credit_charge, even though we did not give an explicit name to the queue. The 
queue name is in the object that is returned in our callback. We now have a uniquely 
named queue from which only this specific response can pull messages out.



RabbitMQ for Message Queuing

[ 130 ]

Now, we need to tell our worker to process a credit card. This is done by publishing 
a message to the charge queue. The message you pass here will contain the details of 
the card so that the processor can charge the card. We also are passing in an options 
object with the replyTo attribute set to our queue name. This is how we let the 
worker know which queue to put its response back in to.

The last thing that this code does is subscribe to our personal queue. We log the 
message and then destroy the queue and close our connection. We need to do this 
as each request will get its own specific queue. If we do not destroy and close our 
connection, we will end up with a RabbitMQ server that has thousands of open 
queues and Node keeping a connection with all of them. This will use resources,  
so it can be costly on a large scale. At last, we can send a response to the browser.  
If there were any errors, we could add checks in this function. Because this is just a 
test application, we know there will be no errors.

Building the worker
We don't have anything to actually charge our credit cards. We are just going to  
act as if the worker charges the card. Let's build the worker. Create a file named 
worker.js and add the following code:

var amqp = require('amqp');

var rabbit = amqp.createConnection();

rabbit.on('ready', function(){
  rabbit.exchange('credit_charge', {autoDelete: false}, function(ex){
    rabbit.queue('charge', {autoDelete: false}, function(q){
      q.bind('credit_charge', 'charge');
      q.subscribe(function(message, headers, deliveryInfo, 
messageObject){
        setTimeout(function(){
          console.log(message);
          console.log(headers);
          console.log(deliveryInfo);
          ex.publish(deliveryInfo.replyTo, {message: 'done'}, 
{headers: headers});
        }, 1500);
      });
    });
  });
});



Chapter 4

[ 131 ]

This is similar to previous workers. We first need to connect to RabbitMQ and the 
exchange we are going to use. We initialized the queues in our app.js file and when 
we connect to these queues here, we need to pass in the same options or we will not 
connect to the exchange. Here, we are passing the autoDelete option as false; if we 
pass it in as true, we will not connect to the exchange. This is also true for connecting 
to our queue. We need to pass in the same name and options. We also bind it to the 
exchange. If we started app.js, the queue should be bound, but if worker.js starts 
first, we will bind it here. Remember that a queue will not start getting messages until 
it is bound. Both app.js and worker.js are making sure the exchanges and queues 
are created and bound so messages will not fall through the cracks.

Next, we subscribe to the queue so we can process it. We are logging everything so 
we can see what each object holds. We then put a message back in the queue that 
was sent in the replyTo attribute. This would be the queue that our request created. 
We also pass back the headers, which for now are blank. This is all wrapped in 
setTimeout, which will wait 1500 milliseconds to fire. This simulates charging the 
card. What should happen now is that when we go to /credit_charge, the request 
should wait 1.5 seconds and then respond. Let's try this out.

Start Node in two different terminals: one with app.js and the other with worker.js. 
Browse to http://localhost:8002 and click on the Charge my Card link. The server 
should respond with Charged! Thanks!. We can check out our terminals to see all the 
objects that have been logged. We just put a message in a generic queue for a worker to 
process and then responded to a specific request. This is not that impressive with only 
one request, but this will scale to quite a few requests.

Charging cards in real time
Now, we will do the same thing except that we will use Socket.IO. Remember that 
Socket.IO is not request-driven like HTTP, so we will need to set it up differently, 
although the same pieces will be present. Inside the startServer function in app.
js, add the following code right after the Express code:

io = io.listen(server);

  io.on('connection', function(socket){
    rabbit.queue(socket.id, {exclusive: true, autoDelete: true}, 
function(q){
      q.bind('credit_charge', q.name);

      q.subscribe(function(message, headers, delivery){
        socket.emit(headers.emitEvent);
      });



RabbitMQ for Message Queuing

[ 132 ]

      socket.on('charge', function(data){
        ex.publish('charge', {card: 'details'}, {replyTo: q.name, 
headers: {emitEvent: 'charged'}});
      });

      socket.on('disconnect', function(){
        q.destroy();
        q.close();
      });

    });
  });

After a socket creates a connection, we create a queue that uses the socket ID  
as its name. We could have passed in a blank name, but this will allow us to see  
socket-based queues in the management interface, as they will have different  
naming conventions. Exactly like the request's queue, we want it to be exclusive  
and to auto delete on disconnect. We then bind the queue to our exchange.

Using the socket ID is fine for a single server, but it can create issues 
when there are multiple Socket.IO servers. In this case, we could create 
a UUID (using the node-uuid package) and concatenate it with the 
Socket ID to create a truly unique name.

Next, we subscribe to the queue to process the messages that come back from our 
worker. What this does is emit an event that is defined in the headers. Then, we 
listen for the charge socket event and add a message to the charge queue with the 
card details. We also add our queue name as the queue to reply back to along with 
the emitEvent header we want to use in the subscribe function. If we look at the 
worker again, we will see that the worker just takes the headers from the message 
and puts them in the next message going out.

Finally, on the socket disconnect event, we close down the queue and our  
connection to it.

We can test this by loading http://localhost:8002 and clicking on the  
Charge my Card button. It should take about 1.5 seconds, and we will get an  
alert that lets us know our card was charged. If we check the console, we should  
see our message logged.

This example also demonstrates the power of workers. We only have one worker, 
but we can add messages from multiple places. The worker will process these 
messages and then send them back to the specific client waiting for the response.



Chapter 4

[ 133 ]

The following diagram demonstrates the flow of messages:

We can see that both versions start the same way. This is important to remember,  
as we want a reusable exchange and queue to start this process. Once the credit  
card has been charged, we divert, as each one will respond to different queues.  
This allows us to have one worker but many unique response queues.

Adding message queues to PacktChat
We can now add message queues to the application we are building. Our application 
does not need credit card processing or transaction e-mails, but we will add logging 
through RabbitMQ. We will create a logging exchange and two queues, debug.log 
and error.log. The debug.log queue will log everything that comes through the 
exchange (including errors), and error.log will only log errors.  
We will do this by using a topic exchange.

Topic exchange
Our test applications have used a direct exchange. What this means is that the queue 
must use the same exact routing key that the message was published with. Topic 
exchanges allow pattern matching in the routing key. In our example, we will bind 
the debug.log queue with a routing key of *.log. This will match any messages 
that are debug.log or error.log. The error.log queue will bind using error.log, 
so it will work exactly like a direct exchange. The exchange will put an error.log 
message in both the error and debug logs. This is how we know the debug queue 
will log all messages. Let's get started.



RabbitMQ for Message Queuing

[ 134 ]

The first thing is to create a copy of our application from the last chapter. At this 
point, we should have Express, Socket.IO, and Passport all working together.  
Our package.json file should have amqp and q in the dependencies, and we  
can run npm install.

Then, open up config.js and add the following code to the file after our  
crypto object:

rabbitMQ: {
    URL: 'amqp://guest:guest@localhost:5672',
    exchange: 'packtchat.log'
  }

This is just explicitly defining our URL and exchange to use. We will use this  
when connecting to RabbitMQ, which brings us to our next file. We will need  
to create a new directory named queue and add a rabbit.js file. Add the  
following code to the file:

var amqp = require('amqp'),
  config = require('../config'),
  q = require('q');

module.exports = q.Promise(function(resolve, reject, notify){
  var rabbit = amqp.createConnection(config.rabbitMQ.URL);
  rabbit.on('ready', function(){
    resolve(rabbit);
  });
});

The first three lines are setting up our variables. We are exporting a Promise object 
with the next line. Promise objects allow us to react to asynchronous events without 
worrying about when the events occur. In our example, our asynchronous event is a 
connection to RabbitMQ. When the connection is made, we resolve this promise so that 
the rabbit object can be used. When we require this file, it will send this object back 
synchronously. This can happen before we are sure that a connection has been made. 
What might happen if we were not using promises is that we could try to use the 
connection before it is ready and create an error. Promises allow us to send a promise 
back so that other objects can do something when the connection is ready.



Chapter 4

[ 135 ]

Now, we will create a file named index.js, which will create our queues and 
exchange. Put the following code in index.js:

var rabbitPromise = require('./rabbit'),
  config = require('../config'),
  q = require('q');

function queueSetup(rabbit){
  rabbit.queue('debug.log', {autoDelete: false}, function(q){
    q.bind(config.rabbitMQ.exchange, '*.log');
    q.close();
  });

  rabbit.queue('error.log', {autoDelete: false}, function(q){
    q.bind(config.rabbitMQ.exchange, 'error.log');
    q.close();
  });
}

module.exports = q.Promise(function(resolve, reject, notify){
  rabbitPromise.done(function(rabbit){
    rabbit.exchange(config.rabbitMQ.exchange, {type: 'topic', 
autoDelete: false}, function(ex){
      queueSetup(rabbit);
      resolve(ex);
    });
  });
});

Here, we can see promises in action. Once the connection is ready, Promise 
is resolved and the done function can execute with a reference to the rabbit 
connection. Any other object that has a promise for this will be able to get a reference 
to this object in its connected state. We then create an exchange using the name 
defined in our config. The exchange is created as a type of topic and is not be auto 
deleted. We then run a function that will create two queues and bind them to our 
exchange. In this function, we can see that we bind debug.log to our exchange using 
*.log as the routing key. We also set up the error.log queue. At this point, we 
have our exchange setup and both the queues created and bound. Any message that 
is published will have somewhere to go. We then resolve our other promise with a 
reference to a connected exchange. The Promise for our exchange is then exposed.



RabbitMQ for Message Queuing

[ 136 ]

It does not matter whether we are connected to RabbitMQ or our exchange  
or not. Promises can be returned immediately after creating them. Now,  
let's use these promises. The first place we will add them is in log.js, in the 
packtchat\middleware location. Right now, it is just middleware that is logging 
any request URL to the console. We will change it to add this information to the 
queue. Replace the contents of the file with the following code:

var exchange = require('../queue');

function debug(message){
  exchange.done(function(ex){
    ex.publish('debug.log', message);
  });
};

function error(message){
  exchange.done(function(ex){
    ex.publish('error.log', message);
  });
}

The first thing we do here is get a reference to the exchange object we just created. 
The exchange promise will resolve with a reference to our exchange. We can see this 
in the first function, debug. It takes this promise and adds done to the promise. It will 
then take the exchange that is passed in and publish the message that is passed to it. 
The done function will execute when the connection is created, or if the connection 
is already created, it will fire right away. Either way we do not have to worry about 
when the connection is finished; we have a promise that our code will run when that 
event happens. We do the same for our error function. Next, replace the current 
exports.logger, as shown in the following code:

exports.logger = function logger(req, res, next){
  debug({url: req.url, ts: Date.now()});
  next();
};

exports.debug = debug;
exports.error = error;

We updated our logger middleware to use our new debug function. We pass in the 
URL as we did before, as well as a timestamp of the current time. This is important 
because this message could be queued for a period of time before being processed 
and we want to know when it was first created. The last thing we do is export the 
debug and error functions so they can be used elsewhere.



Chapter 4

[ 137 ]

We will now use these functions in our passport object. We will log each  
incorrect login. Open up index.js from the passport folder and add this code  
inside passport.use(new local()) around each call to done that returns a  
failed attempt. Each call to done that passes Wrong Username or Password  
should look as shown in the following code:

//add a reference to the log file
Var log = require('../middleware/log');
//replace inside of the local authentication function
//would be lines 43 and 44
log.debug({message: 'Wrong Username or Password', username: 
username});
done(null, false, {message: 'Wrong Username or Password'});

Next, we will add logging to the error handler. Open up errorhandlers.js from 
the middleware folder and replace or add the following lines to the file:

var log = require('./log');

exports.notFound = function notFound(req, res, next){
  res.status(404).render('404', {title: 'Wrong Turn'});
};

exports.error = function error(err, req, res, next){
  log.error({error: err.message, ts: Date.now()});
  res.status(500).render('500', {title: 'Mistakes Were Made'});
};

At this point, we can load our app and create some messages. Start Node and  
browse to http://localhost:3000 and http://localhost:3000/error.  
After this, load our RabbitMQ management website at http://localhost:15672.  
Click on Queues to view what is currently queued. We should see something  
similar to the following screenshot:

If both our queues have messages in them, then we know that our  
message-queue-based logging is working.



RabbitMQ for Message Queuing

[ 138 ]

Building the worker
We have messages queued up, but nothing to work them. Create a directory  
named workers and a file named log.js under this directory. Add the  
following code to the file:

var rabbitPromise = require('../queue/rabbit'),
  config = require('../config');

rabbitPromise.done(function(rabbit){
  rabbit.queue('debug.log', {autoDelete: false}, function(q){
    q.bind(config.rabbitMQ.exchange, '*.log');
    q.subscribe({ ack: true, prefetchCount: 1 }, function(message, 
headers, delivery, messageObject){
      console.log('Debug-Routing:' + delivery.routingKey + JSON.
stringify(message));
      messageObject.acknowledge();
      //setTimeout(function(){messageObject.reject(true);}, 2000);
    });
  });

  rabbit.queue('error.log', {autoDelete: false}, function(q){
    q.bind(config.rabbitMQ.exchange, 'error.log');
    q.subscribe({ ack: true, prefetchCount: 1 }, function(message, 
headers, delivery, messageObject){
      console.log('Error-Routing:' + delivery.routingKey + JSON.
stringify(message));
      messageObject.acknowledge();
    });
  });

});

This file starts off by getting a reference to the rabbit promises and the configuration.  
We then call on the rabbit promise to give us our rabbit connection. Once we have 
our connection, we create our queues. We do this so the queues will be created 
regardless of whether the worker or the web server starts up first. Then, we subscribe 
to the queue to get the messages. We then use console.log and add in the logger, 
routing key, and message that was passed in. We can finally start this worker with 
Node in another terminal. 



Chapter 4

[ 139 ]

The output should be similar to the following screenshot:

Note that this subscribe event passes in an options object. In this object, we tell the 
package that we will acknowledge the message and that we want one message at a 
time. In our code, we run the acknowledge function after logging to the console. The 
next line after this is commented out. This line will wait for two seconds and then 
reject the message. The true value sent through the reject function will requeue 
the message. When something happens and a worker cannot finish the work for a 
message, we should requeue it so that another worker can attempt it. Comment out 
line 9 of log.js, uncomment the setTimeout line, and run the worker. We can see 
that the worker will pull out one message, wait for two seconds, and then requeue it. 
This is not productive, but it should demonstrate what is possible. After this, delete 
the setTimeout line and uncomment our acknowledge line.

Our example is still just logging to the console, but we could easily expand this.  
We could use the great Winston package and log to the console, file, and database, 
and send an e-mail, Amazon notifications, and possibly more by the time you are 
reading this. The great part about this is that the web server doesn't need to know 
how you are logging this information. It will just keep on publishing messages.

Message queuing in RabbitMQ
At this point, we have already covered a few of the exchange types, but we will 
cover all of them here. The first and simplest exchange type is direct. It works by 
matching the routing key to the routing key that the queue used when binding. If 
they match, the queue gets the message. The next type is topic. We used this in our 
PacktChat application. The routing key can be pattern based. This allows workers 
to select a broad range of messages easily. If you have designed your routing keys 
to be hierarchical, then you can easily create queues that are inclusive or exclusive. 
Our logging exchange is an example of this. The debug queue will get any message 
put in the queue that matches *.log. The error queue only gets messages that are 
specifically error.log. If we create a warn queue that matches warn.log, debug will 
still have all the messages. The next type is fanout. This type works as a broadcaster. 
Every queue that is bound to this exchange will get a message no matter what the 
routing key is. If you need to get information across to many different clients at the 
same time, fanout can work for you. 



RabbitMQ for Message Queuing

[ 140 ]

Finally, the last type is headers. Instead of using the routing key to determine which 
queue to send the message to, it will use the message's headers. This allows you to 
get around the requirement that a routing key has to be a string. You can now route 
on anything you can add to the header.

RabbitMQ exchanges and queues can be configured to be more error-resistant. In our 
application, we use acknowledgments to let RabbitMQ know that the message has 
been successfully processed and that it can delete the message. If you do not do this, 
RabbitMQ will delete the message after sending it. This will protect you against a 
worker going down while processing a task. In addition to this, we can set up a dead 
letter exchange. This is kind of like a message graveyard. If a message is rejected, 
timed out, or the queue has too many messages in it, we can configure another queue 
to receive those messages. Finally, another thing we can do is create our queues as 
durable. This means that the queue will not be emptied out on a server restart. Each 
of these will help to keep RabbitMQ from losing messages.

Message queues allow you to build applications by composition. This means 
building parts of our application that are not tightly coupled. For example, we could 
add transaction e-mails to our application. Every time someone signs up and after 
they take a certain action (purchase something), we will send them an e-mail. If 
we have the application just drop a message in a queue, we can easily update that 
portion of our application without affecting other parts. We could completely change 
our e-mail provider and the web server would never even know. This also lends 
itself to scalability. If our e-mail queue always has messages in it, then we can just 
create another worker.

Another benefit is that you do not have to do expensive operations during a request. 
Sending an e-mail, charging a credit card, or doing image manipulations can all take 
several hundred milliseconds or longer. If this is done during the request, the user 
will have to wait for our web server to respond. If these tasks are moved out of the 
request into a message queue, the web server can respond immediately. You will 
then have workers, which will do all the expensive operations. You could even have 
the workers e-mail the user when an expensive task is done.

Finally, message queues allow you to utilize already written code, even if that code 
is in a different language. If you have a credit card processor written in Java, you 
can use this instead of rewriting one to be used in Node. Depending on your code 
infrastructure, you can build an app quickly doing this.



Chapter 4

[ 141 ]

Summary
We just covered message queues, which will help us build more maintainable and 
scalable applications. We also talked about using promises to make asynchronous 
actions easier to deal with.

In the next chapter, we will learn how to install Redis and use it in our application.





Adopting Redis for  
Application Data

We are now going to look at using Redis to store the current state of our application. 
Redis is a simple key-value store that uses the system memory. This means that 
it is fast. There are very short lookup times for values. Redis, being a key-value 
store, means that our data is stored very differently than in a relational database 
management system (RDBMS). Redis also allows connections either locally or 
remotely. This will allow us to scale our application as more web servers come online 
to utilize the data stored in Redis. Redis also has a simple message queue system that 
we will explore as well.

We will cover the following topics in this chapter:

• Installing Redis
• Using data structures in Redis
• Using Redis in Node.js
• Using Redis's publish/subscribe
• Integrating Redis into our application

Node package versions
We will use the Redis client that we installed in an earlier chapter. In addition to this, 
we are going to use one new package named flow-maintained. Flow-maintained 
is a small framework that will help us manage the number of callbacks we will have 
to write. It makes asynchronous code run seemingly synchronous. It also includes a 
synchronous forEach loop that we will use. 



Adopting Redis for Application Data

[ 144 ]

These are the packages to add before running npm install.

• redis: 0.10.1
• flow-maintained: 0.2.3

Our dependencies in our main package.json file should now look like the 
following code:

"dependencies": {
    "body-parser": "1.4.3",
    "connect": "3.0.2",
    "connect-flash": "0.1.1",
    "connect-redis": "2.0.0",
    "cookie-parser": "1.3.2",
    "csurf": "1.3.0",
    "ejs": "0.8.5",
    "express": "4.6.1",
    "express-partials": "0.2.0",
    "express-session": "1.6.5",
    "redis": "0.10.1",
    "cookie": "0.1.1",
    "socket.io": "1.0.6",
    "socket.io-redis": "0.1.3",
    "passport": "0.2.0",
    "passport-local": "1.0.0",
    "passport-facebook": "1.0.3",
    "passport-google-oauth": "0.1.5",
    "scmp": "0.0.3",
    "amqp": "0.2.0",
    "q": "1.0.1"
  }

Installing Redis
Technically, at this point, we are already using Redis to store some of our application 
state. Express/Connect is using Redis as its session store, although if you came from 
an earlier chapter because you do not have Redis installed, we will cover how to do 
it in this chapter.



Chapter 5

[ 145 ]

Installing on Mac OS X
We will start with Mac OS X. We are going to use brew again as it makes installing 
software incredibly easy. In a terminal, type the following command:

brew install redis

You should then see something similar to the following screenshot:

At the time of writing, Redis 2.8.8 was the newest stable version and brew installed 
Version 2.8.5. This is close, and we will not worry about the difference.

Homebrew installs Redis to /usr/local/Cellar/redis/2.8.5. Homebrew 
also puts this directory into our path. This will allow us to launch the server and 
command-line interface from our terminal. We should now launch the server to 
make sure that it works. In the terminal, type the following command:

redis-server



Adopting Redis for Application Data

[ 146 ]

You should see something very similar to the following screenshot:

If you have jumped to this chapter to see how to install Redis, you can jump back 
to the chapter you came from as Redis is installed and working. Every time we 
launch our Node.js application, we will have to first launch Redis, unless we follow 
the commands Homebrew gives us to run this as a service. If Redis is not launched, 
sessions will not work. Of course, if you are not using Mac OS X, jump to the OS that 
you are running.

Installing on Linux
We are going to use Xubuntu 13.10, the current version of Ubuntu at the time of 
writing. Ubuntu uses the super simple and easy software package tool named  
apt-get. Let's install Redis on Linux using the following command:

sudo apt-get install redis-server

This should download Redis from the repository and install it. Redis will already be 
running in the background after the install. Let's stop it and launch it ourselves. Run 
the following command in a terminal:

sudo service redis-server stop

redis-server



Chapter 5

[ 147 ]

We should see Redis start, which looks very similar to Mac OS X, except for one 
thing, the version is 2.6.13. We want to be running at least something in the 2.8 
Version range. We are going to have to use a Personal Package Archive (PPA). PPAs 
allow you to install newer software than what is in the current Ubuntu repository. 
Many of the PPAs are run by Canonical (the company behind Ubuntu) or the 
software vendor. What is nice about PPAs is that they are a targeted upgrade. In our 
example, we can just use the Redis PPA, and the only packages that will be updated 
will be redis-server and its requirements. Open up a terminal and enter the 
following commands:

sudo add-apt-repository ppa:chris-lea/redis-server

sudo apt-get update

sudo apt-get install redis-server

The first command adds the PPA to our repository list. The command should ask 
you to press Enter to continue or Ctrl + C to cancel. We, of course, want to install it. 
Then, we update our sources. This checks all our repositories for new versions of 
packages. When we run the install command, we have already installed it, so this is 
an update, and apt-get will see that there is a new version.

We can verify that we have a new version by using the Redis command-line tool, 
redis-cli. In our terminal, enter the following command:

redis-cli

127.0.0.1:6379>info

We should see a lot of information scroll across the screen. The first bit should  
be redis_version. The version I have installed is 2.8.8. This is a better version  
to build our development machine on, because we will be using 2.8.x on the 
production server.

PPAs are great for allowing you to run newer software packages on 
older distributions. Just remember that you still want a relatively 
new distribution or you may run into dependency problems.



Adopting Redis for Application Data

[ 148 ]

Installing on Windows
First, let me state that running Redis on Windows is not supported. It is designed  
to work on Unix/Linux systems. That being said, you can get Redis to run  
on Windows.

Microsoft's Open Tech team maintains a Git repository of Redis that is ported  
to Windows. It is currently at https://github.com/MSOpenTech/redis.

You can pull down the source and then build Redis yourself using Visual Studio 
(you can use the free Express version if needed). Another option is to use the 
precompiled binaries that are already present in the repository. In each branch,  
there is a bin/release folder that has a ZIP file of the compiled binaries. You can 
then unzip it and use them. The following is the screenshot of Redis running on 
Windows using the precompiled binaries:

I definitely recommend that you run Redis on Mac OS X or a distribution of  
Linux. If you are developing on Windows, you can use the MS Open Tech project  
as a stop gap. You could also install VirtualBox (https://www.virtualbox.org) 
and install a local virtual machine of Linux with Redis installed. You would just  
have to update any configurations that connect to localhost to then connect to your 
virtual machine.

https://github.com/MSOpenTech/redis
https://www.virtualbox.org


Chapter 5

[ 149 ]

Using Redis data structures
Before we build anything, we will cover what data structures Redis supports. We 
can then discuss what we are building from these structures. Redis is not a database, 
so it does not have the familiar VARCHAR, INT, DATETIME, or anything like that. Redis 
is a key-value store. You have a key and you can look up the value of what is stored 
there. Redis supports a few low-level data types. The first type that we are going to 
discuss is a string.

Strings are the most basic type and are often the type that we are going to use. 
Usually, we can serialize almost any data type to a string. If we recall when we used 
Connect to move the sessions to Redis, we will see that Connect just serializes JSON 
and stores it as a string. This is always an option. The string type also doubles as an 
integer. There is no specific integer type, so integers are stored as strings.

The next data type is a hash. This type allows us to store information in fields in the 
hash. For example, a user hash could have a username and a display name. We can 
then pull out the entire hash or each field separately.

Lists are the next data type. This is just a simple linked list. You can easily add 
another element on to the right or left side of the array. It is also very quick in 
selecting multiple elements in a row starting from a specific index. Lists can only 
store strings though.

Sets are another data type. They are very similar to lists, but with one important 
difference; they only store distinct values. If a value already exists, another member 
will not be created in the set. This is a small and powerful difference from a list.

Another related type is the sorted set. It keeps the restriction of distinct members, 
but it can be ordered by a score. The score is used when adding a member and can be 
used to filter or order the members. This may not seem that useful at first glance, but 
this is a great feature. The score can be used to track timestamps, and then, we can 
filter the set to only show users who were here within the last 30 minutes.

The descriptions should give us a good idea of what and how to store data in  
Redis, although they are not fully comprehensive. Let's start using them in a  
small application.



Adopting Redis for Application Data

[ 150 ]

Building a simple Redis application
Our first adventure in using Redis will involve creating an application where users 
can leave messages. To keep things simple, we will not do authentication. The user 
and message will be stored in Redis and will be retrieved for each request.

The first thing we will do is create a directory named redis_first_app to store  
this application. After that, we will create a new file named app.js in the root.  
We are going to install Express and EJS to give us routing and templating.  
Create a package.json file with the following code as the contents:

{
  "dependencies": {
    "body-parser": "1.4.3",
    "ejs": "0.8.5",
    "express": "4.6.1",
    "flow-maintained": "0.2.3",
    "redis": "0.10.3"
  }
}

As always, do not forget npm install.

When this is done, add the following code to app.js:

var express = require('express'),
  app = express(),
  bodyParser = require('body-parser');
app.set('view engine', 'ejs');
app.use(bodyParser.urlencoded({extended: false}));

app.get('/', function(req, res){
  res.render('index');
});

app.post('/', function(req, res){
  console.log(req.body);
  res.redirect('/');
});
app.listen(8003);

There is nothing new here. We just created a simple Express app that renders a 
template and processes a form. Any questions about this code can be answered in 
Chapter 1, Backend Development with Express.



Chapter 5

[ 151 ]

Now, create a views directory and add the index.ejs file. The following code is 
what should be in index.ejs:

<html>
<body>
<form method="POST">
  <div>
  Username:
  <input type="text" name="username"/>
  </div>
  <div>
  Name:
  <input type="text" name="name"/>
  </div>
  <div>
  Message:
  <textarea name="message"></textarea>
  </div>
  <button>Send Message</button>
</form>
</body>
</html>

We can make sure everything works by starting Node and opening our browser  
to http://localhost:8003. We should be able to load the form and submit it.

We can now add some Redis interactions. At the top of app.js, add the  
following lines:

app = express(),
  redis = require('redis'),
  client = redis.createClient(),
flow = require('flow-maintained');

We do not pass anything into createClient because we are going to use the default 
settings. One great thing about this library is that we do not have to worry about 
when the connection returns. The library will cache all of the commands before it 
connects and then execute them right after connecting. This is essentially a promise. 
Of course, after the connection is established, the commands will not be cached.

Another great feature of this library is that each command has the same name as that 
of the method. For example, the GET command is get() and SET is set(). If you 
know all the commands that you can use in Redis, you can use this library.



Adopting Redis for Application Data

[ 152 ]

Next, we are going to change the GET route for '/'. Modify it to look similar to the 
following code:

app.get('/', function(req, res){
  client.incr("test", function(err, counter){
    res.render('index', {redis: counter});
  });
});

We have some new code! We are using our client connection to execute the INCR 
command. This will increment the value at the key specified. If there is nothing at 
that key, it will return 1. We are using this as a simple counter. Each request will 
increment this up by one. We then pass it to the template, which means we have 
to add the template variable to the template. Open up index.ejs and add the 
following line to it:

<html>
<body>
<%= redis %>
<form method="POST">

Now, every time you reload the page, the counter will go up. We have stored an 
application state in Redis. Let's go to redis-cli and check out what is happening. 
Open up a terminal and type the following command:

redis-cli

Then GET the value of test.

127.0.0.1:6379> GET "test"

"5"

The value returned should be the last value on our page.

Let's use this base and build something that is a little more advanced. Open up 
index.ejs and remove our Redis template variable. Add the following code after 
the form:

</form>
<% messages.forEach(function(el, index){ %>
<div>
<%= messages[index].message %>
<br/>
 - <%= messages[index].name %>
</div>
<% }) %>
</body>



Chapter 5

[ 153 ]

We now have to pass in a messages array to our template that has a message and 
name in each object. This data will be stored in Redis. We are going to use most of 
the data types we covered earlier when updating our small application. We will also 
use flow to flatten our callback structure. The first thing we need to do is store a 
reference to the user that creates a message. Add the following function to app.js:

function CreateUser(username, name, cb){
  client.incr('next:user:id', function(err, userid){
    flow.exec(
      function(){
        var user_string = 'user:' + userid;
        client.set('user:' + username, userid, this.MULTI());
        client.hset(user_string, 'name', name, this.MULTI());
        client.hset(user_string, 'username', username, this.MULTI());
      },function(args){
        cb(userid);
      }
    );
  });
};

We will start by discussing flow. Flow will allow us to avoid using nested callbacks.  
To kick off flow, we run flow.exec and add a function. In our example, this is the 
INCR command to get our next userid. We use flow to help us run our next functions 
in the order we want. It still runs asynchronously, but we can create our callback chain 
so that the code appears to run synchronously. We have three functions that we want 
to finish performing before we move to the callback, so we use this.MULTI() in place 
of the callback. The this.MULTI() function will stop flow from moving to the next 
step until they all have been called. The final function passes our userid back to the 
callback. Now, let's talk about what is happening in Redis.

The first INCR will get us a unique ID. We are not worried about authentication 
here. We then use the ID to create a key with the username that stores the userid. If 
we want to find out what userid a username is, we can run GET "user:username". 
We can then set a hash with the field's name and username. The hash's key will 
be the userid. We can look up a user by their username or ID and get the userid, 
username, and name.

Now, we will build a function that either gets a userid or creates one and returns 
that. Add this function to app.js.

function GetUserID(username, name, cb){
  client.get('user:' + username, function(err, userid){
    if(userid){



Adopting Redis for Application Data

[ 154 ]

      cb(userid);
    }else{
      CreateUser(username, name, function(new_user){
        cb(new_user);
      });
    }
  });
};

This function is not using flow, so we can see the difference when using callbacks. 
GetUserID is passed in a username and we take that username and check Redis by 
using GET for "user:username". If that key exists, it will return that username's 
userid. If not, it will return null. We can then either send the userid back in the 
callback or run our CreateUser function to create a user and return the userid  
from that.

The next thing we need to build is a function that will add the message that this user 
has sent. This will be again in app.js.

function AddMessage(message, userid, cb){
  client.incr('next:message:id', function(err, id){
    flow.exec(
      function(){
        var mess_id = 'message:' + id;
        client.set(mess_id, message, this.MULTI());
        client.set(mess_id + ':user', userid, this.MULTI());
        client.lpush('messages', id, this.MULTI());
      },function(){
        cb(id);
      }
    );
  });
};

AddMessage uses flow in a way that is similar to CreateUser. We have three 
functions that need to run before the callback, but we do not care in what order 
they execute. We use this.MULTI() to do this. First, we get our next message ID. 
Once we have that, we create the key "message:messageid" that has the text of 
the message as its value. We also store the userid in "message:messageid:user". 
Next, we add the ID of the message at the end of a list that stores all the messages. 
After these have all returned, we can send the callback.



Chapter 5

[ 155 ]

One thing you may have noticed about Redis is that data gets split up. It is not like a 
row in a database. Usually, when you retrieve a row from a database, you will have 
all the data you need. In Redis, you will have to pick out all the data you need from 
multiple keys. We will do that now as we need a function to get all the data about a 
message. Add the following function to app.js:

function FetchMessage(id, cb){
  client.get('message:' + id, function(err, message){
    client.get('message:' + id + ':user', function(err, userid){
      client.hget('user:' + userid, 'name', function(err, name){
        cb({message: message, name: name});
      });
    });
  });
};

Here, we run three commands, each inside the previous command's callback. The 
first is to get the text of the message. Next, we have to get the userid of the user 
that created the message. This information is not stored in the value of our message, 
so we have to look up another key, the message user. This will give us a userid. 
Now, we have to look up the user hash and pull out the name field. We now have 
all the information we need to create an object with a message and the user that 
created the message. You can see that our code is slowly stair stepping to the right 
because of all the callbacks. This is called callback hell. This is a mild example, but 
imagine what our code would look like if we had to look up six or seven keys. This is 
where libraries like flow or using promises can help flatten our code and stay out of 
callback hell. How would you rewrite this function using flow or promises?

We can now build our final function and use them in our application. Again,  
use app.js.

function GetMessages(cb){
  flow.exec(
    function(){
      client.lrange('messages', 0, -1, this);
    },function(err, messages){
      //an async foreach
      var final_messages = [];
      flow.serialForEach(messages, function(el){
        FetchMessage(el, this);
      },function(mess){



Adopting Redis for Application Data

[ 156 ]

        final_messages.push(mess);
      },function(){
        cb(final_messages);
      });
    }
  );
};

This will get all of our messages and send them back in an array. The first thing 
we do is get all of the messages out of our list. We do this by using the LRANGE 
command. It takes the list, start index, and stop index. 0 is the first item in the list 
and -1 is the last item. This means that LRANGE 'messages' 0 -1 tells Redis to  
give us everything in the list. We can step through the list and paginate by using  
the offsets. For example, we could grab the first ten by using LRANGE 'messages'  
0 9, and the next ten using would LRANGE 'messages' 10 19. You can even do  
this from the other end of the list. This would be LRANGE 'messages' -10 -1,  
then LRANGE -20 -11, and so on. LRANGE will never throw an error if we ask it for 
out-of-range indexes. It will either return the indexes that are within our range or 
nothing. This allows us to know we have grabbed the last page when the amount  
of elements is under our paging amount or 0.

Once we have an array of message IDs, we can fetch each one and add it to our 
return array. Flow helps out here. Flow comes with an asynchronous forEach 
loop. This is important in an asynchronous environment. If we did not do this and 
just used the forEach normally, our callback would be executed before some or 
most likely any of the functions would be called. Flow calls their asynchronous 
forEach function, serialForEach. We pass in the array and the function to be 
called on each element. It then works in a similar way to Flow.exec, in that when 
there is a callback, we can use this in the callback's place. We do that here with 
FetchMessage, which returns an object with the message and user. We then push 
that object into our array. Flow.serialForEach will then wait for each forEach to 
execute before it executes the final function in the chain.

We have now built all the functions to create, get, or fetch data out of Redis. We 
can put them into our routes now. Replace the current index GET routes with the 
following code:

app.get('/', function(req, res){
  GetMessages(function(messages){
    res.render('index', {messages: messages});
  });
});



Chapter 5

[ 157 ]

This is pretty straightforward. We get an array of messages and pass them to our 
template, which is expecting them. Now, let's update the POST route.

app.post('/', function(req, res){
  var username = req.body.username;
  var name = req.body.name;
  GetUserID(username, name, function(userid){
    AddMessage(req.body.message, userid, function(messid){
      console.log('Added message: ' + messid);
      res.redirect('/');
    });
  });
});

This is a little more complex. We first get userid. Then, with that userid, we create 
a message as that user. Finally, we redirect back to the index.

Neither of these routes is doing anything difficult as we have abstracted all the Redis 
implementation details out of our functions. We can fire up Node and test our site.

Load http://localhost:8003 in our browser and fill out the form. The console 
should log each time a message is added to Redis. Our web page will have the 
newly-created message in it as well. We can use redis-cli and use the following 
command to see everything that has been added:

KEYS *

You will see something similar to the following screenshot:



Adopting Redis for Application Data

[ 158 ]

Redis schema
We have used Redis and a few of the data types, so let's now talk about building a 
Redis schema. I keep making references about how Redis is not a database system, 
but I feel it is a good shared perspective to discuss building a schema. Databases 
keep data in rows with multiple columns for each row. In addition to this, you 
can normalize the data and keep a reference to another row that relates keeping 
data separate. The end result is the same though; whether or not the database is 
normalized, the data is a row with multiple columns that store values. We have  
seen from our example application that you cannot store data this way with Redis. 
We will now cover some ways to build a Redis schema. The example schema we  
will build is for the purpose of storing users.

We want to store a user's id, username, password, and last login time. We also have 
the added constraint of looking up each user by their ID or username. Let's now map 
out the columns we will need for each user to Redis keys. For each user that we will 
build, use three keys that have the user's ID in them. This is done by systematically 
adding to the key. The following are our keys:

• user:userid:username: string
• user:userid:password: string
• user:userid:lastLogin: string (although it will hold a timestamp)

This schema allows us to easily look up all the information about a user if we know 
the userid. What if we do not know the user ID? For example, when someone first 
logs in, they usually only give us their username and password.

We would add one more key.

• user:username: string (stores the userid)

Now, we can look up the username and find the userid. From there, we can find the 
rest of the data. Often, it will be tempting to store additional data as JSON in a key, 
but most of the time, it is not the best way. Redis actually has a built-in data type for 
storing many different types of data in one key, which brings us to hashes.



Chapter 5

[ 159 ]

Using a hash
We can store data in another way. There are hash types that allow us to store 
multiple fields per key. This will allow us to flatten our keys. Now, we will have  
the following keys:

• user:userid:hash: a hash with the field's password, username,  
and last login

• user:username: a string with userid

From a high level, using a hash is very similar to using a database. We have a row, 
the hash, which has all the fields we need. We also have indexes, the username 
string key, which allow us to quickly and easily find a specific row out of thousands, 
millions, or even billions of keys.

Remember not to use this in production. Using Redis to store 
your usernames and passwords is not a very good practice. 
Chapter 3, Authenticating Users, covers a secure way to hash 
and authenticate local passwords.

Keys in Redis
One thing you may have picked up on is that any Redis schema will involve a lot 
of keys. The comparison to databases is having many rows in a table. As the rows 
increase, indexes increase in size and lookups can be slow. In fact, you can lock up a 
lot of resources on a database server if you run a query that does not use an index on 
a huge table.

This is where Redis excels. All key lookups (using GET for example) will be an 
O(1) operation. Without getting into the big O notation (definitely out of scope for 
this book) and gross oversimplification, what O(1) means is that each operation is 
constant time. This means irrespective of whether Redis has 1 key or 1 million keys, 
a GET operation will take the same amount of time, and with Redis, this amount of 
time is small. We are talking about a few milliseconds.

What this means is that you can be generous with creating keys. If you need a piece 
of information, create a key for it.



Adopting Redis for Application Data

[ 160 ]

Redis persistence
Our example application has one big caveat. Every key that is added will not be 
removed. If we released something like this to the public, eventually Redis will  
fill up all the memory allotted to it. We can test this by connecting to Redis with 
redis-cli and running KEYS *. We will see that all of our users and messages are 
still in Redis. This will be true if we shut down the Redis server and bring it back 
up. Go ahead and restart Redis and then run KEYS * again. We still see the keys are 
there. Even though Redis is an in-memory key-value store, it persists data to the 
disk. We can see this happen. Redis will log in to the console when it saves to the 
disk. This will look like the following screenshot:

Then, when you launch Redis, it will load data from persistence to create keys on 
launch. We will see a message like the following one:

Removing Redis keys
Now that we established that Redis keys persist, let's discuss some methods of 
removing Redis keys. The first method is simple and dangerous. It will remove 
all keys no matter what state they are in and how long they have existed. It is the 
FLUSHDB command. This command is destructive and cannot be undone. It is not 
recommended for use in production Redis stores, although we could use it for 
our current example application. Connect with redis-cli and run the following 
commands (if it is alright to delete all Redis keys):

127.0.0.1:6379> KEYS *

//all the keys that exist in your Redis instance

127.0.0.1:6379> FLUSHDB

127.0.0.1:6379> KEYS *

(empty list or set)



Chapter 5

[ 161 ]

To reiterate the point, this method is really only useful in development. Usually 
when developing, we want to start with a fresh state and build it up from scratch, 
so deleting all the keys before each server restart is not an issue. In production, for 
example, every user will lose their session, meaning every user will have to relogin, 
and any data in the session will be gone. We definitely need another method for 
deleting keys from Redis.

The next method we will discuss involves keeping track of each key and then 
deleting them when they reach a certain age. In doing this, we will uncover another 
data type, sets!

Sets are collections, like lists, except they are non-repeating. This means if you add 
a key multiple times, it will only be in the set once. Sets also allow you to do set 
operations such as intersection, union, or difference. Our current task will not require 
these, but they are useful.

We can build a set that stores all the keys we have added to Redis. This is important 
as many different applications can add keys to Redis, and they are all in the same 
namespace. In our application, Express and Socket.IO both can add keys to Redis. 
We can then go through the set and delete our keys from Redis when we are done. 
We can build on this idea and only delete certain keys that we do not need anymore. 
We can implement this using sorted sets.

Sorted sets are exactly like sets, except that we can add a score to each key. This 
allows us to pull the data out in an orderly manner. We can set each key and the 
score equal to the current timestamp. If the key already exists, the command will just 
update the score; if it does not exist, the command will add it to the set. This will give 
us a sorted set from the oldest to the newest keys that we have created. Sorted sets 
also allow us to grab a range of elements that match a range of scores. This is perfect 
for us as we can calculate what 24 hours before now was and request for all keys that 
have a score lower than that. We can then take the result of that and delete each key 
out of Redis.

We will use sorted set commands later in this chapter, 
when we add Redis to PacktChat.

The final method we are going to cover is expiration. In Redis, you can mark a  
key to be expired after a set number of seconds. What is nice about this method  
is that we do not have to track what keys have been added. There are two ways  
we could do this.



Adopting Redis for Application Data

[ 162 ]

The first is to set the key and value normally using the SET command. We can then 
use the EXPIRE command to set an expiration. After the amount of time has passed, 
the key will have been removed. We can also check the amount of time left with the 
TTL command. The following is a short example using redis-cli:

127.0.0.1:6379> SET test "Expire!"

OK

127.0.0.1:6379> EXPIRE test 60

(integer) 1

127.0.0.1:6379> GET test

"Expire!"

127.0.0.1:6379> TTL test

(integer) 50

//after 60 seconds have passed

127.0.0.1:6379> GET test

(nil)

We can easily abstract this out and create a set function that would also  
expire any keys that we create. There is one caveat with this. If the key is  
updated with SET again, the expiration is removed. We will have to use EXPIRE  
on every creation and update. This caveat is only needed when the key is changed. 
This includes commands such as INCR and HSET. The following is an example of 
resetting the expiration:

127.0.0.1:6379> SET test "Expire"

OK

127.0.0.1:6379> EXPIRE test 60

(integer) 1

127.0.0.1:6379> TTL test

(integer) 57

127.0.0.1:6379> SET test "No-expire"

OK

127.0.0.1:6379> TTL test

(integer) -1



Chapter 5

[ 163 ]

There is an even easier way of expiring keys if you are using Redis 2.0.0 or above 
(which we are!). This is the SETEX command. It combines the two commands we just 
discussed, SET and EXPIRE, into one. All we have to do is pass in the key, value, and 
expiration in seconds. The following is our example rewritten using SETEX:

127.0.0.1:6379> SETEX test 60 "Expire"

OK

127.0.0.1:6379> TTL test

(integer) 56

127.0.0.1:6379> SETEX test 100 "Higher!"

OK

127.0.0.1:6379> TTL test

(integer) 98

127.0.0.1:6379> SETEX test 2 "Expire"

OK

127.0.0.1:6379> GET test

(nil)

Tracking what keys we have added is an important task when using Redis. If we do 
not know what keys we have added, or more importantly, what keys are currently 
being used, we will not know what keys can be deleted from Redis when we are 
done using them. For example, our session storage library connect-redis uses 
SETEX to expire every key it adds to Redis.

Using Redis as a message queue
In addition to being a super-fast data store, Redis also does message queuing! We 
just spent the previous chapter covering message queues, so we don't have to cover 
the reason as to why we should use them. We will only cover how Redis uses them.

Redis's message queuing is much simpler than RabbitMQ. RabbitMQ has many 
different types of exchanges, queues, protocols, and many other features that Redis 
does not try to match. Redis is super simple message sending. The method we are 
using here is publish/subscribe. Redis can also do simple message queuing like 
RabbitMQ, using RPOPLPUSH. Redis Pub/Sub broadcasts published messages with 
anyone that is currently subscribed. It does not actually queue the messages. This 
is an important point to keep in mind. When we built our RabbitMQ workers, we 
would create persistent exchanges and queues so that any message sent would have 
somewhere to go. 



Adopting Redis for Application Data

[ 164 ]

Even if there were no workers, eventually every message in a RabbitMQ queue 
would be worked on. When you send a message to be published, Redis will reply 
with a count of clients that received the message. When there are no clients, we 
should get a response of 0. Open up a terminal and run redis-cli (anytime we  
run redis-cli, the assumption is that redis-server needs to be running as well).  
The following command will publish a message to testpubsub:

127.0.0.1:6379> PUBLISH "testpubsub" "message"

(integer) 0

If the message is ephemeral in nature, then this is not an issue. If not, then this  
can be a deal breaker.

Let's build a small little example application that demonstrates how to use Redis 
Pub/Sub. Create a directory named redis_second_app that will serve as the root  
of our application. The first thing we are going to do is install Express, Socket.IO,  
and a Redis client using package.json and then running npm install.

{
  "dependencies": {
    "express": "4.6.1",
    "redis": "0.10.3",
    "socket.io": "1.0.6"
  }
}

Create app.js and add the following code to it:

var express = require('express'),
  io = require('socket.io'),
  redis = require('redis');

var app = express(),
  redisClient = redis.createClient();

app.use(express.static(__dirname + '/static'));
var server = app.listen(8004);

We will initialize all our libraries and then use them. We are connecting to 
Redis using the default settings (localhost:6379) by not passing anything into 
createClient. We are also using Express' static middleware to serve a static  
index.html. Let's create that now. The following code is what index.html  
present at redis_second_app\static should look like:

<!DOCTYPE html>
<html>
<body>



Chapter 5

[ 165 ]

<h1>Pub/Sub</h1>
<ul id="ul">
<ul>
<script src="/socket.io/socket.io.js"></script>
<script>
  var ul = document.getElementById('ul');
  var socket = io.connect('http://localhost:3000');
  socket.on('pubsub', function(message){
    var li = document.createElement('li');
    li.innerHTML = JSON.stringify(message);
    ul.appendChild(li);
  });
</script>
</body>
</html>

We have a UL with id so that we can easily create a reference to it. We then connect 
using Socket.IO. Socket.IO will listen for the pubsub event and add a list item to the 
UL with the value of the JSON object that is the message.

We can now go back to app.js and add our Redis and Socket.IO connections.  
Add the following code to the bottom of app.js:

var server = app.listen(8004);

//setup pub/sub
redisClient.subscribe('testpubsub');

io = io.listen(server);

io.on('connection', function(socket){
  redisClient.on('message', function(channel, message){
    socket.emit('pubsub', {channel: channel, message: message});
  });
});

We have redisClient, which is currently connected to our local Redis server. We 
then use the subscribe method with the name of the channel. This puts the client in 
a subscriber mode. Any calls made now will be in the context of being subscribed 
to a channel. We are not using this connection to do anything else, but if we need to 
run GET, SET, or anything else, we will just have to create another connection and use 
that. A good practice would be to have a client for running commands and then a 
client for each channel that you need to subscribe to.



Adopting Redis for Application Data

[ 166 ]

Next, Socket.IO is set up to listen. Our Redis client then listens for a message. 
Notice how simple it is to set up Redis Pub/Sub. We have only used two functions, 
subscribe and the listener for messages. When we get a message, we immediately 
send it to the client using Socket.IO with the pubsub event. That is great because we 
have configured the client to listen for the pubsub event!

Just like all of our other example applications, now is the time to play around with 
our example application. Start-up Node serving app.js. Also, we can connect to 
Redis using redis-cli or using a currently open connection. Arrange your terminal 
and browser so that you can type in the terminal and still see the browser window. 
The first thing we will look at is the channels that are currently in Redis. Type the 
following command into redis-cli. This is only available with Redis 2.8.0 and above:

127.0.0.1:6379> PUBSUB CHANNELS

1) "testpubsub"

The channel that we subscribed to is displayed. Now, let's see how many subscribers 
are currently connected. Use the PUBSUB command with the NUMSUB subcommand  
as follows:

127.0.0.1:6379> PUBSUB NUMSUB "testpubsub"

1) "testpubsub"

2) "1"

The one connection is our Node process. Finally, let's actually publish a message  
on the channel. This is done with the PUBLISH command as follows:

127.0.0.1:6379> PUBLISH "testpubsub" "Hey!"

(integer) 1

127.0.0.1:6379> PUBLISH "testpubsub" "Another message"

(integer) 1

We should have noticed our web page update and immediately add a list item for 
each message. It should look similar to the following screenshot:



Chapter 5

[ 167 ]

Let's do one more experiment. We will use Node's Read Evaluate Print Loop (REPL) 
to connect to Redis and publish a message. Open a terminal and just type in node. 
We can now enter commands. Run the following three commands in the Node REPL:

> var redis = require('redis');

undefined

> var client = redis.createClient();

undefined 

> client.publish('testpubsub', 'From Node REPL');

true

Our browser should show the new message.

This is really all the code we would need in order to use Pub/Sub in Redis. As we 
discussed earlier, it is extremely simple with almost no setup. It definitely does not 
try to match all the features of RabbitMQ, but that also makes it simpler to use.

Adding Redis to PacktChat
Technically, we are already using Redis in our application. This is only because we 
have frameworks that are using Redis. However, we want to explicitly use it. We are 
going to build all the functions our application will need to store the users, rooms, 
and chats. The first thing is to define what we are going to store.

Defining the Redis structures
All of the objects will be stored in different Redis structures. The reason for this is 
two-fold. First, we can quickly look up data. Second, every web server will have 
access to the same data as the others. The following is the list of keys and types of 
data we will store in Redis:

• rooms: a sorted set of all the room names created so far
• rooms:RoomName:chats: a sorted set of all the chats sent in this room
• rooms:RoomName: a sorted set of all the users in this room
• users: a sorted set of all the user IDs that have logged in
• user:UserID: a hash of the user's name and type
• user:UserID:room: a simple string that holds the current room this user is in

These six simple keys will allow us to track every user, room, and chat. One thing to 
note is that most of these are sorted sets. This will let us see when the last action had 
occurred and clean up the set or get rid of the set altogether.



Adopting Redis for Application Data

[ 168 ]

Creating our Redis functions
We will now create all the functions that will add and read data from the structures 
we just defined. There are no new packages, so we do not need to change the 
package.json file.

The first thing we need to do is create a folder called redis and add a filename 
index.js. Add the following code to it:

var redis = require('redis'),
  config = require('../config');
var client = redis.createClient(config.redisPort, config.redisHost);
exports.client = client;

We will create a Redis connection and then export it. We do this because we need 
only one connection for most of our Redis commands. As long as we do not put this 
connection in the subscriber mode, we can run commands in different files using just 
this connection.

The next thing we need to do is create a type for User, Room, and Chat. JavaScript 
is a dynamic scripting language, and this can create problems. Every object can be 
created and modified on the fly, adding or removing properties and methods. This 
can create issues unless we create a singular creation method. We will do that with a 
new file named models.js in redis. The following is what should be in that file:

var User = function User(id, name, type){
  if(arguments.length < 3 ) return new Error('Not enough args!');
  return {id: id, user: name, type: type};
};
var Chat = function Chat(message, room, user){
  if(arguments.length < 3 ) return new Error('Not enough args!');
  if(typeof user !== 'object') return new Error('User must be an 
object!');
  return {id: user.id + (new Date).getTime().toString(),
  message: message, room: room, ts: (new Date).getTime(), user: user};
};
var Room = function Room(name){
  if(arguments.length < 1)  return new Error('Room needs a name!');
  return {id: name, name: name};
}
exports.User = User;
exports.Chat = Chat;
exports.Room = Room;



Chapter 5

[ 169 ]

Each of these functions run very simple parameter checks and then return a 
JavaScript object. This will help us discover bugs earlier. If we do not pass enough 
parameters to these functions, they will throw an error when they are called. This 
is much easier to track down than an error message five function calls later, when 
it states a property is undefined. The other benefit is that each object that comes out 
will be the same. If, for some reason, we need another field on User, we can just 
update the User function and be done with it.

Now that the models are defined, we will create the functions that will read and 
write these models to Redis. Create the file chat.js in redis and start it off with  
the following code.

var client = require('./index').client,
  q = require('q'),
  models = require('./models');

exports.addUser = function addUser(user, name, type){
  client.multi()
  .hset('user:' + user, 'name', name)
  .hset('user:' + user, 'type', type)
  .zadd('users', Date.now(), user)
  .exec();
};

The first few lines require the Redis client, q for promises, and the models we just 
created. The addUser function is the first of the eight functions that we will use 
to add data to Redis. This function will add the userid to a sorted set with the 
current timestamp as the score. The users' sorted set will let us track the users that 
are currently active. The hash at user:userid stores the display name and the type 
of user. We will need these two bits of information when we get the list of users 
in a room. We are doing two hash sets and zadd wrapped with multi. The multi 
function makes the entire operation atomic. This essentially means that these three 
actions will be viewed as one action, and either all will execute or none will. Each 
multi group needs exec at the end to execute. The exec can take a callback with the 
familiar function(err, reply) structure.

The following code shows the next two functions that deal with rooms:

exports.addRoom = function addRoom(room){
  if (room !== '') client.zadd('rooms', Date.now(), room);
};

exports.getRooms = function getRooms(cb){



Adopting Redis for Application Data

[ 170 ]

  client.zrevrangebyscore('rooms', '+inf', '-inf', function(err, data)
{
    return cb(data);
  });
};

addRoom is very simple. If the room is not an empty string, add it to the room's sorted 
set with a current timestamp. The zadd function adds to a sorted set with a score. 
Here, we are adding the name of the room to the sorted set rooms with the score of 
a current timestamp. The first time, a room will be added. The next time, the room's 
score will be updated to a current timestamp. We will use this often as this is a 
powerful pattern.

getRooms uses zrevrangebyscore, which gets a reverse sorted array by score of 
elements. The score min and max of +inf and -inf will return all the elements.  
This will return the newest joined room first and the oldest last. Now, let's take a 
look at the chat functions, shown in the following code:

exports.addChat = function addChat(chat){
  client.multi()
  .zadd('rooms:' + chat.room + ':chats', Date.now(), JSON.
stringify(chat))
  .zadd('users', Date.now(), chat.user.id)
  .zadd('rooms', Date.now(), chat.room)
  .exec();
};

exports.getChat = function getChat(room, cb){
  client.zrange('rooms:' + room + ':chats', 0, -1, function(err, 
chats){
    cb(chats);
  });
};

The first function, addChat, is adding elements to three different sorted sets. The first 
key is rooms:RoomName:chats, which holds all the chat messages. We are storing 
these as serialized objects for ease of fetching later. Next, we add the user and room 
to their respective sorted sets. Sets do not keep duplicate keys, so this action will 
actually update the timestamp. This allows us to keep track of the most active rooms 
and users. All of this is wrapped in a multi function.



Chapter 5

[ 171 ]

getChat will just return all the chat messages in a room. This is the ease factor I was 
talking about. Now, let's see the next two functions, shown in the following code:

exports.addUserToRoom = function addUserToRoom(user, room){
  client.multi()
  .zadd('rooms:' + room, Date.now(), user)
  .zadd('users', Date.now(), user)
  .zadd('rooms', Date.now(), room)
  .set('user:' + user + ':room', room)
  .exec();
}

exports.removeUserFromRoom = function removeUserFromRoom(user, room){
  client.multi()
  .zrem('rooms:' + room, user)
  .del('user:' + user + ':room')
  .exec();
};

We have a list of rooms and chats in a room, but how do we know who is in a room? 
That's where these two functions come in. addUserToRoom uses a sorted set to track 
all the users in a certain room. The users and rooms' sorted sets are updated again 
in this function. We want to update these anytime something of note happens, like 
entering a room or adding a chat. The last step for addUserToRoom is to set a key 
with the user's current room. This will allow us to find all the old users and remove 
them from the room in the removeUserFromRoom function.

The removeUserFromRoom function simply uses the sorted set's remove command  
to drop the user out of the set. It also deletes the key that held the user's room.

Finally, let's take a look at our last Redis function. This one is more complex than  
the others.

 exports.getUsersinRoom = function getUsersinRoom(room){
  return q.Promise(function(resolve, reject, notify){
    client.zrange('rooms:' + room, 0, -1, function(err, data){
      var users = [];
      var loopsleft = data.length;
      data.forEach(function(u){
        client.hgetall('user:' + u, function(err, userHash){
          users.push(models.User(u, userHash.name, userHash.type));
          loopsleft--;



Adopting Redis for Application Data

[ 172 ]

          if(loopsleft === 0) resolve(users);
        });
      });
    });
  });
};

This function is more complex because we need to get more information from Redis 
for every user in the room. We want to be able to display the user's name and an 
image. This data is not in the sorted set for all the users in a room. We will use 
promises in this function, so we immediately return the promise from this function. 
The first bit of data we need is a list of all the user IDs in a room. Once we have this, 
we need to loop over every user ID and pull their name and type from the user hash 
we created earlier. Remember that a forEach loop is not asynchronous. If we just 
kicked it off, it would return an empty array. We need to make it asynchronous.  
One way to do this is to get a count of how many rooms that zrange returned, 
decrement the count on each loop, and when the counter is 0, return our data.

That is exactly what our new forEach loop does. Instead of returning or using a 
callback, this function resolves the promise we created earlier.

Those were all our Redis functions. Notice that we do not have any update or delete 
actions. We are not going to give the users the ability to do this. A worker will go 
through all of the sorted sets and trim off the oldest elements. This is why almost 
every key is a sorted set. It allows us to put the elements in each set in order.

We are now done building our Redis functions. We will build the pieces that use 
these functions in the next couple of chapters.

Redis is for application state
Redis is most useful when it is used to keep track of a temporary application state.  
A perfect example of this is a session. It is only needed when a user is logged in.  
We store it in Redis, so that it can be easily retrieved and accessible to multiple 
processes on multiple machines. Redis helps us follow the rule of scalability of  
never keeping application state locally. Any data that will be needed in multiple 
requests should be kept in Redis.

Another thing to keep in mind about Redis is that it is only for short term data. 
Anything that is needed to be stored for a long time should be in a database. Your 
user table, every time a user logs in, and all tracking information are things that you 
would keep in a database instead of Redis.



Chapter 5

[ 173 ]

Our application is now ready to store our state in Redis. We have built all the 
functions that we will use to interact with Redis. All of this interaction is going to 
happen through Socket.IO. We will be building this part of the application shortly as 
it will tie the frontend to the backend. We will also build a worker to clean up Redis.

There are many other great things you can do with Redis, but we only focused on 
using it for scalability.

Summary
You should now have a great understanding of Redis and how to use it to store the 
application state. Another great feature of Redis is its simple Pub/Sub model, which 
can pass non-persistent messages between different processes on different machines. 
Finally, we added Redis to store application state to our PacktChat application.

In the next chapter, we will start the transition where we will focus on the frontend. 
We will tie up loose ends with the backend and start discussing the tools we will use 
to build our user interface.





Using Bower to Manage Our 
Frontend Dependencies

We have now built most of our backend, and we are going to switch gears to start 
focusing on the frontend now. Our application is in a state of transition. We have a 
lot of functionality at the backend but none on the frontend. There is no way to really 
interact with our application. We now need to lay the foundation of our frontend. 
We will introduce new tools to help us track our frontend dependencies. We will 
also introduce and use two frameworks that will create our HTML elements, handle 
events, and communicate with our backend. There are a lot of concepts to cover,  
so let's get started.

We will cover the following topics in this chapter:

• Installing and using Bower
• What is React and why we use React
• What is Backbone and why we use Backbone

As you can see, we will touch upon a lot of different subjects in this chapter.  
Let's get started.

Node package versions
We will be using one new package in this chapter, Bower. Bower is a package 
manager that is a lot like npm, except it is for frontend libraries. It allows us to 
grab versions of jQuery, Backbone, and React and keep them up to date. Most 
importantly, it allows us to explicitly define the version of each library, for example, 
bower 1.3.8. It is an npm package like all the others we have installed so far.



Using Bower to Manage Our Frontend Dependencies

[ 176 ]

Installing and using Bower
Bower is a package manager for frontend libraries. We will be using it to install  
the libraries needed. A bower.json file will be created at the root of the project.  
This file will have a list of all dependencies, including the version. This is much 
better than downloading a JavaScript file and dropping it in a project.

Bower runs on Node, so it is installed using npm. Launch a terminal and type in  
the following command:

npm install -g bower

We want to install Bower globally so we can easily use Bower's two most important 
utilities, bower init and bower install. These commands should seem familiar 
as they are very similar to the npm commands of the same name. The bower init 
command will initialize our application directory by asking us some questions about 
our project and creating a bower.json file. The bower install command will install 
a package. Exactly like npm, we can use the --save or --save-dev flags that will tell 
Bower to add the dependency to bower.json.

Bower creates a bower_components directory that holds our packages. Again, this 
is very similar to npm's node_modules. Each package will have its own directory. 
Inside of this directory will be all the files that are usually at the library's source.  
This means there will be the full source in addition to minified versions. Essentially, 
the Bower package will point to the project's Git URL (usually GitHub) and 
download the files from there.

In addition to tracking explicitly defined packages, Bower will install all the 
dependencies of the packages. This is something that has been missing from frontend 
development for a long time. Bower is a tool that should be in each of our projects 
that use a fronted library—which will be most of them.

Bower is very similar to npm. They aim to solve the same problem, but have 
different targets. We will now use Bower for our first frontend library, React.

Introducing React
We only have one chapter on building the frontend. Because of this, we will spend 
some time on introducing the libraries we will use to build the frontend in this 
chapter. This will allow us to jump right into writing code.



Chapter 6

[ 177 ]

First up is React (http://facebook.github.io/react/). React is a library that 
was built by Facebook and Instagram. The entirety of Instagram's interface and 
Facebook's comments are built using React. It is designed to only be used for user 
interfaces. It does not make any assumptions about how or where you get data.  
This makes it easy to interoperate with other libraries.

React uses a virtual Document Object Model (DOM). The DOM is all the elements 
that are on a page. A virtual DOM allows the library to only render the differences. 
Anytime a lot of elements render, the browser must take time to figure out what an 
insertion or deletion of an element will do to the page. Doing this takes time. React is 
able to keep rendering to a minimum, making it fast.

One more great feature of React is that it has synthetic events. What this means is 
that when you add an event listener to a component, the listener is not actually tied 
to that component. This is useful because it gets around the most prolific way of 
creating memory leaks. Memory leaks are created when an element is removed from 
the DOM, but an event listener is still attached. When a garbage collection is fired, 
the element can still be mapped back, which means the element's memory will not  
be freed. For example, if we render a button and add a click listener, then when we 
re-render the button again with a click listener, we have created a memory leak.

Cleaning up our events becomes especially hard when anonymous functions are 
used. This is because we need to use a reference to the function to remove the 
listener, which we do not have with an anonymous function. This is where synthetic 
events come in handy. In React, there is only one listener that sits all the way at the 
top of the component chain. When an event listener is adding to a component lower 
in the chain, it is registered with the top-level listener. Then, when an event matches 
the definition (a click on a button, for example), it will bubble up to the top level and 
get handled. When a component is removed, it can be garbage collected because 
there are no event handlers tied to that element.

React can use an XML-like syntax called JSX. I will say that this is the most 
controversial thing about React. It is not required, and in fact, you must transform 
JSX into JavaScript to use it. We can transform JSX to JavaScript on the fly at load 
time, but Facebook does recommend to statically transform all JSX beforehand.  
We are going to build our elements using straight JavaScript, but I recommend 
everyone at least go out and try JSX. You may like it!

Let's build a simple application to demonstrate what can be done with React.  
First, create a directory named react. Inside this directory, create a file named 
bower.json and add the following code to it:

{
  "name": "react",

http://facebook.github.io/react/


Using Bower to Manage Our Frontend Dependencies

[ 178 ]

  "version": "0.0.0",
  "license": "MIT",
  "dependencies": {
    "react": "0.11.1",
    "postal.js": "0.10.1"
  }
}

Then, we just have to run bower install. This will install our packages and all the 
dependencies needed.

React is component-based, so let's build our first component. Create a file named 
index.html inside the react directory. Add the following code to it:

<!DOCTYPE HTML>
<html>
<head>
  <title>React</title>
  <script src="/bower_components/react/react.js"></script>
</head>
<body>
  <h1>React!</h1>
  <div id="react-root"></div>
</body>
<script>
var Hello = React.createClass({
  handleClick: function(){
    alert(this.props.name);
  },
  render: function(){
    return React.DOM.li({className: "name", onClick: this.
handleClick},
      "Hello There, " + this.props.name + "!");
  }
});

var root = React.renderComponent(Hello({name: "Josh"}), document.
getElementById('react-root'));
</script>
</html>



Chapter 6

[ 179 ]

Components are created with the React.createClass method. It takes an object 
as a parameter. This object will at least need a render attribute that will render our 
component. The next step is where React is different than almost all other view 
renders. We do not add HTML elements or a string that can be turned into HTML. 
We create React.DOM elements. React.DOM has almost any element we will need. 
Here, we are using a list item. The first parameter is a list of attributes to put on 
li. Because class is a reserved word in JavaScript, className is used to add CSS 
classes. We also place any event handlers in this object, as well.

The next parameter in the React.DOM element is the content that should go in  
the element. In this example, we are only adding text, but we can add other 
components. This component is also dynamic. Properties (props) can be passed  
in and used later in the component. In this example, we pass in a name and use  
it while rendering. Finally, we render the component into the div#react-root 
HTML element. We can run this using Python with the following command in the 
root of our project directory:

python -m SimpleHTTPServer

React requires the render function to return only one element, 
not a list of elements. If a list is required, then it will need to be 
wrapped with div or ul if it is a literal list.

Let's add the list to hold our new list item component. Add the new HelloList 
function and replace the root variable:

//add this after Hello
var HelloList = React.createClass({
  render: function(){
    return React.DOM.ul({className: "name-ul"}, 
      Hello({name: "Josh"}),
      Hello({name: "Brian"})
    );
  }
});

//replace the current root
var root = React.renderComponent(HelloList(), document.
getElementById('react-root'));



Using Bower to Manage Our Frontend Dependencies

[ 180 ]

Now we are building HelloList, which will render the Hello list items inside of it. 
All we have to do to render a component is call it inside another component. This is 
a perfect example of reusing a component to build more complex components. We 
can also keep adding components in a React.DOM element after the first parameter. 
Our page should now have a list with two items that will alert the name passed into 
it when clicked.

This example demonstrates the ability to compose React components. Each 
component can encapsulate all the logic, events, and rendering of itself and  
then be used to build larger components that do the same.

Now, we will get fancy and add a form to add names and removal buttons for each 
name. We will do this using postal.js. Because postal.js was in our bower.json 
file, it should already be in our project for use. postal.js also has two dependencies, 
Conduit and lodash. Both of these will be in our bower_components directory.

postal.js gives us a global message bus where objects can publish messages to 
other objects that are listening. This is very much like RabbitMQ and Redis Pub/Sub.

We now have to update the head in our index.html file with our new libraries:

<script src="bower_components/react/react.js"></script>
<script src="/bower_components/lodash/dist/lodash.js"></script>
  <script src="/bower_components/conduitjs/src/conduit.js"></script>
  
  <script src="bower_components/postal.js/lib/postal.js"></script>

First, let's update the Hello list item, as shown in the following code:

var Hello = React.createClass({
  componentWillMount: function(){
    this.channel = postal.channel();
  },
  removeClick: function(){
    this.channel.publish("Name.Remove", {name: this.props.name});
  },
  render: function(){
    return React.DOM.li({className: "name"},
      "Hello There, " + this.props.name + "!",
      React.DOM.button({onClick: this.removeClick},
      "Remove Me")
    );}
});



Chapter 6

[ 181 ]

There is a new componentWillMount attribute. This runs right before the component 
is rendered, giving us a perfect place to run any onetime setup code. We connect to 
the default channel and add it to the object so we can use it later. Next, we define  
the removeClick function, which will publish a "Name.Remove" message that will 
pass the current name. In render, we have removed the onClick alert and added 
a button that will fire off the removeClick function. It is important to note this 
component does not remove itself. It will let another component know that it  
needs to be removed.

We need a form, so let's add a React form, as shown in the following code:

var AddNameForm = React.createClass({
  componentWillMount: function(){
    this.channel = postal.channel();
  },
  handleSubmit: function(e){
    e.preventDefault();
    var newName = this.refs.name.getDOMNode().value.trim();
    this.channel.publish('Name.Add', {name: newName});
    this.refs.name.getDOMNode().value = '';
  },
  render: function(){
    return React.DOM.form({onSubmit: this.handleSubmit},
      React.DOM.input({type:'text', placeholder: 'Name', ref: 
'name'}),
      React.DOM.button(null, 'Submit')
    )}
});

Just like the Hello component, the first thing we do is set up a channel, so we can let 
another component know what was submitted in the form. Next is the submit event 
handler. First, we prevent the form from reloading the page when submitted. Then, 
we get the value from the text input. The refs object has each element that we have 
added a ref attribute to; here, it is on the input element. We can then easily grab them 
in functions. The getDOMNode function will return the HTML element. Once we have 
the element, we can run regular JavaScript to get the value of text input. We then 
publish an event with the name that was entered. The last thing to do is to blank out 
the value on the input, so it doesn't keep the value between submits.



Using Bower to Manage Our Frontend Dependencies

[ 182 ]

The final component we will update is HelloList. The following code is what the 
component will look like:

var HelloList = React.createClass({
  componentWillMount: function(){
    var channel = postal.channel();
    this.addSub = channel.subscribe('Name.Add', this.addName);
    this.removeSub = channel.subscribe('Name.Remove', this.
removeName);
  },
  getInitialState: function(){
    //async loading
    setTimeout(function(){
      //treat state as immutable
      var copy = this.state.namesList.slice();
      copy.push("Test");
      this.setState({namesList: copy});
    }.bind(this), 3000);
    return { namesList: ["Josh", "Brian"]};
  },
addName: function(data){
    var copy = this.state.namesList.slice();
    copy.push(data.name);
    this.setState({namesList: copy});
  },
  removeName: function(data){
    var copy = this.state.namesList.slice();
    copy.splice(copy.indexOf(data.name), 1);
    this.setState({namesList: copy});
  },
render: function(){
    return React.DOM.ul({className: "name-ul"},
      this.state.namesList.map(function(name){
        return Hello({name: name});
      }),
      AddNameForm());
  },
  componentWillUnmount: function(){
    this.addSub.unsubscribe();
    this.removeSub.unsubscribe();}
});

The first componentWillMount function sets up the subscriptions so we get the 
events from other components. We will get to the handlers that are referenced  
in the subscribe function shortly.



Chapter 6

[ 183 ]

There is a new idea introduced with this component—state. Previously, we covered 
props as a way of getting data into a component. State is another way to store data. 
The difference between them is that state can and will change over the lifetime of a 
component and a prop will not. A good example of this is the name prop in our first 
component, Hello. The name will not change; it is just rendered. In the HelloList 
component we are building here, the state is going to change. The initial state is an 
array of two names. A function is set to update the state after 3 seconds. It will make 
a copy of the current state and then add a new name to it. Then, the function will run 
setState which will tell the component to re-render itself and any children.

React does not care where state comes from. It could be from an Ajax call, Socket.IO 
event, or even a Backbone model. React only worries about rendering and handling 
the DOM and events.

We should always treat state as immutable. What this means is that we should not 
change it in place. Make a copy of the current state and then change that. This allows 
React to figure out the difference in the new state.

Next are the handlers to add and remove names. These functions are similar.  
They both make a copy of the state with slice(). Then, an element is either  
pushed in or spliced out and the state is updated.

Now that we have some state, we can finally render the component. This brings us to 
the last two functions, render and componentWillUnmount. The render function is 
actually really simple. React will render other React components, so we can compose 
our view. The function takes the state and maps each item in the array to a Hello 
component, passing in the name as a prop, and finally adding the form at the end.

In the final function, we unsubscribe from both of the subscriptions we set up in  
the beginning.

The last thing to do is to render HelloList to div#react-root. This code has not 
changed since the last time we updated. React allows us to build a complex application 
and then render it into any element on a page. Our little application could just be one 
part of a much larger application and it would be completely self-contained. Any 
changes here would not affect other components:

var root = React.renderComponent(HelloList(), document.
getElementById('react-root'));

Load http://localhost:8000 in your browser. Initially, the page should have 
two items in the list. Then, after 3 seconds, another item will be added. We can add 
elements by using the form and remove them using the button in each item. In 80 
lines of JavaScript, we have built an interactive list.



Using Bower to Manage Our Frontend Dependencies

[ 184 ]

It is a best practice to have as few stateful components as possible. In our example, 
only HelloList had state. All the other components used props. Props can easily 
flow down the component chain. The top-level component, or parent, will be the 
component that knows what is going on. All the child components will get their data 
from the element above them. This keeps everything from becoming dependent on 
each other, and allows any component to be used anywhere else in our application.

React allows us to break down a page's user interface into self-contained 
components. This means each component is responsible for rendering itself and 
tracking any events that happen to it. This makes the components composable, and 
in turn means we define each element separately and then reuse and assemble all the 
elements to create the whole.

Introducing Backbone
Backbone is a JavaScript library that allows us to define models, collections, and 
views. It helps to organize keeping track of what is happening on a web page in 
JavaScript. Like React, it is not a fully-featured library. Backbone does more than 
React, but a lot less than Angular or Ember.js. This is not better or worse, it is just 
different. Everything we are building in this application can easily be implemented 
in any other JavaScript framework.

We just covered how React can render views and track events. Backbone has these 
same capabilities, but we will not be utilizing them. In my opinion, React's DOM 
manipulations are better, and eliminates the need to have a view teardown step, 
where we unattached each event listener. We discussed how React uses synthetic 
events to only bind event handlers inside of the component. Backbone assigns event 
handlers without using synthetic events. This can lead to memory leaks if we are not 
careful when we need to remove a view. Backbone also does not use a virtual DOM 
to track changes. This means any update in a view will cause multiple elements to 
render again. React gives us powerful view functions, so we are using those over 
Backbone's view functions.

We will not do a complete Backbone and React integration in this chapter. We will 
just cover the parts of Backbone we will use, and the next chapter shows how all of 
this works together.



Chapter 6

[ 185 ]

Using Backbone models
Backbone has a great way of tracking application data—the model. A Backbone 
model will fire off some events and keep the data in sync between a server  
and the page. Backbone can easily map a model to REST API and CRUD data.  
For our example here, we will only be using the event features.

Models are technically just JavaScript objects with some useful functionalities  
built in. They can have attributes and methods that utilize the attributes.

Let's create some models. First, we will create a directory named Backbone.  
Then, create a file named bower.json and add the following code to it:

{
  "name": "backbone",
  "version": "0.0.0",
  "license": "MIT",
  "dependencies": {
    "backbone": "1.1.2"
  }
}

Next, run bower install.

Then, create an HTML page named models.html and add the following code to it:

<!DOCTYPE HTML>
<html>
<head>
  <title>Backbone</title>
  <script src="/bower_components/underscore/underscore.js"></script>
  <script src="/bower_components/backbone/backbone.js"></script>
</head>
<body>
  <h1>Backbone!</h1>
  <div id="backbone-root"></div>
</body>
</html>

This page loads backbone with its dependency underscore. Bower will have installed 
underscore automatically.



Using Bower to Manage Our Frontend Dependencies

[ 186 ]

Create a script tag at the end of the body and use the following JavaScript code:

var root = document.getElementById('backbone-root');
var Chat = Backbone.Model.extend({});
var chat = new Chat({message: 'Hey'});
chat.on('change', function(model){
  console.log(model);
});

chat.on('change:message', function(model, value){
  console.log(model);
  alert(value);
});
chat.set({message: 'Hey Again'});

Backbone uses extend to create different types of objects. Here, we extend Backbone.
Model. We then create an instance of the model passing in the attributes we want it 
to have. Models will emit two events when an attribute changes. The first is a change 
event which will pass in the model. The other is a change:<attributeName> event. 
This event will pass the model and the new value of the attribute. In our example, 
we wire up both events. Both event listeners will log the model that changed. The 
attribute specific listener will also alert the new value.

Finally, we change the value of the attribute. We do not directly change the attribute. 
We have to use the set function, which will make sure the proper events get fired 
off. This can be verified by loading http://localhost:8000/models.html. An alert 
should be fired that says 'Hey Again'. Also, there should be two objects logged to 
the console.

Although we are not using all the features of a Backbone model, it is still useful. 
Backbone models allow us to listen for any changes on a model.

Using Backbone collections
Backbone collections are a collection of models. Just like models are basically 
extended objects, collections are basically extended arrays. Let's jump right in  
and create a collection. We can make a copy of models.html and name it 
collections.html. The only change we need to make is to empty the script  
tag and add the following code to it:

var Chat = Backbone.Model.extend({});
var ChatCollection = Backbone.Collection.extend({
  model: Chat



Chapter 6

[ 187 ]

});
var chat = new Chat({message: 'Hey'});

var collection = new ChatCollection([
    chat
]);

collection.on('add change remove', function(model, value){
  console.log(model);
});

chat.set({message: 'Hey again'});
var added = collection.add({message: "Another chat"});
collection.add(chat);
collection.remove(added);

Creating collections involves extending Backbone.Collection. Here, we pass in 
what type of model is in this collection. This allows us to pass in a basic JavaScript 
object, which will be converted to the type defined here. Collections can be initialized 
with an array of objects or models. Here, we pass in one model. We then attach 
listeners to the add, change, and remove events. These events are fired off when a 
model is added to the collection, when a model in the collection is changed, or when 
a model is removed, respectively.

The next few lines test different scenarios. The first line changes the chat object we 
included in the collection. This will fire off a change event. Next, we add a new object 
to the collection. This addition will fire the add event. Next, we try to add an object 
that is already in the collection. This will not do anything. Collections are intelligent 
and know when an object is already in the collection. Finally, we remove a model 
from the collection.

Backbone models and collections will give us an interface to watch for and react 
to changes in our data. We will have to create server-side syncing ourselves, as 
Backbone does not have anything built in for Socket.IO. In addition to this, we will 
then need to wire up some code to let React know when a model changes. We can 
create some separation of concerns here. Backbone will only worry about making 
sure the collections it has are synced properly to the server. React will worry about 
rendering those collections. postal.js will then create an event bus through which 
we can let different objects know that something has happened without creating a 
dependency on that specific object.



Using Bower to Manage Our Frontend Dependencies

[ 188 ]

Summary
In this chapter, we learned how to manage our frontend dependencies. This is done 
through Bower. Bower is very similar to npm in the way it stores our dependencies 
(bower.json and bower_components) and its execution (install and init). Next, 
we introduced React, which will serve as our JavaScript view engine in the browser. 
We covered the reasons why we chose this framework. Then, we covered Backbone 
models that will emit events when changed. This gives us the ability to decouple 
changing a collection and then rendering the changed collection. This is important, 
as we are using two separate frameworks for watching our data and rendering our 
views. We now have the tools and background to add Bower, React, and Backbone  
to our application.

In the next chapter, we will make all the code additions and changes that will be 
required to have a functional chat application.



Using Backbone and  
React for DOM Events

This chapter is going to be the finishing touches on our application. We have built 
the backend, but this is not very useful unless we have a way of interacting with it. 
There will be a lot of code being removed, added, and updated. I will try to keep 
the code changes as localized as possible. I don't want to jump between 13 different 
files, making small changes. On the other hand, I want to make sure that all code 
changes happen in a logical order. The following is what we are going to cover in 
this chapter:

• Finishing our Socket.IO events that get and add data to Redis
• Creating all our view components with React
• Tying our Backbone models to Socket.IO and the components

Bower package versions
Usually we list out the new npm packages we will use, but the application finally 
has all the npm packages it needs. We will need a few Bower packages to finalize 
development, though. The following is the inclusive list of packages:

• react: 0.11.1
• backbone: 1.1.2
• postal.js: 0.10.3
• jquery: 2.1.1
• momentjs: 2.8.1



Using Backbone and React for DOM Events

[ 190 ]

We have covered React, Backbone, Postal.js, and jQuery already. Moment.js will be 
used to turn time spans into human readable formats. We can now create a bower.
json file in the root of our packtchat directory and add the following code to it:

{
  "name": "nodechat",
  "dependencies": {
    "react": "0.11.1",
    "backbone": "1.1.2",
    "postal.js": "0.10.3",
    "jquery": "2.1.1",
    "momentjs": "2.8.1"
  }
}

We now run bower install and all the frontend dependencies will be downloaded 
and added to bower_components.

Note that the site has only been tested in Chrome, Safari, and 
Firefox. It might work in IE 11, but I would not hold out much 
hope for previous versions. It is out of the scope of this book to 
discuss cross-browser fixes.

Finishing Socket.IO
We have built many little Socket.IO demonstration applications, and now is  
the time to create the Socket.IO we are going to use. We only need to update the 
authorization and connection functions. Let's get started. Open up index.js  
present in the socket.io folder and make the following changes to the require 
statements at the top:

var io = require('socket.io'),
  cookie = require('cookie'),
  cookieParser = require('cookie-parser'),
  expressSession = require('express-session'),
  ConnectRedis = require('connect-redis')(expressSession),
  redisAdapter = require('socket.io-redis'),
  redis = require('redis'),
  config = require('../config'),
  redisSession = new ConnectRedis({host: config.redisHost, port: 
config.redisPort}),
  redisChat = require('../redis/chat'),
  models = require('../redis/models'),
  log = require('../middleware/log');



Chapter 7

[ 191 ]

Here, we are just pulling in the Redis functions we created and the model  
creation functions.

The next addition is adding a few lines in the authorization function. The socketAuth 
function should look similar to the following code:

var socketAuth = function socketAuth(socket, next){
  var handshakeData = socket.request;
  var parsedCookie = cookie.parse(handshakeData.headers.cookie);
  var sid = cookieParser.signedCookie(parsedCookie['connect.sid'], 
config.secret);

  if (parsedCookie['connect.sid'] === sid)
    return next(new Error('Not Authenticated'));

  redisSession.get(sid, function(err, session){
    if (session.isAuthenticated)
    {
      socket.request.user = session.passport.user;
      socket.request.sid = sid;
      redisChat.addUser(session.passport.user.id, session.passport.
user.displayName, session.passport.user.provider);
      return next();
    }
    else
      return next(new Error('Not Authenticated'));
  });
};

This is the first use of the Redis functions we just created. It will add the current  
user to Redis when Socket.IO is authorized.

We need to add two utility functions that the event listeners will use. They are  
as follows:

var removeFromRoom = function removeFromRoom(socket, room){
  socket.leave(room);
  redisChat.removeUserFromRoom(socket.request.user.id, room);
  socket.broadcast.to(room).emit('RemoveUser',
    models.User(socket.request.user.id, socket.request.user.
displayName, socket.request.user.provider));
};
var removeAllRooms = function removeAllRooms(socket, cb){
  var current = socket.rooms;
  var len = Object.keys(current).length;



Using Backbone and React for DOM Events

[ 192 ]

  var i = 0;
  for(var r in current)
  {
    if (current[r] !== socket.id)
    {
      removeFromRoom(socket, current[r]);
    }
    i++;
    if (i === len) cb();

  }
};

The removeFromRoom function is a utility that will be used by other functions.  
The first step is to remove the socket connection from the room being passed in.  
The next step is to remove them from Redis, which is keeping its own sorted set  
of users in each room. Finally, a message is sent out to all the other sockets in that 
room to remove this user.

The next function, removeAllRooms, will take the current connection out of all the 
rooms it is currently in. This is done through socket.rooms, which has all the rooms 
the current socket connection is in. We then loop over each of the rooms. To leave the 
room, we must pass the room name to socket.leave(). We check to see whether 
the room is the same as the socket ID and we skip removing the connection from that 
room. When the function has gone through all the rooms,  
it will run the callback function, allowing the execution to continue.

This brings us to the main portion of Socket.IO, the connection function. Inside  
the connection function is where we will add all the event listeners. Right now,  
it should be just a basic skeleton of listeners that do nothing. We will change that 
now. The following are the first couple of things to add inside socketConnection.

Let's build our first listener, GetMe, as shown in the following code:

socket.on('GetMe', function(){
    socket.emit('GetMe', models.User(socket.request.user.id, socket.
request.user.displayName, socket.request.user.provider));
  });



Chapter 7

[ 193 ]

It is a simple function, but there are two important things to note. The first thing to 
note is that the Socket.IO event name, GetMe, is also the name of the event that is 
emitted to the client. This will make tracking the events much easier. The client will 
listen for the same event it just sent. If we had different names for each event, GetMe 
coming to the server and Me going to the client, we would have double the events. The 
other thing to note is using the request data. During authorization, socketAuth, we 
grabbed the Passport user object from the session and added it user off the passed-in 
data object. This data object is now accessible off the socket as a handshake. As long as 
this connection is open,  
we can grab this information, which we will do many more times.

Now, let's look at the two chat listeners:

socket.on('GetChat', function(data){
    redisChat.getChat(data.room, function(chats){
      var retArray = [];
      var len = chats.length;
      chats.forEach(function(c){
        try{
          retArray.push(JSON.parse(c));
        }catch(e){
          log.error(e.message);
        }
        len--;
        if (len === 0) socket.emit('GetChat', retArray);
      });
    });
  });

  socket.on('AddChat''AddChat''AddChat', function(chat){
    var newChat = models.Chat(chat.message, chat.room,
      models.User(socket.handshake.user.id, socket.handshake.user.
displayName, socket.handshake.user.provider));
    redisChat.addChat(newChat);
    socket.broadcast.to(chat.room).emit('AddChat', newChat);
    socket.emit('AddChat', newChat);
  });

GetChat is passed in a data object that has the room set as a property. We use our 
new Redis getChat function to return an array of chats. There is one small issue; each 
chat object is serialized, so we parse it back to a JavaScript object. We do this inside an 
asynchronous forEach, eventually sending the chat array back to the client.



Using Backbone and React for DOM Events

[ 194 ]

AddChat creates two new models. One is the chat object and the other is a user 
object that will go into the chat object. These model functions are nice because they 
create a quasi-interface between functions. The called function has a good idea of 
which properties the new object will have. Then, the new chat is added to Redis. 
Lastly, we broadcast the new chat message to everyone in the room. Next up are 
room functions, as shown in the following code:

socket.on('GetRoom', function(){
    redisChat.getRooms(function(rooms){
      var retArray = [];
      var len = rooms.length;
      rooms.forEach(function(r){
        retArray.push(models.Room(r));
        len--;
        if(len === 0) socket.emit('GetRoom', retArray);
      });
    });
  });

  socket.on('AddRoom''AddRoom''AddRoom', function(r){
    var room = r.name;
    removeAllRooms(socket, function(){
      if (room !== '')
      {
        socket.join(room);
        redisChat.addRoom(room);
        socket.broadcast.emit('AddRoom', models.Room(room));
        socket.broadcast.to(room).emit('AddUser',
          models.User(socket.handshake.user.id, socket.handshake.user.
displayName, socket.handshake.user.provider));
        redisChat.addUserToRoom(socket.handshake.user.id, room);
      }
    });
  });

The GetRoom function will get all the rooms that are in Redis, create an array of room 
objects, and return them. AddRoom will run removeAllRooms so the new room will be 
the only room the connection is in. The rest of the function is inside the callback, so 
it will run after all the other rooms have been removed. Now that we have removed 
the connection from all other rooms, we will join the room being added. We will use 
the AddRoom event to create new rooms and also when users join existing rooms.



Chapter 7

[ 195 ]

After joining the room and letting Redis know there is a new room (remember this 
is stored in a sorted set, so it will just update the timestamp), the function will emit 
two events. The first is AddRoom. What will happen is that as and when rooms are 
created, all other users will have the list of rooms automatically updated in real time. 
Next, an event to the room is sent that a user has joined. In much the same way, all 
the users in the room will see the user list dynamically updated when someone joins. 
Lastly, we let Redis know the user is in the room.

The final listener is added to the disconnect event. It is as follows:

socket.on('disconnect', function(){
    removeAllRooms(socket, function(){});
  });

Socket.IO should clean up the rooms the connection is in automatically, but we are 
running this to emit the RemoveUser events. If we did not do this, rooms will have 
users in them that are not actively in the room. The only way they will be removed 
is when the user entered a different room, which is not guaranteed to happen if they 
have been disconnected.

Socket.IO is now ready. We have created all the listeners that will be needed by  
the frontend. It is always a good idea to create some structure when designing a  
real-time interface. It is easy to just keep creating different event names for every 
little event, but this becomes difficult to keep track of. A great comparison would be 
to REST. The representational state transfer (REST) methods have an HTTP verb 
and a resource. We have followed this structure by having a verb and a noun, for 
example, chat. There is GetChat and AddChat. If we were to build out more actions, 
we would use UpdateChat and RemoveChat. This makes our Socket.IO interface 
predictable, which is good. These actions map to the common Create Read Update 
Delete (CRUD) methods. In addition to this, these actions are the same as the REST 
methods. REST is a great way to map these functions to URLs.

Creating React components
React was introduced in the last chapter, along with some simple examples.  
React will perform all of DOM manipulation and DOM event listening.

We will do a quick review of the life cycle events we are going to utilize in various 
components. The first is componentWillMount. This is fired right before the 
component is rendered to the DOM. Next is componentWillUnmount. Use this to 
clean up all the objects we initialized earlier. These first two functions we covered 
will only fire once in the life cycle. The componentDidUpdate function is executed 
after the component renders any changes. This can be executed multiple times.



Using Backbone and React for DOM Events

[ 196 ]

Let's get started. We will be creating this as a static JavaScript file. Create a  
new folder under static named js. Then, create a file named components.js.  
The first component we will create is a room form. We need this so that after a  
user logs in, they can enter the name of a room or join a previously created room. 
Paste the following code in components.js:

var RoomForm = React.createClass({
  componentWillMount: function(){
    this.channel = postal.channel();
    this._boundForceUpdate = this.forceUpdate.bind(this, null);
    this.props.rooms.on('add change remove', this._boundForceUpdate, 
this);
  },
  componentWillUnmount: function() {
      this.props.rooms.off("add change remove", this._
boundForceUpdate);
    },
  joinRoomHandler: function(){
    this.channel.publish('Room.Join', {roomName: this.refs.roomName.
getDOMNode().value});
  },
  render: function(){
    return React.DOM.div({className: 'col-sm-8 col-sm-offset-2'},
      React.DOM.h2(null, 'Please Select a Room'),
      React.DOM.input({type: 'text', placeholder: 'Room Name', 
className: 'form-control', ref: 'roomName'}, null),
      React.DOM.button({className: 'btn btn-primary btn-block top-
margin', onClick: this.joinRoomHandler}, 'Join Room'),
      React.DOM.ul(null,
        this.props.rooms.map(function(r){
          return React.DOM.li({className: 'list-unstyled'}, React.
DOM.a({href: '#room/' + r.get('name')}, r.get('name'))
          );
        })
      )); }
});

There is a lot going on here, but it should be easy to follow if we break it up.

The first thing we need to clear up is how we are handling data. In our examples in 
the last chapter, we used props and state to track when to update. Here, we are 
using a Backbone collection that is passed in as prop named rooms. The component 
then registers listeners on the add, change, and remove events on the rooms 
collection. The function it calls is the component's forceUpdate.



Chapter 7

[ 197 ]

We create a reference to forceUpdate that is bound using the component as the 
context. It is important to keep the reference so we can remove the function when the 
component is being unmounted. If we don't do this, a memory leak would be created. 
This would cause our component to automatically render when any new elements 
are added, changed, or removed from the rooms collection.

We use Postal.js as a global bus, connecting to it so we can later add an event to it.

This brings us to our click handler for this component, joinRoomHandler. It creates 
an event in postal.js named Room.Join with the value from our input text element.

Using a global event bus allows us to decouple the handling of an event with the 
event's creation. Does the RoomForm component care what happens when a room  
is joined? No. This component will just create the event and send it on to whichever 
object cares about it. This makes components reusable, as they are not tied to another 
specific component to work properly.

This brings us to render. Remember React.DOM has every HTML element we will 
need to create. This means this will return a div element that has an h2, text input, 
button, and unsorted list in it. The button has a click listener on it and the unsorted 
list is composed of the rooms from the collection passed in.

This component is demonstrative of all the other components we will build. It sets 
up, tears down, handles any events, and renders. When viewed in that context, this 
is a very simple component.

The following screenshot is of this component rendered:

The next component we will look at is UserView. It is as follows:

var UserView = React.createClass({
  render: function(){
    var name = this.props.useName ? this.props.user.get('user') : 
null;



Using Backbone and React for DOM Events

[ 198 ]

    return React.DOM.div(null,
      React.DOM.img({src: this.props.user.image(this.props.size), 
className: 'img-circle', title: this.props.user.get('user')}),
      name
    )}
});

This view only renders. It does require two properties, though. It will need size  
and a Backbone user model (we will get to the models shortly). This view also has an 
optional property, useName. If it is true, then the view will add the name of the user, 
and if it is false or not passed in, it will not add the name. This demonstrates how 
to render a view differently based on the state or properties. Using an if statement 
in the middle of a React.DOM element is not allowed, so we have to create a holding 
variable and set it before we get to the element. The following screenshot is how this 
view will look:

React components are reusable and can be composed. Let's do this with the UserView 
and put it into UserList:

var UserList = React.createClass({
  render: function(){
    var me = this.props.me;
    return React.DOM.ul({className: 'list-unstyled'},
      this.props.collection.map(function(user){
        if (me.id !== user.get('id'))
          return React.DOM.li(null, UserView({user: user, size: 50, 
useName: true}))
      }) ) }
});

This component uses two properties to render correctly: me and collection. 
The me property should be the user model of the currently logged in user. If we 
are in a room, we do not need to render our name in the list. The other property, 
collection, is a Backbone collection of user models. Backbone collections have  
the map function available, and we use this to loop over each user in the collection.



Chapter 7

[ 199 ]

The next component that uses UserView is ChatMessage. Let's build this next:

var ChatMessage = React.createClass({
  render: function(){
    var pull;
    if (this.props.me.id === this.props.chat.get('user').id)
      pull = 'pull-right';
    else
      pull = 'pull-left';

    var timeAgo = moment(this.props.chat.get('ts')).fromNow();
    return React.DOM.li(null,
      React.DOM.div({className: 'bg-primary chat-message ' + pull}, 
this.props.chat.get('message')),
      React.DOM.div({className: 'clearfix'}, null),
      React.DOM.div({className: pull},
        UserView({user: this.props.chat.get('user'), size: 20, 
useName: true}), React.DOM.small(null, timeAgo)),
      React.DOM.div({className: 'clearfix'}, null)
    )
  }
});

This component has a little more complex render logic. First of all, it should have two 
properties, me and chat. We already know what me should be, and chat will be a 
Backbone chat object that has a message, timestamp, and the user that created it. The 
first thing the component needs to do is determine whether we created the message. 
If it is us, float this to the right, and if not, float it to the left. Next, we use Moment.js to 
give us a rough estimate of when the chat was added. We can render the elements now 
that we have our pull and timeAgo strings prepared. I will admit that building nested 
elements can become cumbersome in React, like in this component. We want to return 
a list item that has four different divs in it. The first div is the message, next is a float 
clear div, then UserView and how long ago, and finally, a last float clear div.

The following is a screenshot of a chat message that was just added:



Using Backbone and React for DOM Events

[ 200 ]

The ChatMessage component leads us right into the next component, ChatList:

var ChatList = React.createClass({
  render: function(){
    var me = this.props.me;
    return React.DOM.ul({className: 'list-unstyled'},
      this.props.chats.map(function(chat){
        return  ChatMessage({chat: chat, me: me});
      }))}
});

There is not much new going on here. This is almost exactly the same as UserList. 
The component returns an unordered list of another component. The component  
will look similar to the following screenshot when rendered:

How do we add a new chat message? With ChatForm, of course! The following is the 
code for that component:

var ChatForm = React.createClass({
  componentWillMount: function(){
    this.channel = postal.channel();
  },
  formSubmit: function(e){
    e.preventDefault();
    var message = this.refs.message.getDOMNode().value;
    if (message !== '')
    {
      this.channel.publish('Chat.Add', {message: message});
      this.refs.message.getDOMNode().value = '';
      this.refs.message.getDOMNode().placeholder = '';
    }else{
      this.refs.message.getDOMNode().placeholder = 'Please enter a 
message';
    }
  },
  render: function(){



Chapter 7

[ 201 ]

    return React.DOM.div({className: "row"},
      React.DOM.form({onSubmit: this.formSubmit},
        React.DOM.div({className: "col-sm-2"},
          UserView({user: this.props.me, size: 50, useName: true})),
        React.DOM.div({className: "col-sm-8"},
          React.DOM.input({type: "text", className: "form-control", 
ref: "message"}, null)),
        React.DOM.div({className: "col-sm-2"},
          React.DOM.button({className: "btn btn-primary"}, 'Send'))
      ))}
});

This form works much like RoomForm. We will capture the submit event and pass the 
data through a postal.js channel. Initially, we have to stop the form from refreshing 
the page, so we use e.preventDefault(). Then, we check the value of the text 
input. If it is a blank string, we do not send a message through the channel, and we 
change the placeholder to let the user know they need to enter something. This is a 
nice, subtle alert that is not very distracting. If there is something entered, we send a 
message through postal.js. Finally, we blank out the text input and the placeholder. 
We have to blank out the placeholder; otherwise, anytime the input was blank,  
the place holder message would display, and we only want it to show when the  
user tries to submit a blank message.

The render function is pretty straightforward. It returns a div with a form. It also 
leverages UserView to display the current user. The following screenshot is the look 
of the form rendered:

We are now at our final component. This component will tie all the other chat 
components together. It is as follows:

var ChatView = React.createClass({
  componentWillMount: function(){
    var channel = postal.channel();
    this._boundForceUpdate = this.forceUpdate.bind(this, null);
    this.props.chats.on('add change remove', this._boundForceUpdate, 
this);
    this.props.users.on('add change remove', this._boundForceUpdate, 
this);
    this.chatSub = channel.subscribe('Chat.Add', this.chatAdd);
  },
  componentWillUnmount: function() {



Using Backbone and React for DOM Events

[ 202 ]

    this.props.chats.off("add change remove", this._boundForceUpdate);
    this.props.users.off("add change remove", this._boundForceUpdate);
    this.chatSub.unsubscribe();
  },
  componentDidUpdate: function(){
    var chatList = this.refs.chatList.getDOMNode();
    chatList.scrollTop = chatList.scrollHeight;
  },
  chatAdd: function(data){
    this.props.chats.sync('create', {message: data.message, room: 
this.props.room});
  },
  render: function(){
    return React.DOM.div({className: "row"},
      React.DOM.div({className: 'row'},
        React.DOM.div({className: "col-sm-2"}, UserList({collection: 
this.props.users, me: this.props.me}) ),
        React.DOM.div({className: "col-sm-8 chat-list", ref: 
'chatList'},
          ChatList({chats: this.props.chats, me: this.props.me})
        )
      ),
      ChatForm({me: this.props.me})
    );
  }
});

First up is componentWillMount. This is similar to RoomForm, in that it connects to 
the postal channel and adds listeners to the Backbone collections passed in. The only 
difference is that in this component, it subscribes to the Chat.Add messages. These 
are the messages that will be sent from the ChatForm.

Next is componentWillUnmount. Here, we are just unregistering the collection 
listeners and unsubscribing from the postal.js subscription.

The componentDidUpdate function runs every time the component renders. In this 
function, we just make sure the div holding the list of chats is always scrolled  
to the bottom as messages are added.

The chatAdd function is executed from the postal subscription to Chat.Add. It will 
tell the chat Backbone collection to add a new message. As we are listening for any 
add events on this collection, it will re-render this component.



Chapter 7

[ 203 ]

Finally, we are at the render function. There is not really much here. We have 
already built almost all the elements needed in other components. We render 
UserList, ChatList, and ChatForm, passing in the required properties.

React summary
These components should demonstrate how to build a user interface with React. 
There is one more idea I would like to highlight before moving on. If you break down 
the components, you will notice there are two main ones, RoomForm and ChatView. 
They are the only two components that listen for changes off of Backbone collections. 
The Backbone collections are standing in as React's state, as these two components 
are listening for changes instead of using React's built-in state. When there is a state 
change, the components pass properties down to the subcomponents. This makes each 
component reusable and easy to use. For example, UserView does not care whether 
the user is the current user or a user in the room. ChatList also does not care whether 
a message was added or which room it is in. Its only function is to render an array of 
chats that was passed to it.

Backbone models
We have just built all the views and a few of them referenced models and collections, 
which is why we will create all the required objects right now. The first thing we 
need to do is create a file named models.js under static/js/. This will be the file 
that holds all the definitions for our models, collections, and router.

Syncing the models with Socket.IO
Backbone models and collections are built to work within a REST framework. 
Each Backbone model and collection has a sync method that maps the four CRUD 
operations (Create, Read, Update, and Delete) to a URL that we would pass in. Our 
application does not use REST to transfer data from the server to client; it uses Socket.
IO. There is no built-in adapter, so we must roll our own. We will break down this 
object into a couple of pieces. The following code is the first piece:

var SocketListener = function SocketListener(noun, collection, socket)
{
  var addModels = function addModels(models){
      collection.add(collection.parse(models));
  };
  var removeModels = function removeModels(models){



Using Backbone and React for DOM Events

[ 204 ]

    collection.remove(collection.parse(models));
  };

  socket.on('Add' + noun, addModels);
  socket.on('Get' + noun, addModels);
  socket.on('Remove' + noun, removeModels);

  var destroy = function destroy(){
    socket.removeListener('Add' + noun, addModels);
    socket.removeListener('Get' + noun, addModels);
    socket.removeListener('Remove' + noun, removeModels);
  };
  return {destroy: destroy};
};

In SocketListener, we will need to pass in a noun, a collection, and a socket instance. 
The noun will be what we want to sync, for example, chat. The function needs a 
reference to the collection because we are syncing asynchronously. When syncing 
through a REST API, all the sync operations are request-based. The collection asks for 
new models and the server responds with new models. This is different from using 
Socket.IO. We will set up listeners and then use these functions to add or remove 
models from the collection. Each function is simple. It first parses the model and then 
the function either adds it or removes it from the collection.

This last step will trigger our views to render. Our components have listeners for any 
add, change, or remove events on the collection. After these functions run, an event 
will be emitted that the component will receive.

Next, we will create the listeners. Here, we can see why we have a noun as a 
parameter. If the noun was Chat, we would now have listeners for AddChat,  
GetChat, and RemoveChat. These listeners will call our add and remove functions.

The final function is destroy. This function just removes all the listeners from 
Socket.IO. An object is returned with a reference to the destroy function, so it  
can be called.

SocketListener listens for Socket.IO events, but what will trigger the events?  
This responsibility comes down to SocketSync. SocketSync will be used in place  
of Backbone's default sync method. The following code is SocketSync:

var SocketSync = function SocketSync(method, model, options){
  var socket = Backbone.socket;

  var create = function create(model, options, noun){



Chapter 7

[ 205 ]

    socket.emit('Add' + noun, model);
  };

  var read = function read(model, options, noun){
    socket.emit('Get' + noun, options);
  };

  switch(method){
    case 'create':
      create(model, options, this.noun);
      break;
    case 'read':
      read(model, options, this.noun);
      break;
  }
};

The function definition for Backbone sync takes method, model, and options, 
which are the methods that will be used to map directly to CRUD. As none of our 
collections will update or delete, we only have to implement create and read. The 
create and read functions are very simple. They emit Socket.IO events. Using the 
example of Chat, GetChat will be sent to the server. The server will respond with an 
array of chat messages and SocketListener will listen for the response and add all 
the chats to the collection.

There are two extensions of Backbone in this function. The first is Backbone.socket. 
This is not set by default. We will have to create this property and set it to our  
Socket.IO connection. The other is the noun property of the collection. Again,  
this is not built into Backbone. We will manually have to add this.

Creating the model
We can now define our models, or in this case, model. We are not using a lot of 
different models, as plain JavaScript objects will work for rooms. Let's create the  
User model, as shown in the following code:

var User = Backbone.Model.extend({
  image: function(size){
    switch(this.get('type')){
      case 'local':
        return this.gravatar(size);
        break;
      case 'facebook':



Using Backbone and React for DOM Events

[ 206 ]

        return this.facebook(size);
        break;
      case 'google':
        return this.gravatar(size);
        break;
    }
  },
  gravatar: function gravatar(size){
    return 'http://www.gravatar.com/avatar/' + md5(this.get('id')) + 
'?d=retro&s=' + size;
  },
  facebook: function facebook(size){
    return 'http://graph.facebook.com/' + this.get('id') + '/
picture/?height=' + size;
  }
});

The User model needs to return a URL of an image from the image function.  
We do a check to see what type of user they are. If it is Facebook, return Facebook's 
photo, and if it is anything else, use Gravatar. This function is what the UserView 
component used to create an img element.

We can now move on to creating the collections. This is where most of our Backbone 
interactions will be.

This code requires the MD5 library from http://www.myersdaily.
org/joseph/javascript/md5-text.html. You can also use the 
Bower package, Cryptojs.

Creating collections
We are not going to add a lot extra functionality to our collections. We want to 
extend Backbone Collection so that we get all the Backbone syncing and event 
triggering. Let's create the first two collections:

var UserCollection = Backbone.Collection.extend({model: User});
var RoomsCollection = Backbone.Collection.extend();

The model option passed in when defining a collection will make sure that plain 
objects passed in will be converted to this type.



Chapter 7

[ 207 ]

RoomsCollection does not need this because the room objects are very simple.  
All we need from a room is its name.

There is one more collection we must define, ChatCollection. The following code is 
that collection:

var ChatCollection = Backbone.Collection.extend({
  parse: function(data){
    if (Array.isArray(data)){
      return _.map(data, function(d){
        d.user = new User(d.user);
        return d;
      });
    }else {
      data.user = new User(data.user);
      return data;
    } }
});

The ChatCollection, which is a Backbone Collection object, has something our 
other models did not have, a nested model. The user property returned from the 
server is a basic JavaScript object and we want it to be a User model. Adding an 
object to a collection will implicitly turn it into a Backbone model, but the collection 
cannot know how every property will map to the model definition. To do this,  
we use a parse method.

The parse method will first check whether the object coming in is an array. This 
happens when we initially enter a room. The server will send back an array of all  
the messages for that room. If so, we use the map underscore method to return an 
array of objects where the user property is a User model. Then, if the object is not  
an array, we just change the user property and return that.

This is all the Backbone models we are going to define. We have only created one 
model and three collections. We do not need very complex models on the frontend 
because we really only want the collections for the add/change events that they fire 
off. Most of the logic we needed was connecting Backbone to Socket.IO. What should 
happen is that SocketListener will listen for any events from the server, parse 
the response, add it to the collection, and the collection will emit an event that the 
component is listening for.



Using Backbone and React for DOM Events

[ 208 ]

The Backbone router
Backbone has one more feature we will use. This is routing. A Backbone router  
will listen for hash changes in the URL and this will trigger events. The router can  
be configured to match certain patterns and even pull out parameters. Let's create  
the router, as shown in the following code:

var Router = Backbone.Router.extend({
  routes: {
    '': 'RoomSelection',
    'room/:room' : 'JoinRoom',
    '*default' : 'Default'
  }
});

Routers are built the same way as other Backbone objects; we extend the base 
router. The Router object really only needs a routes object that has patterns as the 
properties and the event name as the value. Routers allow the back button and deep 
linking to work in a single-page JavaScript application, just like the chat page we are 
building. For example, we could send out a link that was /chat#room/test and the 
application would start at the JoinRoom function instead of RoomSelection.

In this router, we only need two routes along with a catch-all. The first route will 
match when there is either no hash in the URL or a just the hash (/chat#). The next 
route will match room/ and pass in whatever is after that as a parameter. Finally, the 
default route will match any and everything. Routes are processed in order, so this 
will catch all other routes.

Putting it all together
We have to create another file to initialize all our collections and render our  
views. Create chat.js along with the other JavaScript files present at static/js/. 
This will hold all the code we are going to cover next. The following code is the  
start of the file:

var PacktChat = window.PacktChat || {};
PacktChat.Chat = function(el){
  var $root = $('#' + el),
  socket = io.connect("http://localhost:3000/packtchat"),
  me = null,
  connected = false;
  //to be initialized
  var router,



Chapter 7

[ 209 ]

    roomsCollection,
    userCollection,
    chatCollection;

  var GetMe = function GetMe(user){
    me = new User(user);
    Backbone.history.stop();
    startChat(me);
    Backbone.history.start();
    connected = true;
  };

  socket.on('connect', function(){
    if (!connected) socket.emit('GetMe');
  });
  socket.on('GetMe', GetMe);

The first thing we are going to do is create a namespace we can use called PacktChat. 
We get a reference to this by checking whether it is already defined on the window 
or creating a new object. We are only going to add one property, but if we had 
multiple things to add, we could use this statement before each one. The next step is 
to create our function, which will set everything up for our chat page.

Inside the function, we start setting up variables we will need. The first is the root 
element we will render from. It needs an element's ID that will be passed into 
PacktChat.Chat(). We connect to Socket.IO and create some variables for later.

The next function defined is GetMe. This will run from the 'GetMe' Socket.IO  
event. First, it will set me to a User model. Then, it will stop the Backbone history, 
which is used with tracking hash changes and the router. This will make sure a route 
is not executed before the data is loaded. Next, it will run startChat. Restarting 
Backbone's history is next followed by setting connected to true. This function is just 
making sure we have a reference to the current user (me) before we start the chat up.

Next is Socket.IO. This just registers the listeners needed.

We can now create the main function that will initialize everything, startChat.  
The following code is the first part of the function:

var startChat = function startThis(){
    router = new Router();

    Backbone.socket = socket;
    Backbone.sync = SocketSync;



Using Backbone and React for DOM Events

[ 210 ]

    roomsCollection = new RoomsCollection();
    roomsCollection.noun = 'Room';
    userCollection = new UserCollection();
    userCollection.noun = 'User';
    chatCollection = new ChatCollection();
    chatCollection.noun = 'Chat';

    var roomsSync = new SocketListener('Room', roomsCollection, 
socket);
    var userSync = new SocketListener('User', userCollection, socket);
    var chatSync = new SocketListener('Chat', chatCollection, socket);

    roomsCollection.fetch();

    var channel = postal.channel();
    var roomJoin = channel.subscribe('Room.Join', roomFormEvent);

This section sets up all the collections and objects we will need to function. First, we 
create Router, which we just defined. Next, we prepare Backbone by adding our 
socket reference and sync function. Then, we create each collection we will need, along 
with setting the noun for each. Then, we create SocketListener for each collection 
and noun. Next, we run fetch off the room collection because we will most likely be 
rendering this view first. Fetch will use our sync function and the read method. This 
will create a Socket.IO event of 'GetRoom'. Finally, we set up a postal channel to listen 
for the 'Room.Join' event.

This brings us to the functions we need to define. The following are the four 
functions we need to add:

function roomFormEvent(message){
      roomsCollection.add({name: message.roomName, id: message.
roomName});
      router.navigate('room/' + message.roomName, {trigger: true});
    };

    function RoomSelection(){
      roomsCollection.sync('create', {name: 'lobby', id: 'lobby'});
      React.unmountComponentAtNode($root[0]);
      React.renderComponent(RoomForm({rooms: roomsCollection}), 
$root[0]);
    }

    function JoinRoom(room){
      userCollection.reset();
      chatCollection.reset();



Chapter 7

[ 211 ]

      roomsCollection.sync('create', {name: room, id: room});
      chatCollection.fetch({room: room});
      userCollection.fetch({room: room});
      React.unmountComponentAtNode($root[0]);
      React.renderComponent(ChatView({users: userCollection, chats: 
chatCollection, room: room, me: me}), $root[0]);
    };

    function DefaultRoute(){
      router.navigate('', {trigger: true});
    };

The first function, roomFormEvent, is wired up to the 'Room.Join' postal event.  
This will take the room name passed and add it to roomsCollection. Then, it will 
use the router to fire off the function that is defined with joining a room, by using  
the navigate function and {trigger: true}. If the trigger was not sent with the 
method, the router would not execute the function for the route.

Next is RoomSelection. This function puts the user in the room named lobby  
(or creates it the room if it doesn't exist). Then, it will unmount any component 
rendered at the root element and render RoomForm there.

JoinRoom is very similar to this. First, we let the rooms collection know we  
have entered the room. The create command will fire off a Socket.IO event, telling 
the server to update the rooms sorted set and add the current user to that room.  
The next thing the function does is reset chatCollection and userCollection. 
Reset will remove all the current models in the collection. We need to do this, as 
each room will have different chat messages and users in them. After resetting 
each collection, we then fetch the messages and users for the room we just entered. 
Finally, we unmount the component at the root and render ChatView there.

The last function, DefaultRoute, will collect any other hash that does not match the 
others and send the route to room selection.

The following is that last bit of code for our PacktChat.Chat function:

router.on('route:RoomSelection', RoomSelection);
    router.on('route:JoinRoom', JoinRoom);
    router.on('route:Default', DefaultRoute);
  };
};

var pc = new PacktChat.Chat('react-root');

We need to listen for each router event. The event will be prepended with 'route:'.



Using Backbone and React for DOM Events

[ 212 ]

Finally, we create a new object, PacktChat.Chat, passing in the name of the ID  
to render all the components from it. This will initialize all the other objects and 
listeners for us.

We now have built all our frontend JavaScript. We could have modularized this 
code more, but doing so would have been outside of the size and scope of this book. 
Another reason is that we only have one page that uses JavaScript, so it could have 
been considered overkill. If we were to modularize the code, we would break out 
each component, model/collection, and page integration object (PacktChat.Chat) 
into their own files. This would allow us to load only what we needed for each page 
and not have to copy and paste code.

At this point, though, our site is not ready. We have just a few other changes to be 
made to a couple files.

Updating CSS and the layout
We need to add two CSS rules to style.css, present in static/css/. Append the 
following to the file:

.chat-message {padding: 5px; margin: 5px 0;}

.chat-list {max-height: 500px; overflow: auto;}

These just make the chat page look better.

We will now need to add our bower_components directory to be served in Express. 
Open up app.js and add the following line after the current static line:

app.use(express.static(__dirname + '/static'));
app.use(express.static(__dirname + '/bower_components'));

When there are multiple references to static, Express will go through each directory 
in order to find the file.

Next, we need to add all our new JavaScript files to the layout and chat page.  
First, open layout.ejs, present in the views/ folder, and make sure the following  
list of JavaScript files is in the head:

<script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/
socket.io/0.9.16/socket.io.min.js"></script>
<script type="text/javascript" src="/jquery/dist/jquery.js"></script>
<script type="text/javascript" src="/underscore/underscore.js"></
script>
<script type="text/javascript" src="/backbone/backbone.js"></script>
<script type="text/javascript" src="/react/react.js"></script>



Chapter 7

[ 213 ]

<script type="text/javascript" src="/postal.js/lib/postal.js"></
script>
<script type="text/javascript" src="/momentjs/moment.js"></script>
<script type="text/javascript" src="/js/md5.js"></script>

This loads all our required libraries. We load them in the head because we will need 
them loaded before loading any application page-specific scripts.

Open up chat.ejs from the views/ folder and make sure it looks like this in  
its entirety:

<div id='react-root'></div>
<script type="text/javascript" src="/js/models.js"></script>
<script type="text/javascript" src="/js/components.js"></script>
<script type="text/javascript" src="/js/chat.js"></script>

Here, we just load everything we need to run our chat page.

Based on the scope of this book, some things have been 
simplified. Here, we have simplified loading the required libraries 
by putting them into the head and loading the application files by 
loading them on the page.

Adding a new worker
We have one small problem at this point. As time goes on, more and more rooms 
will be created and more messages will accumulate. Eventually, we will run Redis 
out of memory. We are not being good Redis citizens. We need to remove our Redis 
data and will do this with a new worker.

Create a file named chat.js under the workers directory. Start the function with the 
following code:

var client = require('../redis').client,
  log = require('../middleware/log');

var delta = 60 * 60 * 1000 * 3; //10800000
var interval = 60 * 60 * 1000 * 2; //7200000



Using Backbone and React for DOM Events

[ 214 ]

We include our Redis client and logger. Then, we set up our delta and interval.  
We will remove any room, chat, or user that has been inactive or was created  
3 hours ago (10,800,000 milliseconds ago). We will do this check every 2 hours  
(7,200,000 milliseconds). If we wanted, we could even make these values part  
of the config, so it could be configurable on each launch. Now, let's create the  
room check, as shown in the following code:

function RemoveRooms(){
  log.debug({message: 'Removing Rooms', ts: Date.now()});
  client.zrangebyscore('rooms', '-inf', ((new Date).getTime() - 
delta), function(err, rooms){
    if (err !== null) log.error({message: 'Error in Remove Rooms', 
err: err, ts: Date.now()});
    else {
      rooms.forEach(function (room) {
client.multi()
        .zrem('rooms', room)
        .del('rooms:' + room + ':chats')
        .exec();      });
}});
};

The first thing the function does is log a message. This is important as it runs in  
the background and we will never know whether it is working or not. Next, we run 
zrangebyscore, which will return only the elements that are between our values. 
We then loop over these values and remove the element from the rooms sorted set 
and the rooms:roomname:chats sorted set. At this point, the room does not exist 
as far as our application is concerned. Also, it will log any errors from the Redis 
command. We can run this like it is synchronous because we are not returning 
anything. The loop will eventually run our code. Next up is cleaning up the chat 
messages, as shown in the following code:

function CleanUpChatsFromRoom(){
  log.debug({message: 'Cleaning Up Chats', ts: Date.now()});
  client.zrange('rooms', 0, -1, function(err, rooms){
    rooms.forEach(function(room){
      client.zremrangebyscore('rooms:' + room + ':chats', '-inf', 
((new Date).getTime() - delta));
    });
  });
};



Chapter 7

[ 215 ]

We first get a list of all the rooms. We then check each room's chat sorted set for  
any messages over 3 hours and remove the chat. This function does not have the 
error check and logging in it for space reasons, but it can be added easily.  
The following is a user check:

function CleanUpUsers(){
  log.debug({message: 'Cleaning Up Users', ts: Date.now()});
  client.zrangebyscore('users', '-inf', ((new Date).getTime() - 
delta), function(err, users){
    users.forEach(function(user){
      client.multi()
      .zrem('users', user)
      .del('user:' + user)
      .del('user:' + user + ':room')
      .exec();    });
  });
};

The CleanUpUsers function will delete any user that has been inactive for 3 hours.  
It will step through each user and remove them from the users sorted set and delete 
hash and user room keys. This will delete all the user's keys.

The following code shows how the CleanUp function will be executed every  
two hours by setInterval:

function CleanUp() {
  RemoveRooms();
  CleanUpChatsFromRoom();
  CleanUpUsers();
};

setInterval(CleanUp, interval);
CleanUp();

The CleanUp function kicks off all the other functions. We set it to run in setInterval, 
executing every 2 hours. The last thing we do is run it immediately, so the first run is 
not 2 hours from now.



Using Backbone and React for DOM Events

[ 216 ]

Trying out our application
We should now be able to use our application. Load it up and browse to  
http://localhost:3000. Log in to the site, and we should be redirected to  
the chat page. We should see our room form component. We can add a room  
here or we can load it up in another tab or browser and create a room there,  
seeing it appear on the other window in real time.

We can then join one of the rooms in both windows and chat with ourselves.  
Each chat message should appear in real time.

Summary
We have used React and Backbone to create a user interface. All our React 
components are reusable and easily extended. For example, we can easily 
implement a profile page that will display more information about a user  
when you click on their name. A few lines in UserView and a route in the  
Router and we are literally almost done.

Backbone models were hacked up a little to get them to work with Socket.IO.  
There are libraries to do this, but I wanted to walk through what had to be  
done. We are not using the full capacity of Backbone models, so this could  
be something that can be improved with more time.

We have pushed a lot of code. At this point in our journey, we will have built  
an entire working Node.js application from the ground up. We have taken a  
few detours to investigate different features of libraries. Some other things have  
been passed over for brevity (full logging and testing come quickly to mind).

In the next chapter, we will look at some best practices that will make our  
application a little bit more production-ready.



JavaScript Best Practices for 
Application Development

Some readers may be getting nervous at this point in the book. I don't blame them. 
This is because there are still some very large, glaring issues with our code base. The 
question, "Will our application work anywhere but in localhost?" should encapsulate 
many of the issues. The answer is no. This is a problem, and this chapter is the 
solution. We are going to cover how to build a reproducible and scriptable build 
system that runs in one step. All the adjectives in the last sentence are important.  
We have to be able to run one command which will do exactly what we need to build 
our application. If we start introducing manual build steps, we risk introducing bugs 
into building and deploying. This will waste time and stress us out. Here is what we 
will cover in this chapter:

• Setting up tests
• Extracting the differences between environments
• Setting up Grunt
• Preprocessing our code
• Linting our code
• Concatenating and minifying our code
• Static files and CDNs



JavaScript Best Practices for Application Development

[ 218 ]

Node package versions
We have some new packages to install. All the packages are related to Grunt,  
which is a JavaScript automated task runner that is based on Node.js. We will  
define tasks and Grunt will carry them out. We will use the following versions:

• grunt-cli: 0.1.13
• grunt-contrib-clean: 0.5.0
• grunt-contrib-concat: 0.4.0
• grunt-contrib-jshint: 0.8.0
• grunt-contrib-uglify: 0.4.0
• grunt-preprocess: 4.0.0
• grunt-contrib-nodeunit: 0.4.0
• istanbul: 0.3.0
• nodeunit: 0.9.0

Add these dependencies to package.json. This time we will create a new property 
named devDependencies. It is an object just like dependencies that is meant for 
development or testing. In package.json, devDependencies should look as follows:

"devDependencies": {
    "grunt-cli": "0.1.13",
    "grunt-contrib-clean": "0.5.0",
    "grunt-contrib-concat": "0.4.0",
    "grunt-contrib-jshint": "0.8.0",
    "grunt-contrib-nodeunit": "0.4.0",
    "grunt-contrib-uglify": "0.4.0",
    "grunt-preprocess": "4.0.0",
    "istanbul": "0.3.0",
    "nodeunit": "0.9.0"
  },

We can then run npm install to install all our packages.

Setting up tests
So far, we have not done any testing. This is bad and not a best practice. We will 
rectify this here. We will only build a few tests, but it will demonstrate how to create 
tests. Create a directory named tests and create the routes.js file. 



Chapter 8

[ 219 ]

Open the file and paste the following code:

var routes = require('../routes'),
  config = require('../config'),
  nodeunit = require('nodeunit'),
  Request = require('./request'),
  Response = require('./response');

exports.indexRouteTest = function(test){
  var res = new Response();
  test.equal(res.view, undefined);
  routes.index({}, res);
  test.equal(res.view, 'index');
  test.equal(res.viewData.title, 'Index');
  test.done();
};

Here, we are testing the index route. It should call render on the response object 
passing in index as the view and an object that has title set to Index. To test this, 
we are not going to set up an entire Node.js and Express stack. We are just going 
to mock up what we need. We need a response object, so we create one with a fake 
render function that will store what was passed into it. We will need to create the 
response object now before we run the test. Create a file named response.js under 
the tests directory and add the following code:

module.exports = function Response(){
  return {
    url: '',
    locals: {},
    redirect: function(redirectUrl){this.url = redirectUrl;},
    render: function(view, viewData){
      this.view = view;
      this.viewData = viewData;
    },
    redirect: function(url){this.url = url;}
  }
};

This is just a function that returns an object that has mocked up all the properties  
and functions our tests are expecting. In order to mock up an object, we look at 
the code, see what is going to be executed, and then create an object that has those 
functions. In addition to this, we need a way to test whether the function was 
executed correctly. 



JavaScript Best Practices for Application Development

[ 220 ]

In our example of render, we create properties of view and viewData that we can 
then check to see whether the correct string and object were passed. We will use this 
object in any test that needs a request. We will now create a file named request.js 
in the same directory and add the following code:

module.exports = function Request(){
  return {
    logoutCalled: false,
    flashCalled: false,
    body: {},
    session: {isAuthenticated: false,passport: {}},
    logout: function(){this.logoutCalled = true},
    flash: function(f, m){
      this.flashName = f;
      this.flashMessage = m;
      this.flashCalled = true;
      return f;
    },
    csrfToken: function(){return 'csrf';}
  };
}

This is mocked up in a similar fashion to respond. We need something to be executed 
and a way of telling when that something was executed.

The actual test is an exported function that has a test object passed in. We run  
our asserts on the test object and when completed, test.done(). Here, we call  
the index route with a blank object as the request and our response object. We  
then check what it was called with. We can see whether this passes by running  
it from the command line:

$node_modules/.bin/nodeunit ./tests/routes.js

If nodeunit is installed locally, we can call it from the local bin folder.  
This should output the next screenshot:



Chapter 8

[ 221 ]

Next, create a file named tests/middleware.js. Add the following code to it:

var util = require('../middleware/utilities'),
  config = require('../config'),
  nodeunit = require('nodeunit'),
  Request = require('./request'),
  Response = require('./response');

exports.requireAuthTest = nodeunit.testCase({
  setUp: function(cb){
    this.req = new Request();
    this.res = new Response();
    this.nextExecuted = false;
    this.next = function(){this.nextExecuted = true}.bind(this);
    cb();
  },
  'Not Authenticated': function(test){
    this.req.session.isAuthenticated = false;
    util.requireAuthentication(this.req, this.res, this.next);
    test.equal(this.res.url, config.routes.login);
    test.equal(this.nextExecuted, false);
    test.done();
  },
  'Authenticated': function(test){
    this.req.session.isAuthenticated = true;
    test.equal(this.nextExecuted, false);
    util.requireAuthentication(this.req, this.res, this.next);
    test.equal(this.res.url, '');
    test.equal(this.nextExecuted, true);
    test.done();
  }
});

This one is a little more complex. We need to define both the request and response 
for the next tests. We then use nodeunit.testCase to build a group of tests. This 
group of tests will test the requireAuthentication middleware. Before each test is 
run, the setUp function executes, which will create the objects we need for each test. 
This is done before each new test.

The first test simulates someone that is not logged in. It makes sure this.res.
redirect is executed with the config login URL. Then, it checks to make sure 
next() has not been executed. The other test does the opposite. It checks the redirect 
URL and whether next() has been executed. This test can be executed with the 
following command:

$node_modules/.bin/nodeunit ./tests/middleware.js 



JavaScript Best Practices for Application Development

[ 222 ]

We should have tests for every function we create. This will include all our 
middleware, routes, Redis, passport auth functions, and so on. We need not test 
Express' static middleware. If we are only executing a libraries function, then we do 
not need to test, but if we add to them, a great example being Passport, we will need 
to test them. Most of the time, we will avoid creating an entire Node.js server to test 
one function. This is where JavaScript's dynamic nature is useful. We can just mock 
up any object and property that we know the function will need. This leads to a great 
question, "How do we know we have tested everything?"

In the code that accompanies this book, I have added more tests.  
It would be very tedious to list out all the different tests here.

Using Istanbul for code coverage
Code coverage is a tool that allows developers to know how much of their code 
is tested. It will watch and track each line that is executed. It will then report a 
percentage of total lines that were executed during the tests.

Istanbul should already be installed. We tell Istanbul to run our tests through 
nodeunit and it will do the rest. If our tests are all in the tests folder, we will  
run the following command:

./node_modules/.bin/istanbul cover node_modules/nodeunit/bin/nodeunit -- 
tests/

This will start the tests exactly like running nodeunit by itself. The only difference  
is that we get a little summary of the coverage at the end. This is shown in the  
next screenshot:

The preceding screenshot displays a useful breakdown of how much of the code  
is tested. There is one caveat here, though; it is only for the files that have been 
tested. Some code coverage tools will look at an entire directory and include 
everything, but Istanbul is only using a few files. Another way to fix this is to  
create a test for everything!



Chapter 8

[ 223 ]

In addition to a summary, Istanbul creates a coverage directory that includes an 
HTML page with the breakdown of what lines have been tested. In the root of the 
project, navigate to coverage/lcov-report/index.html. Open this in any browser 
and we should see a page similar to the next screenshot:

We can click on each folder, which will then list out the files that have been tested. 
Each file has detailed information about which line has been executed and how 
many times. This is shown in the next screenshot:

Green means executed, red is not executed, and yellow is a function that has not  
been tested. Once we are using code coverage, identifying our next test becomes 
easy. We find a file, require it in a test, look at all the lines highlighted in red in the 
file, and slowly create tests until all the red highlights are gone.

Nodeunit is great for testing Node.js. We also want to test frontend 
code, as well. Qunit (http://qunitjs.com/) is a great choice.

http://qunitjs.com/


JavaScript Best Practices for Application Development

[ 224 ]

Setting up different environments
We will continue with our opening problem. Our application is only accessible 
from one computer—our own. To fix this, we need to find all the differences that 
would exist between environments and abstract them out. We need this process to 
be automated. We cannot go through and find all references to localhost and change 
them out every time we want to deploy. We will follow the advice given by Twelve 
Factor App (http://12factor.net/).

Twelve Factor App
Twelve Factor App was written by the people behind Heroku (https://www.
heroku.com/). Heroku is a Platform as a Service (Paas), which means they can 
easily host and scale out application with very little modification to code. This ability 
is exactly what we want for this application. Twelve Factor App contains many best 
practices learned by the people at Heroku the hard way, through experience.

The main best practice we want from here is configuration. Configurations will 
be very different between environments. For example, in development, Redis, 
RabbitMQ, and Socket.io all connect through localhost. In production, these services 
will be on at least two servers, if not three. We want to collect every config setting 
that will change and store them in environment variables. This is recommended in 
Twelve Factor App.

Storing config settings in the environment allows us to easily have many different 
deploys. The most important part of this is that the code base will be exactly the 
same between each deploy. We will not have to manually change files between them.

Fixing the config file
The first place we can easily identify settings is the config file. Open up config.js 
and modify the file to look like this:

var config = {
  port: process.env.PORT,
  secret: process.env.SECRET,
  redisPort: process.env.REDIS_PORT,
  redisHost: process.env.REDIS_HOST,
  routes: {
    login: '/account/login',
    logout: '/account/logout',
    register: '/account/register',  
      chat: '/chat',

http://12factor.net/
https://www.heroku.com/
https://www.heroku.com/


Chapter 8

[ 225 ]

    facebookAuth: '/auth/facebook',
    facebookAuthCallback: '/auth/facebook/callback',
    googleAuth: '/auth/google',
    googleAuthCallback: '/auth/google/callback'
  },
  host: process.env.HOST,
  facebook: {
    appID: process.env.FACEBOOK_APPID,
    appSecret: process.env.FACEBOOK_APPSECRET
  },
  google: {
    clientID: process.env.GOOGLE_APPID,
    clientSecret: process.env.GOOGLE_APPSECRET
  },
  crypto: {
    workFactor: 5000,
    keylen: 32,
    randomSize: 256
  },
  rabbitMQ: {
    URL: process.env.RABBITMQ_URL,
    exchange: process.env.RABBITMQ_EXCHANGE
  }
};

module.exports = config;

A lot of properties changed, but only in one way. We have added process.env.
VARIABLE_NAME for each setting we are going to set in the environment. Before we 
start the server up again, we will need to set all the environment variables.

Creating our environment files
We will create two files for each environment we want to support. The first will be 
public variables. The other will have more sensitive information. Our Facebook app 
ID is a great example of this. We split these up so we do not have to check sensitive 
information into our version control system.

The next part will only work on Linux and Mac OS X.  
The same basic things will need to happen in Windows,  
but they will not be detailed here.



JavaScript Best Practices for Application Development

[ 226 ]

Let's create our first environment file in the root of our project. We will name it  
dev.env. Here is the file:

export NODE_ENV=development
export SECRET=secret
export PORT=3000
export HOST='http://localhost:3000'
export SOCKETIO_URL='http://localhost:3000/packtchat'
export GIT_HEAD=`git rev-parse HEAD`
export STATIC_URL='http://localhost:3000'
export AWS_BUCKET='packtchat'

We are exporting the variables so they will be available to the next shell we spawn, if 
needed. It is important to know there can be no spaces between the variable name and 
the equals sign, and the value or the environment variable will not be set correctly.

There is one variable that is set differently; GIT_HEAD. GIT_HEAD is set to the output 
of the git rev-parse HEAD command.

The reason these settings were chosen to go into this file is that each one will not 
cause app keys or passwords to be changed if they were to get out. A good test to  
see where an environment variable should be set is if we can open source our code  
in our repository without having to redact it. There is nothing in this file that 
requires redaction. Let's create the other environment file, dev_secret.env,  
as shown in the following code:

export SECRET=secret
export REDIS_HOST=localhost
export REDIS_PORT=6379
export RABBITMQ_URL='amqp://guest:guest@localhost:5672'
export RABBITMQ_EXCHANGE='packtchat.log'
export FACEBOOK_APPID='APP_ID'
export FACEBOOK_APPSECRET='APP_SECRET'
export GOOGLE_APPID='APP_ID'
export GOOGLE_APPSECRET='APP_SECRET'
export AWS_ACCESS_KEY_ID='AWS_KEY' #to be set
export AWS_SECRET_ACCESS_KEY='AWS_SECRET_KEY' #to be set

We set these the same way. All these keys would force us to reset app keys and 
change passwords, so they are in this file. This file should never be checked into 
git or any other version control system. This does pose a problem with how other 
programmers get this file, and is best answered case by case. Some organizations  
will have a shared drive where it resides. Then, add a document that will point a 
new programmer where to look.



Chapter 8

[ 227 ]

Open a terminal and go to our project's directory. Type in the following command:

$source dev.env

$source dev_secret.env

Source just reads through the file like it was typed into the terminal and adds the 
variables to our environment. Then, we can start our server configured. At this 
point, anytime we run a server locally we will need to add these variables to our 
environment before launching our application. If not, it will not be fully configured.

Adding more environments
We can easily add more environments because the config file loads from the 
environment. We just change the environment and the server is configured differently. 
This is easy because each environment should be separate. We won't be running 
development and production on the same server (except when testing here). Let's 
create the prod environment files. Name the dev.env and dev_secret.env copies 
prod.env and prod_secret.env, respectively. Right now, keep them the same except 
for the first line of prod.env. Change this line to the following:

export NODE_ENV=production

Once we have our production URL, Redis, RabbitMQ, Facebook App, Google App, 
and Amazon Web Service keys, we can update the environment files.

Introducing Grunt
Our environment is set up; let's do something with it. We need something that will 
automatically run tasks. This is where Grunt comes in. We can give it a list of tasks 
that Grunt will execute. The first thing we need to do is create a Gruntfile.js file.

Building a basic Grunt file
Gruntfile.js configures Grunt. It tells Grunt what tasks to carry out, how to run 
each task, and in what order. We can now create a basic Gruntfile.js file in the 
root of the project. Add the following code snippet to the file:

module.exports = function(grunt) {
  grunt.initConfig({
    pkg: grunt.file.readJSON('package.json')
  });



JavaScript Best Practices for Application Development

[ 228 ]

  grunt.loadNpmTasks('grunt-contrib-uglify');
  grunt.loadNpmTasks('grunt-contrib-concat');
  grunt.loadNpmTasks('grunt-contrib-jshint');
  grunt.loadNpmTasks('grunt-preprocess');
  grunt.loadNpmTasks('grunt-contrib-clean');
  grunt.loadNpmTasks('grunt-contrib-nodeunit');

  // Default task(s).
  grunt.registerTask('default', []);
  grunt.registerTask('prep', []);};

Grunt runs on Node.js, so it uses the same module system. We will configure  
the grunt object that is passed into this file with grunt.initConfig. This object  
will have all our tasks defined as properties on it. For now, we are just loading 
package.json, which has information we can use in other tasks, such as the name 
of the project, version, and author. Next, we load all the other Grunt packages we 
installed. This allows us to use each in a task. Finally, we create task lists. Each one is 
empty, but this is where we can define what tasks will run in what order. The default 
task will run when Grunt is called with no arguments. The other task can be run 
when called with the name as the argument, like Grunt prep, for example.

Automating our tests
We have just created some tests and Grunt can automate them. Add this code to 
grunt.initConfig right after the pkg property:

pkg: grunt.file.readJSON('package.json'),
nodeunit: {
      all: ['tests/*.js']
    }

Do not forget this is a new property in an object, so the previous property will need  
a comma after it. We can probably guess what this does. It tests all the JavaScript files 
in the directory tests. Next, we need to tell Grunt when to run this task:

grunt.registerTask('default', ['nodeunit']);
grunt.registerTask('prep', ['nodeunit']);

We want to run this anytime Grunt runs. A failed test will stop Grunt from running 
any other tasks. We can test this if we add this line to any of the test functions:

test.equal(true, false);

This will fail and Grunt will immediately halt processing. This is exactly what  
we want.



Chapter 8

[ 229 ]

Preprocessing our files
A glaring issue we need to change is the hardcoded Socket.io URL in chat.js. 
It is pointed to localhost, which will not work for production. We do not want to 
go down the road of manually changing this back and forth between development 
and production. We will use grunt-preprocess, which will parse certain files and 
add, remove, or change things inside each. This is exactly what we need to change 
the Socket.io URL to match the environment. We will also use it to load different 
versions of our JavaScript files.

The first thing we are going to need to do is move all our JavaScript files. We need to 
do this because we are going to build the files and another task will move them back 
to the static folder. Create a js_src directory with a src directory under that in the 
root of the project. Next, copy chat.js, components.js, md5.js, and models.js to 
js_src/src. Then, rename chat.js to chat.pre.js. Open up chat.pre.js and 
modify it to look like this:

  socket = io.connect('/* @echo SOCKETIO_URL */'),

Preprocess will run through the files we give it and look for certain keywords.  
@echo is one. By default, preprocess will use environment variables as its context, 
which is great because we have already defined SOCKETIO_URL in the environment. 
Preprocess will replace this statement with what is defined in the variable.

The next file we are going to process is the layout. Rename views/layout.ejs to 
views/layout.pre. Change these lines in the head element:

 <!-- @if NODE_ENV='production' -->
    <script type="text/javascript" src="<!--@echo STATIC_URL -->/js/
Frameworks.<!-- @echo GIT_HEAD -->.min.js"></script>
    <!-- @endif -->

    <!-- @if NODE_ENV!='production' -->
    <script type="text/javascript" src="<!--@echo STATIC_URL -->/js/
Frameworks.js"></script>
    <!-- @endif -->

Preprocess will also execute the if loop. Here, we check whether we are in 
production or not and change what JavaScript file is included. In production, we 
will use a minified file (which we have yet to create) and use a nonminified version 
anywhere else. This is helpful because in development, we want useful line numbers 
if something throws an error. It will also let us set breakpoints in the code. Also, add 
this right before the closing body tag:

<div class="container">
<small>Commit: <!-- @echo GIT_HEAD --></small>
</div>
</body>



JavaScript Best Practices for Application Development

[ 230 ]

At the bottom of every page, we should see our git commit that the server is using.  
It will be prominent on our pages because there is not much on them to begin with. 
We can hide it or set it in a JavaScript variable to capture during logging errors.

Next, rename views/chat.ejs to views/chat.pre. Change the file to the following:

<div id='react-root'></div>
<!-- @if NODE_ENV='production' -->
<script type="text/javascript" src="<!--@echo STATIC_URL -->/js/
ChatPage.<!-- @echo GIT_HEAD -->.min.js"></script>
<!-- @endif -->

<!-- @if NODE_ENV!='production' -->
<script type="text/javascript" src="<!--@echo STATIC_URL -->/js/
ChatPage.js"></script>
<!-- @endif -->

This does the exact same thing as the layout was doing.

We can now create the Grunt task to process these files. Open up Gruntfile.js and 
add this code as a property of initConfig right after nodeunit; do not forget to add 
a comma after the nodeunit property:

preprocess: {
      dist: {
        files: {
          'views/chat.ejs' : 'views/chat.pre',
          'views/layout.ejs' : 'views/layout.pre',
          'js_src/src/chat.js' : 'js_src/src/chat.pre.js'
        }
      }
    }

Preprocess is the task that including Grunt-preprocess gives us. We configure the dist 
target to use the files listed. The value of each property is the source and the property 
name is where preprocess will create the processed file at. We can see it will put each 
renamed file back where it should be. We can now tell Grunt to run this task.

Add preprocess to each array for each task:

grunt.registerTask('default', ['nodeunit', 'preprocess']);
grunt.registerTask('prep', ['nodeunit', 'preprocess']);

We can test this by running Grunt from the terminal. Remember to source our 
environment files if it is a new terminal. We should see a new layout.ejs,  
chat.ejs, and chat.js.



Chapter 8

[ 231 ]

Using Grunt to clean out a folder
We have a clean static/js folder right now. We will need this each time we build 
our JavaScript. Grunt is going to add the git commit in the filename of the minified 
file and we do not want this directory to keep growing in size.

This is where clean comes in. We can give it a directory and it will delete everything 
in that directory. Add this to initConfig, again adding a comma after the last 
property preprocess:

clean:{
      dist:{
        src: ['static/js/*.js']
      }
    }

These options are very clear. All files with the.js extension will be deleted out of 
static/js. We can now add it as the next task for default and dev:

grunt.registerTask('default', ['nodeunit', 'preprocess', 'clean']);
grunt.registerTask('prep', ['nodeunit', 'preprocess']);

We do not run this for prep, as we will load the files from somewhere else  
(which we will get to). This also shows that we can have different task lists.

JSHinting our source files
The next task we will run is JSHint. JSHint will go through our JavaScript and let 
us know if there are any possible bugs or issues. This is also known as linting. 
JavaScript is a very flexible language and can run with some issues. Linting finds 
these and flags them before we run the code and get errors in the browser. It is very 
useful and we should always lint our code. Grunt will let us do this automatically.

Add this to Gruntfile.js after the clean property:

jshint: {
      dist:{
        src: ['js_src/src/*.js', '!js_src/src/md5.js']
      }
    }

This is very similar to clean. We just pass a list of files that should be run through 
JSHint. The last statement is an exclude. It will exclude md5.js from being linted.  
We are doing this because we did not write this code and it fails linting. 



JavaScript Best Practices for Application Development

[ 232 ]

If something fails this step, Grunt will stop processing the other tasks. This forces us 
to fix the issues. I did not lint the code I was writing so far, as I knew we were going 
to cover this. There should be some issues that come up when first running JSHint. 
Here is a screenshot of an error:

Register this task with the others using this code:

grunt.registerTask('default', ['nodeunit', 'preprocess', 'clean', 
'jshint']);
grunt.registerTask('prep', ['nodeunit', 'preprocess']);

We are only going to run this for development.

There are two things we can do with linting that are recommended. The first is 
to 'use strict'. This forces the linter and browser to make JavaScript more 
unforgiving. Certain errors that would run before will throw an error now. It is 
another protection against hard-to-track-down runtime errors. All we have to do is 
add the line, use strict, before any other statements in a file or function. This will 
put that file or function in the strict mode. The other is to lint all the Node.js files. 
Right now, we are only linting the frontend files, but everything else is JavaScript 
and would benefit from being linted.

Concatenating our code
Our JavaScript code is processed and linted, so now we are going to group it 
together into two files. The first will be all the code required for our chat page and 
the other is all the frameworks. Previously, we were making six library and four 
application code requests. We are going to cut that down to two requests. Let's add 
the concat task:

concat:{
      app: {
        src: ['js_src/src/md5.js', 'js_src/src/components.js', 'js_
src/src/models.js', 'js_src/src/chat.js'],
        dest: 'static/js/ChatPage.js'
      },
      frameworks: {
        src: ['bower_components/jquery/dist/jquery.js', 'bower_
components/underscore/underscore.js',



Chapter 8

[ 233 ]

          'bower_components/backbone/backbone.js', 'bower_components/
react/react.js',
          'bower_components/postal.js/lib/postal.js', 'bower_
components/momentjs/moment.js'],
        dest: 'static/js/Frameworks.js'
      }
    }

This task is a little different from the others. It has two targets, apps, and 
frameworks. These will do different things when called. App will collect all the 
files in our js_src/src folder and concatenate them into one file at static/js/
ChatPage.js. This file can then be served by Node.js.

Frameworks does the same thing, except they go through all our bower_component 
folders that collect the library files. There will now be one file that has all the libraries 
our page will need.

Now, we can add concat to the task lists:

grunt.registerTask('default', ['nodeunit', 'preprocess', 'clean', 
'jshint', 'concat:app', 'concat:frameworks']);
  grunt.registerTask('prep', ['nodeunit', 'preprocess']);

We could have just added concat and that would have run both targets, but I wanted 
to show how we can run each target separately.

Minifying our code
Minification will be the last step for Grunt. This will go through each file and remove 
all the helpful human features (such as whitespace, new lines, descriptive variable 
names, and more) so that the file is much smaller. Before we build the task, we need 
to add another property to initConfig after pkg:

 pkg: grunt.file.readJSON('package.json'),
 git_head: process.env.GIT_HEAD,

Grunt can use variables in its tasks and use initConfig as the context. We add  
git_head in this context so we can use it in our minifying task, which we will  
create right now:

uglify: {
  dist: {
    files: {



JavaScript Best Practices for Application Development

[ 234 ]

      'static/js/ChatPage.<%= git_head %>.min.js' : '<%= concat.app.
dest %>',
      'static/js/Frameworks.<%= git_head %>.min.js' : '<%= concat.
frameworks.dest %>'
     }
  }
}

This task has a few new things in it. The first uses variables in each filename. Grunt 
will replace what is inside <%= %> with the value of the variable. For git_head, it 
will be a long hexadecimal number, which will be the head revision of our current 
commit. This will make each minified file unique for every commit. Next, we use the 
value of the destination of our concat command. This is useful if we ever decide to 
change the filename, as this task will not error out. Again, we need to add them to 
the task list:

grunt.registerTask('default', ['nodeunit', 'preprocess', 'clean',  
  'jshint', 'concat:app', 'concat:frameworks', 'uglify']);
grunt.registerTask('prep', ['nodeunit', 'preprocess']);

Here is what uglify should do to our files:

We have gone from 10 requests and over 1.3 MB in size to 2 requests and 347 KB in 
size, only 20 percent of the requests and 26 percent of the size.

Grunt summary
We have collected a few tasks that would be tedious to do every time we wanted to 
start up our server and automated them. Our JavaScript will be linted, concatenated, 
and minified every time we test our server. In addition to this, the preprocessor will 
make sure that Socket.io connects to the correct URL and loads the full JavaScript 
versions of our code for development and the minified for production, all of this 
done with one command.



Chapter 8

[ 235 ]

One last feature of Grunt that is useful is watch. We just need to add  
grunt-contrib-watch to package.json and define a task similar to the others  
we have created. After that, we can run Grunt watch, and anytime a watched file is 
changed it will automatically run tasks on it. If we were to do this, we would watch 
all the files in js_src/src and then use lint and concat. As we added code, we 
would know immediately if we made a mistake and it would be put into our static 
directory to be served. Here is an example task that you can add to Gruntfile.js:

watch: {
      files: ['js_src/src/*.js'],
      tasks: ['default']
    }
//do not forget to load grunt-contrib-watch
grunt.loadNpmTasks('grunt-contrib-watch');

files is an array of the files that should be watched. tasks is what task needs to be 
run. We can test this by running grunt watch and then changing any JavaScript file 
in js_src/src.

Static files and CDNs
We are currently using Express' static app to serve our JavaScript and CSS. A best 
practice for scalable sites is to push any static content onto a Content Delivery 
Network (CDN). If you have ever used Facebook (they do have a pretty large user 
base), you have used a CDN. If you inspect your Facebook profile, you will see a 
domain come up again and again, fbstatic-a.akamaihd.net. This is the CDN that 
Facebook uses for static assets. A CDN will have multiple servers across the world 
with the same content. Based on where the request comes from, the CDN will return 
the closest source. We are going to do something similar with this application using 
Amazon Simple Storage Service (S3).

Some of you out there might say S3 is not a CDN, and you are 
correct. Amazon has CloudFront to do this. S3 will be better than 
serving static assets with Node.js, and until an application grows 
beyond a certain size and scope, S3 will fill the need of a CDN.



JavaScript Best Practices for Application Development

[ 236 ]

Creating an S3 bucket
We create storage areas in S3 using buckets. We will run through that process here. 
The same warning applies here as in other tutorials; the layout and website copy are 
correct at the time of writing this book. I expect that Amazon will, at some point, 
change the process for any of these next steps. The basic flow should still apply, 
though. The first thing we have to do is sign up for an Amazon Web Services (AWS) 
account at http://aws.amazon.com/. If this is the first time you are signing up, you 
will get a year of low usage for free (although you do need to enter a credit card). 
Then, when you have an account, log in to your AWS console, which will show you 
all the services you can use. Under Storage & Content Delivery, click on S3:

From there, click on Create Bucket and give your bucket a name. This name has to be 
globally unique, so you will probably want to add an application identifier to it, for 
example, packtchat-s3-cdn-bucket. Then, click on Create. We have an S3 bucket!

Now, we will set up a user. Either go back to the console starting page or use the 
menu to select Identity and Access Management (IAM). From the IAM starting 
page, click on Users in the menu on the left and then Create New Users. We only 
need one, so enter a username. Click on Create. We will need to either click on 
Download Credentials or copy the Access Key ID and Secret Access Key. After you 
click on Close Window, you will not be able to get this information again. You can 
reset it and create new credentials, though, so all is not lost. Here is a screenshot of a 
user that I have:

http://aws.amazon.com/


Chapter 8

[ 237 ]

Now that we have AWS credentials, we can add them to our secret environment 
files. Add the credentials to the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY 
variables.

The next step is to set permissions on our new bucket. Click in the bucket's row and 
not the actual link. If done correctly, a list of properties should appear on the right. 
If not, it will jump to the bucket's contents. In the property list on the right, expand 
Permissions and click Edit Bucket Policy. AWS policies can be difficult to set and 
the documentation is confusing. Here is the policy that should be used:

{
  "Statement": [
    {
      "Sid": "PublicReadForGetBucketObjects",
      "Effect": "Allow",
      "Principal": {
        "AWS": "*"
      },
      "Action": "s3:GetObject",
      "Resource": "arn:aws:s3:::bucket_name/*"
    },
    {
      "Sid": "PacktchatUserFullPermissions",
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::user_number:user/user_name"
      },
      "Action": "s3:*",
      "Resource": [
        "arn:aws:s3:::bucket_name",
        "arn:aws:s3:::bucket_name/*"
      ]
    }
  ]
}

There are two policies here. The first allows anyone to get any object in the bucket 
we created. This is important because without it, all requests will be denied. The 
next one gives access to our newly created user to complete any action inside of this 
bucket. We will focus on more AWS in the next chapter. Also, note that everywhere 
user_name, user_number, or bucket_name is specified will be replaced with the 
values chosen. The user number will be in IAM.



JavaScript Best Practices for Application Development

[ 238 ]

Python and installing virtual environments
Our next step is to build a Python script that will collect all the files in a directory 
and push them to our S3 bucket. Before we build the script, we will need to create 
a virtual environment for Python. We want to only install packages locally for the 
current project, so we can have multiple projects running different versions of the 
same package. Python does this with virtualenv. This install will be for Mac OS X, 
which runs Python 2.7.5. Open a terminal and run the following two commands:

$sudo easy_install pip

$pip install virtualenv

Pip is a package manager for Python and we install that first, so we can use it to 
install virtualenv. At this point, we can create a virtual environment. Run the 
following commands:

$virtualenv venv

$source venv/bin/activate

The first command creates a virtual environment in the venv directory and the  
next activates it. If it worked correctly, we should see (venv) in front of our prompt. 
This lets us know we are in the virtual environment. The activation script basically 
changes our PATH to point to Python inside our newly created directory. Then, 
when we install new packages, they will reside under that directory and not globally. 
We will now create a file that lists out all the requirements for this script, aptly 
named requirements.txt. Create this file and add the following line to it:

boto==2.29.1

Then, run the following command in the terminal:

pip install -r requirements.txt

Pip should install the specific version 2.29.1 of Boto, which is a Python library that 
will interact with AWS. Now, we can write our Python script. Create a file named 
static.py and add this code to it:

import boto
import os

from boto.s3.key import Key

root_dir = './static/'



Chapter 8

[ 239 ]

def upload(file_name):
    k = Key(bucket)
    k.key = file_name
    k.set_contents_from_filename(root_dir + file_name)
    print 'Uploading %s' % root_dir + file_name

def walk(directory):
    for (source, dirs, files) in os.walk(directory):
        #remove first directory
        d = source.replace(directory, '')
        for file in files:
            if (file != '.DS_Store'):
                file_list.append(d + '/' + file)
        map(walk, dirs)

def clean_js():
    for key in bucket.list(prefix='js/'):
        key.delete()

conn = boto.connect_s3()

#the AWS keys are in the env
bucket = conn.get_bucket(os.environ['AWS_BUCKET'])

clean_js()
file_list = []
walk(root_dir)
map(upload, file_list)

Here is a quick rundown of what is happening. First, import the libraries that 
we need and set the directory we are going to upload. The upload function takes 
a filename and creates an object (key in the script) in the S3 bucket. walk will 
recursively go through a directory and load the files. It needs to remove the leading 
directory name because we want our files to be created at the root of the bucket and 
not at static in the bucket. Next, it makes sure that the file is not named .DS_Store  
(a Mac OS X system file) and adds them to a list. The clean_js function will 
delete all the files in the js directory before uploading new ones. This is the same 
thing Grunt does, because we have unique filenames. At last, we get to the actual 
execution. First, we connect to S3. This function can take credentials or it will look  
for environment variables, which we have set in our secret environment files. 



JavaScript Best Practices for Application Development

[ 240 ]

Next, we get the bucket name from the environment and then process all the files. 
We can test whether this works by running this in our terminal:

(venv)$source prod.env

(venv)$source prod_secret.env

(venv)$python static.py

We need to source our environment files because the Python script is looking for 
variables defined in them. If everything is set correctly, we should see the script 
upload our CSS and JavaScript files to S3. We can now leave the virtual environment 
by running the following command in the terminal:

(venv)$deactivate

We can now set our production STATIC_URL to point to S3. Open up prod.env and 
change this line:

export STATIC_URL='https://your_bucket_name.s3.amazonaws.com'

Depending on the environment files loaded, our views files will load different 
JavaScript files. For example, layout will load the uniquely named and minified 
frameworks JavaScript file from S3 in production and a localhost file in development.

Scripting our new tools
We have automated some tasks, but we have created an issue where we must run 
two to three commands to accomplish each task. We want to always shoot for one 
command. We will create a script to launch our development server and collect the 
static files. First, create a file named set_env.sh. This file will load our environment 
files so that we can then run our different commands. Paste this into it:

#!/bin/bash
if [ $# -ne 1 ]; then
  echo "Please pass in the environment as the first argument"
  exit 1
fi

source ./$1.env
source ./$1_secret.env

if [ $? != 0 ]; then
  echo "Create the needed environment files"
  exit $?
fi



Chapter 8

[ 241 ]

This uses bash and if you have never scripted with bash before, it can look a little 
strange. The first if condition checks the number of passed-in arguments (?#) to 
see if it is not equal to 1. If that is true, exit and let the user know the environment 
should be passed in. The next step is to build the name of the environment files from 
the first argument ($1) and then source them. The next if condition checks to see if 
the exit status ($?) of the previous command is not equal to 0 and then exits if it is 
not. If the files exist, then the exit status will be 0.

Next, create a file named server_prep.sh and run the following command to make 
it executable:

$chmod a+x server_prep.sh

Then, paste this into it:

#!/bin/bash

source ./set_env.sh $1
./node_modules/.bin/grunt prep

The ./node_modules/.bin/grunt prep script makes use of set_env.sh. We just 
source it to get all our environment variables available. This script then uses the 
locally installed Grunt and runs the prep task ensuring that all the preprocess files 
are correct and ready:

$./server_prep.sh 'dev'

We should be able to check layout.ejs and chat.ejs to make sure they are created.

Now, we can build the script that will upload our static files to S3. Create a file 
named collectstatic.sh and paste this code into it:

#!/bin/bash
source ./set_env.sh $1

./node_modules/.bin/grunt

virtualenv venv
source venv/bin/activate
pip install -r requirements.txt

python static.py
deactivate



JavaScript Best Practices for Application Development

[ 242 ]

It is very similar to the previous script; first, we prep the environment by  
sourcing our environment variables. The next step is to make sure that all the 
JavaScript files have been concatenated and minified. Then, we make sure we  
have a virtual environment with the needed packages. Finally, we run the Python 
script to upload the files.

Each of these scripts will work differently based on the environment variables set. 
If we were to create a staging environment, we would just change the variables that 
would be different and run each script with staging as the argument.

Summary
Our application is slowly becoming more maintainable. We have created 
some much-needed tests and automated them. Before this chapter, we could 
only start the application from localhost. Now, it is ready to be deployed to 
different environments. We did this by extracting out all the differences between 
environments (URLs, connection strings, and app IDs are some). Then, we used 
Grunt to create automated tasks that build the application for each environment.  
The tasks also force us to use best practices when doing this. Finally, we scripted 
these tasks so that each one would only consist of one command instead of three  
to four for each.

In the next chapter, we will actually deploy our application somewhere other  
than localhost.



Deployment and Scalability
We have finally reached the point where we can actually deploy our application 
using Amazon's Elastic Compute Cloud (EC2). EC2 is a popular cloud provider. 
Right now, our application only lives on our computer. We will use Ansible to  
install all the dependencies and deploy our code on EC2 instances. Then, we will 
take a look at how and why our application is ready to scale. Here is what we will 
cover in this chapter:

• What EC2 is and how to create instances
• Ansible
• Ansible roles
• How to scale

We have a lot to cover, so we are just going to jump right in.

Creating servers on EC2
EC2 is the compute portion of Amazon's public cloud. We will ask Amazon to create 
a server for us, and we will manage what is on it and what it does. Our plan is to not 
utilize any specific EC2 image to be used, other than the newest version of Ubuntu. 
This allows us to easily create more instances in order to serve more demand.

We will use our AWS account, which we created in the last chapter. Log in to our 
AWS console and under Compute & Networking, click on EC2.

Then, under Instances, click on Instances. An instance is one machine running a 
specific image.



Deployment and Scalability

[ 244 ]

We will now create a new instance. Click on Launch Instance. This should open up a 
dialog to configure the instance. We will use QuickStart and the latest Ubuntu image, 
which at the time of this writing is Ubuntu Server 14.04 LTS. Use 64-bit and select 
this image. Next, we will choose Type. Here, we will just want to use t2.micro.  
This is the smallest and the cheapest option, but it is enough for now.

Click on Next: Configure Instance Details. We do not need to enter anything here, 
so click on Next: Add Storage. This is where more drives can be added, but we will 
not do so now. Although it is a good idea to bump up the current drive's size from 8 
GB to 16 GB, one thing to remember is that the storage for this instance will be erased 
and will revert to the base image when stopped. This is a reason why we will need 
Ansible. Click on Next: Tag Instance. This will be a key part of our deployment. 
We will want to add these tags to our instance, the format being key:value with the 
following entries:

• Redis:Role
• RabbitMQ:Role
• Chat:Deploy
• Worker:Deploy
• prod:Env
• HAProxy:Role

We are tagging the instance so that later, Ansible can target certain instances to 
configure. Then, click on Next: Configure Security Group. We can create a new 
group; we just need to make sure that SSH, HTTP, and port 3000 are open to 
everyone. The final rule is to allow this group to connect with itself. We do this by 
adding all the TCPs and then for the IP, type sg and a list of all the security groups 
will come up. Select the security group we are using currently. This will allow any 
instance in this group to connect to any other instance using the internal EC2 IP 
address (usually, 10.X.X.X) or the public DNS name.

If we want to be more secure, we can lock down SSH to just our 
current public IP address. This can cause issues if the IP address 
ever changes. Having this open to the public ensures that our scripts 
will run, but it is a security issue.

Next, click on Review and Launch and finally click on Launch. The next screen 
will ask us to either create or use a specific key pair. If this is the first instance, we 
will want to create a pair. Keep track of this key! This is how we can SSH into the 
instance, and we will be using it with Ansible. I put my private key in the .ssh 
directory. After this, the instance is finally ready and will launch. The launch will 
take anywhere from a few seconds to a few minutes.



Chapter 9

[ 245 ]

Once the instance is up, we can view some information about it. Click on the box  
on the far left and it will load information about the instance in the lower pane.  
The first tab, Description, will have the public DNS name. It should be in the  
format of ec2-IP-ADDRESS.compute-1.amazonaws.com. Copy this address,  
open a terminal, and SSH into the machine using the following command:

$ssh ubuntu@ec2-IP-ADDRESS.compute-1.amazonaws.com -i ~/.ssh/aws_key.pem

The Ubuntu image uses Ubuntu as the default user, so we must use this to log in.  
We must also tell SSH to use our newly created AWS key. This should connect us 
and we should get a shell. We have created our first server in the cloud and are  
ready to start building our server.

AWS EC2 summary
There are a lot of features in EC2. We have only done the bare minimum of  
creating a server. If we wanted much more control, we could create our own  
images (AMIs or Amazon Machine Images), although the base Ubuntu AMI  
will work fine for this project.

One issue that could create problems is that the Ubuntu AMI uses an instance store. 
The data on the drive will only persist while the instance is running. If the instance 
is stopped or terminated, the data is lost. Most of the servers we will build should 
be ephemeral. This means that they do not store any state and can be brought up or 
down without any concern. Certain roles cannot operate this way. A database server 
is a great example. We will need to create a separate Elastic Block Store (EBS) and 
then attach it to the image. The EBS volume will persist separately from the instance. 
All system administration tasks will still need to be done. For example, the first time 
when the volume is mounted, it will need to be formatted and full backups should 
still be done. Just because it is in the cloud does not mean that it is impervious to 
issues or requires no administration.

For our application, we will not need any persistent data. All the application 
data will be stored in Redis, which is temporary. RabbitMQ only stores logging 
information so it does not need to persist either. If we needed this information to 
persist, we would just attach an EBS volume and makes sure our configuration files 
pointed the Redis and RabbitMQ config to the correct path.

It is important to note that this is not a High Availability deployment. 
If Redis ever goes down, the entire application will go down. It is 
outside the scope of this book to set this up. Redis Sentinel and, when 
it attains stablility, Redis clustering will provide High Availability.



Deployment and Scalability

[ 246 ]

What is Ansible?
Ansible is going to be the tool we use to manage our servers and deploy our code. 
It is written in Python and will handle config files, installing software, pulling code 
from Git, and almost anything else you can think of. Another great feature is that 
Ansible is agentless. It uses SSH, so we don't have to prepare and install something 
before we start. Let's install Ansible so that we can start building our deploy scripts.

Installing Ansible
Since Ansible uses Python, we can use our virtual environment that we created 
earlier. We will want to add Ansible to a new file named dev-requirements.txt. 
Here is what the file should contain:

-r requirements.txt
ansible==1.6.3

Then, we can install it with pip:

$source venv/bin/activate

(venv)$pip install -r dev-requirements.txt

The reason we do this is because we don't need to install Ansible on the production 
server, but we still want it to be explicitly declared. Here, we are using the option 
to include another requirements file in this file. We can then choose the group of 
packages to install based on the chosen requirements file.

The way we are going to use Ansible is through a playbook. A playbook is a list 
of tasks that get applied to a list of servers. The first thing we need then is a list or 
inventory of servers. We are going to use an Ansible-created EC2 inventory script 
(https://raw.githubusercontent.com/ansible/ansible/devel/plugins/
inventory/ec2.py or Google Ansible EC2 inventory script). Create a new directory 
named ansible in your project root and save this file as ec2.py. This script goes 
through your EC2 instances and builds groups based on availability zones, instance 
names, keys used, instance type, and most importantly, tags. The first thing we will 
do is create an ansible directory in the root of our project and drop the downloaded 
ec2.py file into it. This script is written in Python, and it uses boto to communicate 
with AWS. This is perfect because we should already have boto installed in our 
virtual environment. The next step is to create another file named ec2.ini in the 
ansible directory with ec2.py. This is a config file for ec2.py. Enter the following 
code in the file:

[ec2]
regions = us-east-1

https://raw.githubusercontent.com/ansible/ansible/devel/plugins/inventory/ec2.py
https://raw.githubusercontent.com/ansible/ansible/devel/plugins/inventory/ec2.py


Chapter 9

[ 247 ]

regions_exclude = 
destination_variable = public_dns_name
vpc_destination_variable = ip_address
route53 = False
cache_path = ~/.ansible/tmp
cache_max_age = 0

Most of the settings are correctly named. The only two settings that we will change 
are regions and cache_max_age. The regions setting should be the region or 
regions in which we created our instances. The value of the Cache_max_age setting 
will be zero so that any changes get picked up.

Before we test this script, we will need to get credentials that have access to EC2 
actions. The script will take a look into the environment for AWS credentials because 
it is using boto. We can, therefore, either give access to our previously created user 
or create a new user and give access to this user. If we create a new user, then we 
will want to create a different environment file so that we can load the credentials 
separately. This file can be called ec2_secret.env. Remember, this is confidential 
information and we do not want to put it into version control.

Giving access to a user is quite easy. Go to IAM, select Users, select the user you 
want, click on the Permissions tab, and then select Attach User Policy. Inside this 
dialog, there is a policy template named Amazon EC2 Full Access. Choose this 
template and apply it to the user. This user can now query, create, or destroy AMIs. 
We can now test our inventory script. Open a terminal and enter these commands, 
assuming we are outside the virtual environment to begin with:

$source venv/bin/activate

(venv)$source dev_secret.env #or wherever our AWS credentials are in

(venv)$cd ansible

(venv)$chmod u+x ec2.py

(venv)$./ec2.py

We should see a bunch of lists that reference all our current instances. The  
same instance will be in many different lists. We also should see lists for each  
tag, for example, tag_Redis_Role. When we see all our tags as groups, we are  
ready to run our first Ansible command. Open a command prompt and enter  
the following command:

(venv)$ansible all -m ping -i ec2.py --private-key=~/.ssh/aws_key.pem -u 
ubuntu



Deployment and Scalability

[ 248 ]

Let's break this down quickly. All is a host pattern, which matches all surprisingly. 
Next, -m ping tells Ansible to use the ping module on each host. The ping module is 
not the same as the ping command. This is an Ansible module that will let us know 
if it can communicate with each host. The next two options are self-explanatory.  
If this works, you should see something similar to the next screenshot:

In this command, we are specifying which private key to use for SSH authentication. 
This will be the key we received from Amazon. We can continue to add the 
--private-key= parameter for every command, or we can run this to add it  
to our SSH keys:

$ssh-add ~/.ssh/aws_key.pem

Remember to replace aws_key.pem with the filename for the key that we 
downloaded from Amazon. The rest of the commands for this chapter will  
make the assumption that we have done this.

Using Ansible roles
We can now start to build our servers. Ansible has two great abstractions named 
roles and playbooks. We can define a role that only worries about a single 
responsibility. We can then target specific servers to apply this role to. Another way 
to look at this is that a role is a component or a building block of our architecture, 
and playbooks are a group of components and tasks that get executed together. The 
playbook lists which tasks get applied to the servers in the role. Let's create the first 
role, Redis.

Create a new directory in the root of our project named ansible. Inside this 
directory, create another directory named roles. Then, in roles, create a directory 
named redis. The final directory will be tasks, inside redis. This structure and 
filenames are dictated by Ansible, so we want to stick to these. Finally, create a file 
named main.yml in tasks.



Chapter 9

[ 249 ]

Here is how our directory structure should look:

YML stands for Yet Another Markup Language (YAML). Ansible uses it extensively 
to define everything about our playbook. Paste the following code in main.yml:

---
  - name: Install Redis
    apt: name=redis-server=2:2.8.4-2 state=present

  - name: Bind to all Interfaces
    lineinfile: dest=/etc/redis/redis.conf regexp=^bind  line='bind 
0.0.0.0'
    register: redisconf

  - name: Redis Started
    service: name=redis-server state=started enabled=yes

  - name: Redis Restarted
    service: name=redis-server state=restarted
    when: redisconf.changed

These are the lists of tasks we want to run through in order to install Redis. As we 
can see, Ansible uses a declarative syntax. It is really easy to follow along. Each task 
has a name and command or module to execute. Each task can have multiple options 
that modify it. The first task uses apt to install a specific version of redis-server 
from the default repository. We are pinning our versions here as well. We do not 
want an updated package to cause issues.

Use Ubuntu's package search to find the name and version 
available at (http://packages.ubuntu.com/).

The next task makes sure that the bind 0.0.0.0 line is in the redis config file.  
It also registers itself as redisconf so that other tasks can check to see whether this 
file has changed or not.

http://packages.ubuntu.com/


Deployment and Scalability

[ 250 ]

The next task checks to make sure that redis-server is started and is set to start  
on boot.

The last task is conditional. If redisconf.changed then restart the service, if not  
let it run.

Now that we have our tasks defined, we can define which servers they apply to. 
Create a file named redis.yml in the ansible directory. In this file, paste the 
following code:

- hosts: tag_Redis_Role
  remote_user: ubuntu
  sudo: yes
  roles:
    - redis

Here, we have a hosts pattern that will target a specific tag. All we have to do is 
make sure that the servers we want to be running Redis are tagged appropriately. 
We then specify that the user Ubuntu should be used and to use sudo for each 
command. Finally, we have a list of roles. Ansible will know that it needs to look in 
the roles directory, find redis, and load the tasks from main.yml. Open a terminal 
and run this command:

(venv)$ansible-playbook -i ec2.py redis.yml --limit tag_prod_Env

We should see something similar to the next screenshot for each task:

As a quick reminder, this command does not have the --private-key parameter. 
This will fail if we have not run ssh-add or appended --private-key.

What is great about Ansible is that it will check for the current state before running 
tasks. The first time when Ansible goes through the playbook, it has to install/check 
everything. The next run through Ansible will effectively do nothing.

Let's build the RabbitMQ role now.



Chapter 9

[ 251 ]

Installing RabbitMQ
This will be very similar to Redis. The first thing we need to do is create a directory 
structure under roles for RabbitMQ, although this time, we will create two directories 
under rabbitmq: files and tasks. Including the files we are going to create the 
directory structure for, rabbitmq under roles should look like the next screenshot:

Now, we can create the YAML file that will use this role. Create rabbitmq.yml  
in our ansible directory. This should be at the same level as redis.yml.  
The following code goes inside this file:

- hosts: tag_RabbitMQ_Role
  remote_user: ubuntu
  sudo: yes
  roles:
    - rabbitmq

The key part of this file is to use a tagged role. Now, we can create the rabbitmq role. 
Inside rabbitmq/tasks, create main.yml with the following code:

---
  - name: Install RabbitMQ
    apt: name=rabbitmq-server=3.2.4-1 state=present

  - name: Rabbitmq.config
    copy: src=rabbitmq.config dest=/etc/rabbitmq/rabbitmq.config
    register: rabbitmqconfig

  - name: RabbitMQ Started
    service: name=rabbitmq-server state=started

  - name: Enable RabbitMQ management
    shell: rabbitmq-plugins enable rabbitmq_management

  - name: Restart RabbitMQ Service
    service: name=rabbitmq-server state=restarted



Deployment and Scalability

[ 252 ]

  - name: Force RabbitMQ to Reload Config
    shell: rabbitmqctl {{ item }}
    with_items:
      - stop_app
      - reset
      - start_app
    when: rabbitmqconfig.changed

This file introduces a few new things. The first thing is the copy action. It will copy 
a local file to the remote host if the file doesn't exist or if it is different. Here, we are 
copying a rabbitmq.config file. As we are using Ansible's roles feature, we do 
not have to define the full path to the file to be copied. Ansible will look for it in the 
files directory under this role.

The next new item is the shell action. This will run any arbitrary shell command. 
Here, we are enabling the RabbitMQ management plugin.

The final new idea is to use a list of items and looping. Each item is {{ item }} 
in the the loop. We are just using simple items, but the items can be more complex 
with properties as well. Here, we are forcing RabbitMQ to reload the config as 
configuration changes do not take effect with a service restart.

The other steps have been introduced with the redis config file. The last thing  
we have to do is create the rabbitmq.conf file in the rabbitmq/files directory. 
Here is how it should look:

[{rabbit, [
  {default_user,<<"nonguest">>},
  {default_pass,<<"uniquepassword">>}
]},
{rabbitmq_management, [{listener, [{port, 15672}]}]}
].

RabbitMQ's config file syntax is a little strange, but here we are changing the default 
user, password, and management port. This should be the bare minimum for our 
production server. We can now run the playbook and install RabbitMQ using the 
following command:

(venv)$ansible-playbook -i ec2.py rabbitmq.yml --private-key=~/.ssh/aws_
key.pem --limit tag_prod_Env

Just like our Redis playbook, Ansible should go through the installation and  
configure RabbitMQ.



Chapter 9

[ 253 ]

If we want to use the web management interface, we will have to modify the 
security group attached to our instance. In the AWS console, go to EC2 and click on 
Security Groups. We can then edit the inbound rules from the Actions dropdown. 
We will use the Custom TCP rule that is mapped to port 15672, and we can select 
My IP to only allow our computer to connect. We can load http://OUR-EC2-IP-
ADDRESS:15672 and log in using our new nonguest user.

We now have our backend services built. If we had a database, we could build out 
the Ansible playbook in a similar way. Install the binaries, set up the config, and 
make sure that it is set to start on boot.

Installing our application
We now have the foundation for our application; so, we can push the code out and 
start Node.js. We are going to use multiple roles as there are a few steps in deploying 
the application. The first role is nodejs. Create a directory under ansible/roles 
named nodejs with another directory named tasks. Create main.yml under tasks. 
Here is the code for main.yml:

---
  - name: Install Node.js
    apt: name=nodejs-legacy state=present update_cache=yes

  - name: Install NPM
    apt: name=npm state=present update_cache=yes

We have one new statement in these commands, update_cache. This tells apt-get 
to update and use the latest version of Node.js and npm. Sometimes, apt cannot 
install the application due to security updates. Next is git, which is what I have been 
using for version control for this project and I recommend that you use it, especially 
because our deployment depends on it. Create a git role with a tasks directory and 
main.yml. Here are the git tasks:

---
  - name: Install Git
    apt: name=git state=present

  - name: Check app path
    file: path={{ project_path }} mode=0755 state=directory

  - name: Directory for SSH
    file: path=/root/.ssh/ state=directory



Deployment and Scalability

[ 254 ]

  - name: Copy SSH key over
    copy: src=~/.ssh/ssh_key_for_git dest=/root/.ssh/key mode=600

  - name: Git Clean
    shell: removes={{ project_path }}/.git cd {{ project_path }} && 
git clean -xdf

  - name: Git checkout
    git: repo={{ project_repo }}
         dest={{ project_path }}
         version={{ branch }}
         accept_hostkey=yes
         key_file=/root/.ssh/key

Git Clean uses an option named removes. If the directory or file in removes does 
not exist, it removes this task from execution. During the first run through the .git 
directory will not exist, so this task will be skipped.

The next thing to note is that we are using variables here for project_path, 
project_repo, and branch. We will define the variables shortly. The file module 
allows us to check whether a file or directory already exists and to create it if not.  
The git module will check out a specific repository and branch into a directory that 
we pass in. We must also copy the SSH key that has access to the Git repository.

Deploying the code
The next role that we will create is appdeploy. Create the role directory along with 
tasks and templates. Create the main.yml file in tasks and add this code:

---
  - name: Create App user
    user: name={{ project_user }}

  - name: Copy Secret Environment file
    template: src=../../../../{{ deploy_env }}_secret.env dest={{ 
project_path }}

  - name: Copy Normal Environment file
    template: src=../../../../{{ deploy_env }}.env dest={{ project_
path }}

  - name: Run Server Prep
    command: chdir={{ project_path }} ./server_prep.sh {{ deploy_env 
}}



Chapter 9

[ 255 ]

  - name: Create Project etc
    file: path=/etc/{{ project_name }} state=directory

  - name: Create start_server.sh
    template: src=start_server.j2 dest=/etc/{{ project_name }}/start_
server.sh mode=755

  - name: Create stop_server.sh
    template: src=stop_server.j2 dest=/etc/{{project_name}}/stop_
server.sh mode=755

  - name: Install forever globally
    command: creates=/usr/local/bin/forever chdir={{project_path}} npm 
install -g forever

  - name: Create init script
    template: src=init_script.j2 dest=/etc/init.d/{{project_name}} 
mode=755

  - name: Create rc.d links
    shell: update-rc.d {{ project_name }} defaults 80

  - name: Restart Service
    shell: service {{ project_name }} restart

These are a lot of little tasks that use many different variables. We will quickly run 
through these tasks, jumping over to any relevant files.

The first is the user module. It does exactly what you think it does, makes sure that a 
user exists.

Then, we copy our secret environment file. We go up enough directories to load the 
.env files in the root of our project. Having two files that are the same in a code base 
is a recipe for disaster. It is almost guaranteed that the files will have divergent data. 
There should always be a definitive copy. The astute reader that you are, you might 
have probably noticed that the environment file is called as a template. We do this 
so that we can modify our secret file. We will only need to modify the lines that set 
REDIS_HOST and RABBITMQ_URL in prod_secret.env:

{% for role in groups['tag_Redis_Role'] %}
  {% for server in groups['tag_prod_Env'] %}
    {% if role == server %}
export REDIS_HOST={{ hostvars[server]['ec2_private_ip_address'] }}
    {% endif %}
  {% endfor %}



Deployment and Scalability

[ 256 ]

{% endfor %}
{% for role in groups['tag_RabbitMQ_Role'] %}
  {% for server in groups['tag_prod_Env'] %}
    {% if role == server %}
export RABBITMQ_URL='amqp://nonguest:uniquepassword@{{ 
hostvars[server]['ec2_private_ip_address'] }}:5672'
    {% endif %}
  {% endfor %}
{% endfor %}

Here, we are looping through two different groups, Redis_Role and prod_Env, to 
find the server that matches both. The same is done for RabbitMQ. What this does is 
it allows us to dynamically spin up instances with the correct tags and Ansible will 
figure out the IP addresses of the servers for us. If not, we will have to modify the 
secret file every time we want to deploy.

Note that although we did this with the prod_secret file, usually we will not need 
to do this as we would have a static IP address and a DNS name. This is also true 
for local development. We know that everything is localhost, so we don't need to 
add the template loops. If there are no template tags, the file will be copied as is 
in Ansible. This is perfect for any environments that will be created right before 
deployment, as we will not know the IP addresses beforehand. Also, note that if 
there are template tags in the file, it cannot be used with our shell scripts locally 
(server_prep.sh or collectstatic.sh).

The same is done with the regular environment file. Here is what we want to process 
in prod.env:

{% for role in groups['tag_HAProxy_Role'] %}
  {% for server in groups['tag_prod_Env'] %}
    {% if role == server %}
export HOST='http://{{  hostvars[server]['ec2_public_dns_name'] }}/'
export SOCKETIO_URL='http://{{  hostvars[server]['ec2_public_dns_
name'] }}/packtchat'
    {% endif %}
  {% endfor %}
{% endfor %}

Again, we are doing this for prod; however, in actual production, we will have a 
public DNS name that we can statically set (at least we should!).

The next step is running server_prep.sh in our deploy environment, because we 
just loaded our environment files. Remember server_prep runs Grunt to preprocess 
our JavaScript, layout, and chat view.



Chapter 9

[ 257 ]

The next three tasks are related. We want a start up script and shutdown script that 
will launch our application. We create a new directory in etc with our project name. 
Then, we create a start_server.sh file from this template, start_server.j2,  
as follows:

#!/bin/bash

cd {{ project_path }}
source {{ deploy_env }}.env
source {{ deploy_env }}_secret.env

forever --pidFile /home/{{ project_user }}/{{ project_name }}.pid -a 
-l /home/{{ project_user }}/{{ project_name }}.log start {{ project_
path }}/{{ project_exec }}

This script just uses prep for the environment before launching forever, which  
is a Node package that will start an application and monitor it. If the thread dies,  
it will relaunch it. This is exactly what we need. We start forever telling it to drop  
a .pid file and logfile of the console. If we SSH into our server and run this script,  
our application will be available over port 3000.

Here is the code for stop_server.j2:

#!/bin/bash
forever stop {{ project_path }}/{{ project_exec }}

We do not need to use prep in the environment as we are just stopping our  
Node process.

If we are going to use forever, we need to install it. We are using npm to install 
forever globally. The creates option lets us check whether a certain file exists  
or not; if it does, skip the step and if not, run the command.

The last three steps are related as well. The first step creates an init script from a 
template. Here is the template, init_script.j2:

#!/bin/bash

start() {
    echo "Starting {{ project_name }}"
    su - {{ project_user }} /etc/{{ project_name }}/start_server.sh
    RETVAL=$?
}



Deployment and Scalability

[ 258 ]

stop() {
    if [ -f /home/{{ project_user }}/{{ project_name }}.pid ];then
        echo "Shutting Down {{ project_name }}"
        su - {{ project_user }} /etc/{{ project_name }}/stop_server.sh
        rm -f /home/{{ project_user }}/{{ project_name }}.pid
        RETVAL=$?
    else
        echo "{{ project_name }} is not running."
        REVAL=0
    fi
}

restart() {
    stop
    start
}

case "$1" in
    start)
        start
        ;;
    stop)
        stop
        ;;
    restart)
        restart
        ;;
    *)
        echo "Usage: {start|stop|restart}"
        exit 1
        ;;
esac
exit $RETVAL

This is a bash script, and hence, the different syntax. The two main parts of this script 
are start and stop, where we run the scripts we created. Each time we run one of 
the scripts, we use su, which will change the user that executes the next command. 
This is important from a security standpoint as the user running the application 
has the least amount of privileges (read-only). If, for any reason, this process gets 
compromised, there will be very little that the user can do. The stop function checks 
for the .pid file and stops the server or echoes out that the server is not running. 
This script will be put in the /etc/init.d/ directory. We can now run service 
project_name start, stop, or restart.



Chapter 9

[ 259 ]

update-rc.d will set our script to automatically run on boot for different run levels.

Finally, we restart the service to make sure that the server is serving the latest 
version of the code.

We have gone over all the roles, so now let's create the script that brings them all 
together. Create appdeploy.yml inside your ansible directory. Here is how this  
file should be:

- hosts: tag_Chat_Deploy
  remote_user: ubuntu
  sudo: yes
  vars_files:
    - vars.yml
  roles:
    - nodejs
    - git
    - appdeploy
- hosts: tag_Chat_Deploy[0]
  remote_user: ubuntu
  sudo: yes
  vars_files:
    - vars.yml
  tasks:
    - name: Install Pip
      apt: name=python-pip state=present

    - name: Install Virtualenv
      shell: pip install virtualenv

    - name: Collect Static
      command: chdir={{ project_path }} ./collectstatic.sh {{ deploy_
env }}

Again, we will step through this detouring where needed. We are targeting any 
instance with the Chat Deploy tag. We now can see where all our variables were 
defined, in vars.yml. We will look at that file now:

project_name: nodechat
project_path: /var/node/chat
project_repo: git@bitbucket.org:user/project.git
project_user: nodechat
project_exec: app.js



Deployment and Scalability

[ 260 ]

Here, we just add all the variables with their values. All of the roles used here will 
have access to these variables.

Then, we define all the roles in the order in which they need to run, nodejs, git,  
and appdeploy.

Next, we define a new group of hosts with more tasks. We are doing this because  
we have to upload our minified JavaScript to S3 each time there is a new commit.  
If we don't do this, the views will try to load a nonexistent JavaScript file. tag_Chat_
Deploy is a group of instances and because of this, we can specify an index. We 
choose the zero or the first instance in the group. This is important, because if we 
did not do this and had 10 instances in the group, we would upload the static files 10 
times. In this way, we will only do it once. We need pip and virtualenv installed so 
that we can run collectstatic.sh.

Wait, you might say, "where are the deploy_env or branch variables?" It was not in 
our vars.yml file. These variables are passed in the command line, which brings us 
to the command we can use to test this step:

(venv)$ansible-playbook -i ec2.py appdeploy.yml --limit tag_prod_Env 
--extra-vars "deploy_env=prod branch=master"

We can pass extra variables in the command line, which all tasks and roles will have 
access to.

After we have executed this role, we should be able to view the site at http://EC2-
IP-ADDRESS:3000. Socket.io will not work because it will try to connect on port 80 
instead of 3000. We will cover how to listen on port 80 shortly; before this, we need 
to cover creating the workers.

An important thing to note is that there is no npm install or bower install.  
The npm FAQ states the following:

Use npm to manage dependencies in your dev environment, but not in your 
deployment scripts.

This means that we should include node_modules and bower_components in our 
Git repository. This chapter's code has all the modules installed and ready for 
deployment.



Chapter 9

[ 261 ]

Installing the workers
Our application needs two workers, one that pulls the logs from RabbitMQ and 
another that cleans up Redis every few hours. This task will actually be the easiest 
as it does not require any new roles. We will reuse roles that are already defined. 
This is the reason why we broke up the application deployment into three different 
roles. Small role definitions facilitate composition. Create worker.yml in the ansible 
directory. Here is what should be present in this file:

- hosts: tag_Worker_Deploy
  remote_user: ubuntu
  sudo: yes
  gather_facts: false
  vars_files:
    - vars.yml
  roles:
    - nodejs
    - git
    - { role: appdeploy, project_name: nodechat_worker_chat, project_
exec: workers/chat.js }
    - { role: appdeploy, project_name: nodechat_worker_log, project_
exec: workers/log.js }

This looks a lot like appdeploy.yml. This is to be expected because we are using  
the same code base and the workers run on Node. The difference lies in the last 
two role tasks. Here, we are using the appdeploy role, but we are changing certain 
context variables for each role. A new project_name service will create separate 
init scripts for each, and project_exec will point to the worker script that needs to 
be executed. After running through these, our instance should have three forever 
applications running.

Load balancing multiple application servers
If we have 10 application servers running, how do we create one specific URL that 
someone can load? This is done through load balancing. We will install a load 
balancer (HAProxy) that will be the public-facing server. The load balancer knows 
about each application server and will send the requests to all different backend 
servers. If, at any point, our servers cannot handle the requests coming in, we can 
spin up another EC2 instance and tell the load balancer about it, which will then start 
sending it requests.



Deployment and Scalability

[ 262 ]

We will need a new role, so create the haproxy directory under ansible/roles  
and add files, tasks, and templates under this directory. Create main.yml  
under tasks and add the following to it:

---
  - name: Install HAProxy
    apt: name=haproxy=1.4.24-2 state=present

  - name: Enable HAProxy
    copy: src=haproxy_default dest=/etc/default/haproxy

  - name: Create config
    template: src=haproxy.cfg.j2 dest=/etc/haproxy/haproxy.cfg

  - name: HAProxy Restart
    service: name=haproxy state=reloaded

This is a simple list of tasks. Install HAProxy and then configure it. The second task 
needs the haproxy_default file, so create this under haproxy/files. This file only 
has one line:

ENABLED=1

This will allow HAProxy to be controlled by its init script.

The next task requires a template; so, let's take a look at the template we need to 
create. After creating templates/haproxy.cfg.j2, add this code to the beginning  
of the file:

global
  chroot /var/lib/haproxy
  user haproxy
  group haproxy
  daemon

defaults
  log global
  contimeout 5000
  clitimeout 50000
  srvtimeout 50000

listen stats :1936
  mode http



Chapter 9

[ 263 ]

  stats enable
  stats hide-version
  stats realm Haproxy\ Statistics
  stats uri /
  stats auth user:password

frontend public
  mode http
  bind *:80
  option httplog
  option dontlognull
  option forwardfor
  acl is_websocket path_beg /socket.io
  acl is_websocket hdr(Upgrade) -i WebSocket
  acl is_websocket hdr_beg(Host) -i ws
  use_backend ws if is_websocket
  default_backend node

Most of this is just boilerplate HAProxy config settings. The interesting parts  
are the Access Control Lists (ACLs). The ACLs check whether the request is for 
socket.io if the upgrade header is for WebSocket or the host header begins with  
ws. This should catch any WebSocket traffic. We then specify the ws backend to be 
used if it is websocket and backend node if not. Now, let's create the backend that 
does the load balancing:

backend node
  mode http
  cookie SERVERID insert
  balance leastconn
  {% for role in groups['tag_Chat_Deploy'] %}
    {% for server in groups['tag_' + deploy_env + '_Env'] %}
      {% if role == server %}
      server {{ server }}  
        {{hostvars[server]['ec2_private_ip_address'] }}:3000  
        cookie {{ server }}
        {% endif %}
        {% endfor %}
        {% endfor %}



Deployment and Scalability

[ 264 ]

Backends have a list of servers that HAProxy will balance the load across. This 
backend will use the leastconn balancing, which will pick the server with the least 
connections for each new connection. We also use our double for loops to find all the 
servers that are in our deployed environment. The line cookie SERVERID insert will 
create a cookie with the server's public DNS name based on the server line. We do this 
so that we can see which server is responding to a request. Doing this will also turn on 
sticky sessions. This means that once a browser has connected to a server, HAProxy 
will send all the requests to the same server. Here is the WebSocket backend:

backend ws
  mode http
  option http-server-close
  option forceclose
  no option httpclose
  balance leastconn
  cookie SERVERID insert
  {% for role in groups['tag_Chat_Deploy'] %}
  {% for server in groups['tag_' + deploy_env + '_Env'] %}
    {% if role == server %}
    server {{ server }} {{  hostvars[server]['ec2_private_ip_address'] 
}}:3000 cookie {{ server }}
    {% endif %}
    {% endfor %}
    {% endfor %}

The backend is essentially the same. We want a list of all our Socket.io servers.

The next step is to create a haproxy.yml file in the root of ansible. Here is how it 
should look:

- hosts: tag_HAProxy_Role
  remote_user: ubuntu
  sudo: yes
  roles:
    - haproxy

Now that we have everything ready we can run the HAProxy role. Open a terminal 
and run this command:

(venv)$ansible-playbook -i ec2.py haproxy.yml --limit tag_prod_Env 
--extra-vars "deploy_env=prod branch=master"



Chapter 9

[ 265 ]

Our production HAProxy server will have a static IP and a DNS name, so we should 
be able to load it in our browser and the application should work. To test load 
balancing, we will want to create another instance, add the tags (Chat Deploy and 
prod Env), and run our appdeploy and haproxy roles. After HAProxy restarts, we 
should be able to load up the application in different browsers and check the cookie 
to see different servers responding.

Don't forget to add the correct security group so that the 
servers can communicate. Also, if we are just testing this out 
and do not have a static IP, we can just go to our instance list 
and get the IP from there.

The next screenshot shows the cookie that will be set:

Automating roles
We have six roles with five different task files. We can create another hierarchy  
of files that can run multiple roles at a time. Create two files, one named site.yml 
and the other named deploy.yml. Here is what will go in site.yml:

---
  - include: redis.yml
  - include: rabbitmq.yml
  - include: appdeploy.yml
  - include: worker.yml
  - include: haproxy.yml

Here is deploy.yml:

---
  - include: appdeploy.yml
  - include: haproxy.yml

We can then run them just like another task file using the following command:

(venv)$ansible-playbook -i ec2.py site.yml --limit tag_prod_Env --extra-
vars "deploy_env=prod branch=master"

We can automate this even more. Create a file named deploy.sh in the root of the 
project. First, run this command to make it executable:

$chmod a+x deploy.sh



Deployment and Scalability

[ 266 ]

Then, add this code to it:

#!/bin/bash

if [[ $# -ne 3 ]]; then
  echo "Please pass in the playbook, environment, and git branch"
  exit 1
fi

source $2_secret.env

source venv/bin/activate

cd ansible

ansible-playbook -i ec2.py $1 --limit tag_$2_Env --extra-vars "deploy_
env=$2 branch=$3"

if [ $? -ne 0 ]; then
  echo "Did you remember to add the SSH key with ssh-add? Do you have 
an $2_secret.env file with the AWS credentials? Are the instances 
tagged with tag_$2_Env?"
fi

This is a bash script that will automate the setting up of the environment and 
running Ansible. If our secret.env file has some Python templating, the script  
will complain about not finding {%, but it will still process the reason why we  
want to source it, the AWS credentials. We can then run it as follows:

$./deploy.sh site.yml prod master

This will run site.yml in the production environment from the Git branch master.

A summary of Ansible
Ansible is very powerful and extensible. With our current setup, we can easily  
create an entirely new environment from nothing in just a few minutes. We will  
now review what we learned about Ansible.

First is roles. Roles allow us to group hosts and tasks together. Inside a role, there  
is a directory structure that we can follow, which makes loading relative assets easy. 
We can also use variables to make roles reusable. We did this with the appdeploy 
role. It was used for the main application and workers. We could even use this in 
another project that requires Node.js and forever running. 



Chapter 9

[ 267 ]

Any time we want to add another role or database, for example, we just have to 
create a new directory under roles and create tasks, files, templates, and anything 
else. This brings us to the next point: Ansible's inventory groups. Our inventory was 
built from EC2 that groups the servers together by tags. This allows us to split our 
servers by role and environment. If we needed another production web server, we 
just create a new instance with the needed tags and run our Ansible task. If we were 
not using EC2, we could still use inventory groups. We will just need to create an 
inventory file that looks as follows:

[tag_Chat_Deploy]
10.0.0.1
10.0.0.2
[tag_Redis_Role]
10.0.0.3
[tag_RabbitMQ_Role]
10.0.0.4
[tag_HAProxy_Role]
10.0.0.1
[tag_Worker_Deploy]
10.0.02

We just need to match the tags that Ansible is looking for with a list of IP addresses. 
In all the Ansible commands we have been running, we have used a --limit 
parameter. If our inventory only has one environment in it, we could drop this  
from the Ansible command. For example, if we created prod_inventory and  
dev_inventory, we could use this command:

$ansible-playbook -i prod_inventory site.yml --extra-vars "deploy_
env=prod branch=master"

With Ansible, if we can script and run something locally, then we can do this 
remotely on our server. There are many modules that we haven't even touched  
and even a repository for roles named Galaxy (https://galaxy.ansible.com/). 
Ansible is free, but it does have a product that we can purchase. This product just 
eases management even more.

Creating new environments
We can easily create a new environment for our application. Let's say, we want  
a test environment. All that we will have to do is create the environment files 
(regular and secret), create the instance(s) with the correct tags, and launch the 
deploy script. Because we use tags, we can easily create an environment that exists 
on only one instance. We will not even have to add the environment files to version 
control as the script will copy them over if they exist.

https://galaxy.ansible.com/


Deployment and Scalability

[ 268 ]

Scalability
We have automated the rolling out of our code to servers in the cloud, but how  
is this scalable? The first thing we take a look at is a diagram of how our  
application looks:

Node.js running our
Application

Redis

RabbitMQ

Chat Worker
Log Worker

HAProxy
Public IP Address

Node.js running our
Application

Node.js running our
Application

The front public-facing address of our site will be the server that is running 
HAProxy. In this setup, we will only want one server running HAProxy, and if it 
is production, this site should have a static IP and a public DNS record. HAProxy 
is very efficient at load balancing, and one of them can handle a lot of traffic. 
Eventually, we can run two behind a balanced DNS record, for example, but this is 
out the scope of this book.

HAProxy will then send the requests to one of our application servers behind 
it. These servers do not need a public-facing DNS record. They only need to 
communicate with the HAProxy server (and technically our computer so that SSH/
Ansible will work). Each one of these servers will only be running one instance of 
Node and our application. We could even configure Ansible to kick off multiple 
instances of Node. Node.js is single-threaded, so most computers should be able to 
easily handle Node.js running once for each core. We will only need to update our 
start script and the HAProxy config to do this.

Each Node.js instance will create a connection to Redis. This is important as it 
keeps state out of the application layer. Redis is the only server that has complete 
knowledge of who is logged in (through connect sessions) and what rooms and 
messages exist (our application). Our application layer just takes a request, asks 
Redis what's going on, and returns a response. This high-level view is true if Node.
js or Socket.io serves the response. If the session only lived in the memory on one 
machine, then when another machine responded to the request, the machine would 
not know that the user was logged in.



Chapter 9

[ 269 ]

RabbitMQ is used for logging. Exactly like Redis, each application server creates its 
own connection. I will admit that this is not a great example of RabbitMQ's abilities. 
We can consider an example though.

Our example uses RabbitMQ for e-mails. Currently, our application does not send 
any out. E-mails can be resource-intensive. This does not mean that it will take up 
a lot of CPU cycles, but rather it relies on another server to respond. If we sent an 
e-mail during an HTTP response, a timeout could cause our application to appear 
slow and unresponsive. Let's say that we want to send out an e-mail when someone 
first signs up and when someone sends a direct chat (a feature we don't currently 
have). The first thing to do is create a worker that will watch an e-mail queue, which 
we create in RabbitMQ. Then, we will create a code that will easily add a message 
to this queue. This would be similar to our logging code. Each layer would only 
worry about what it was designed to do. We also could quickly change our e-mail 
processor. We just stop the e-mail worker and run our deploy script for the worker.

This brings us to the last layer of our application, workers. The setup for these is 
very similar to that of the application layer, Node.js, start and stop scripts. The 
difference is that the workers respond to RabbitMQ queues or a time interval.

Different types of scalability
There are two different types of scaling, horizontal and vertical. We will discuss 
which applies to our application layers.

Horizontal
Horizontal scaling involves adding more servers to respond. This method is harder 
to implement, but it can scale indefinitely. Our layer with Node.js web servers scales 
horizontally. If we notice that our application is timing out or is slow, we can spin up 
more instances to handle the load.

Horizontal scaling requires that no application state be stored on the server.  
This makes sense because we can never be sure if the same server will respond  
to requests.

The worker layer also can scale horizontally. If the workers cannot keep up,  
then we can create more workers.



Deployment and Scalability

[ 270 ]

Vertical
Vertical is the simplest way to scale. The downside to this is that it has a finite limit. 
If we use AWS as our provider, we can only currently create instances up to a certain 
number of CPUs and GBs of RAM (32 and 244 currently). It involves giving more 
resources to a server. In our build HAProxy, Redis and RabbitMQ can all scale 
vertically. If we run out of memory for Redis, then we can use a larger instance to 
run Redis. With the current maximum resources that AWS has, we should not run 
into a ceiling until we have a very, very large site.

All the vertical scaling servers can scale horizontally as well. The topic 
is just outside the scope and length of this book. HAProxy can handle a 
lot of traffic out of the box. If necessary though, we could run multiple 
HAProxys balanced behind a round-robin DNS entry. Redis could be 
sharded. Sharding involves splitting requests based on a factor of the 
request. RabbitMQ can be clustered to serve more requests.

Summary
We covered how to create and launch instances in AWS. If we did not want to use 
AWS, there are many other cloud providers such as DigitalOcean and OpenShift. 
Then, we created Ansible scripts to install and deploy our application. Finally,  
we covered how this application setup can be scaled horizontally and vertically.

In the next chapter, we will discuss how we can troubleshoot and debug  
our application.



Debugging and 
Troubleshooting

We are finally at the last chapter. We started with an empty directory and built a 
full application. We will not be adding anything else to the application. We will 
investigate how to debug and find memory leaks in our code. Here is what we will 
cover in this chapter:

• Inspecting requests
• How to set debug breakpoints in our codebase
• CPU profiling
• Heap snapshots to help track down memory leaks

Node packages
This will be a completely separate, new application. We will need to create a  
new root directory. We are going to purposefully create issues so that we can 
investigate them. We are going to introduce two Node packages, node-inspector 
and webkit-devtools-agent. Add these two packages to our new package.json 
file under devDependencies. We will build small example Express applications to 
test with. Here are the versions at the time of writing this:

• node-inspector: 0.7.4
• webkit-devtools-agent: 0.2.5
• express: 4.5.1

Then, just run npm install. We may want to install node-inspector and  
webkit-devtools-agent globally by using the global flag with npm install.  
This will allow us to debug any Node.js application on our machine.



Debugging and Troubleshooting

[ 272 ]

Using Chrome Developer Tools
We will need Google Chrome (http://www.google.com/chrome) for this chapter.  
It is a free download, and if you currently do not have it, install it before proceeding.

Chrome has great developer tools that allow us to see exactly what is going on with 
the HTML, CSS, and JavaScript on any page. We will introduce tools quickly here 
before really digging into them later in the chapter. The first thing to do is to get the 
developer tools to show. The easiest way is to right-click anywhere on a web page 
and select Inspect Element. A pane should come up from the bottom of the screen by 
default. There should be eight different tabs across the top of the pane, as shown in 
the following screenshot:

Google is always updating Chrome and the name, order, and 
functionality could change at any point in the future. Although, for the 
most part, the core task of each tab has remained static for a while now.

Elements
The Elements tab allows us to see every HTML element that is on the page. It will 
highlight the elements in the page as we hover over them, and if we click on them, it 
will load more information to the right. The additional information shows what styles 
are applied and/or ignored and what the actual computed values are. We will not use 
this for our debugging, but it is indispensable for any CSS/frontend troubleshooting.

Network
The Network tab displays every request made. If this tab is blank, we will need to 
reload the page. It will only capture this information when it is open. We should 
be able to follow the entire loading process with this tab. The first request will be 
the HTML. Then, we should see many requests for CSS, JavaScript, fonts, and so 
on depending on the page. There is a lot of information that can be picked up from 
here. First, the HTTP method, the HTTP status code, what the type was, what made 
the request, whether or not the file was cached, and the timing of the request. Then, 
when we click on each request, we can get even more information. We can then see 
the request and response headers, the raw response, and any cookies set. We will 
look at a few of these features later. This tool is really useful when we need to see 
requests. A great example of this is during an Ajax call. The Network tab will log all 
the information about a request that we will need to help troubleshoot these calls.

http://www.google.com/chrome


Chapter 10

[ 273 ]

Sources
The Sources tab will be where we will spend a lot of time. Because of this, we will 
not spend much time in the introduction. All of the source for the JavaScript loaded 
in a page will be here. We can then set break points and start debugging, step in, 
step out, and step over. The node-inspector package will allow us to do this for 
JavaScript on the server, instead of just in the browser.

Timeline
Timeline has three different ways of capturing events and data. This is shown in the 
next screenshot:

This tool captures data as it happens on the page, so we can inspect it later. Events 
will capture every event that happens on the page irrespective of whether it is 
a JavaScript event, network, or render and layout. It will track how long and in 
what order these will happen. This is information that was impossible to gather 
before. Frames is great for animation. It will break down what is happening in each 
rendering frame. This is helpful if we have to track down why an application is not 
rendering at 60 fps. Finally, memory will track the heap and a summary of what 
is stored in the heap. The summary includes documents, HTML elements, and 
listeners. We will not be using this much.

Profiles
Profiles is the detailed memory information that Timeline does not give us. We 
can take heap snapshots and inspect every object that is currently in the heap. This 
tool even lets us take multiple snapshots and compare them. We will be doing this 
later in the chapter. In addition to heap snapshots, we can record heap allocations 
and watch changes in the heap as they happen. Both of these tools are indispensable 
when tracking down memory leaks.

Finally, this tab has CPU profiling to find out which functions are the most CPU 
intensive. We will cover this feature later in this chapter.



Debugging and Troubleshooting

[ 274 ]

Resources
The Resources tab lists out all of the items that the browser is tracking locally. 
This includes cookies, local storage, Web SQL, and anything in the application 
cache. I had used this in Chapter 1, Backend Development with Express, and Chapter 9, 
Deployment and Scalability, to show the cookies that were set. We will be very happy 
this exists when we are building anything that uses these stores. Again, we will not 
cover this here.

Audits
The Audits tab is essentially a performance best practice validator. It will run 
through the currently loaded page and let us know what we can do to make our 
page load more efficient and performant. The options and recommendations are  
self-explanatory, so we will not spend time here.

Console
The final tab is Console. This is the often-referenced console in console.log. 
Anything sent through console.log will show up here. Logging to console  
should always be preferred to using an alert. If what we want to debug is an  
object, the console will allow us to expand all the properties and dig into the  
object, whereas an alert will display [object Object].

We also can run JavaScript directly in the console. It is an easy-to-use REPL. We can 
test the code to see how it will execute. One thing to remember is that it will run in the 
global scope. This means that we will not have access to any functions and variables 
that are hidden inside closures or immediately invoked functions. Many JavaScript 
libraries make sure that they only expose the bare minimum of variables to the global 
scope. We will look at how to view these variables in scope later in the chapter.

We have gone through each of the developer tools that Chrome ships with. Each tool 
was only slightly touched on. These tools have a lot of options and use cases that we 
cannot cover here. If we need to know what is happening in JavaScript in a browser, 
Chrome has a tool for it.

Inspecting requests
HTTP is request based. The browser makes a request and our web server responds 
with a response. This interaction is hidden from users in all browsers, for a 
good reason. When developing applications, we will have the need to view this 
interaction. For this we will use Chrome's Network tab.



Chapter 10

[ 275 ]

This will be our first new application, so create a directory named requests.  
This directory will be the root of our project. The first thing we will do is use a  
basic Express server. This code is right from Express' API documentation. It is the 
most basic functioning 'hello world' we can build. Create an app.js file and add 
the following code to it:

var express = require('express');
var app = express();

app.get('/', function(req, res){
  res.send('hello world');
});

app.listen(3000); 

Next, open Chrome Developer Tools and the Network tab. Then, open  
http://localhost:3000. We should see something like the next screenshot:

This is a great summary of info that we care about as web developers. We can 
quickly see the method, status, and the timing of the request. If our page had sent 
some Ajax requests, each one would be here with this information. 5 years ago,  
this data was difficult to get.

Next, click on the actual request to see both the request and response headers. 
Knowing what headers were sent and what headers were received so easily  
is invaluable.

Now, let's poke around. We will add a header and change the status code.  
Modify the response as follows:

app.get('/', function(req, res){
  res.set('Important-Header', 'test-value');
  res.send(500, 'hello world');
});



Debugging and Troubleshooting

[ 276 ]

This is completely contrived, but illustrative of the ease in which we can see the 
browser to server exchange. Our Network tab should now look as follows:

We can see our new status being set if we click on the network request.

The final thing we will do is to mock up an example Ajax request. First, remove the 
500 status code from our response as follows:

res.send('hello world');

Then, we will have to create a POST route for our Ajax request. Add this method to 
app.js right under the GET route as follows:

app.post('/', function(req, res){
  res.send('<h1>POSTED</h1>');
});

Reload Node.js and our page. Next, paste the following code into the  
JavaScript console:

var xhr = new XMLHttpRequest();
var data = new FormData();
data.append('test', 'test-value');
xhr.open('POST', '/', true);
xhr.send(data);

This is a very basic asynchronous XML HTTP request (the first A and X in Ajax)  
sent with a simple form attached. If we switch over to the Network tab, we should 
see that it logged our request.



Chapter 10

[ 277 ]

This looks like the request we just made. Let's click on the request we just  
made and view the headers. The headers should show that the content-type is 
multipart/form-data and also have a request payload of the data we set. Another 
thing we can view is the rendered and raw response. Preview will show how the 
browser would have rendered this and Response is the raw response sent. These can 
be very helpful if we need to see the output. An example of this would be when we 
create a server error in development and the returned response has a stack trace.

Something to note is that as far as JavaScript is concerned, this Ajax request was 
not fully processed. We only started the request, but never set any listeners for state 
changes for the response. Everything we just looked at is what Chrome tracked.  
Even if there is some JavaScript code three layers down that we did not write that 
makes an Ajax request on our page, we can follow it.

Be careful when using XMLHttpRequest and FormData. Each browser 
has their own idiosyncrasies with these objects. In the case of FormData, 
the browser might not even support it. More code is required to use 
XMLHttpRequest if we care about the response that comes back. In our 
examples, we are using the current version of Chrome, so both of these 
should work.
Incidentally, this is where jQuery can bring a lot of value when 
supporting multiple browsers.

This was a quick overview, but we touched on the key features that every web 
developer will need at some point during troubleshooting. This tool will save hours 
of debugging. There will never be a question about whether a request was made and 
with what headers and payload.

Debugging
Breakpoints are a developer's best friend. They are much more useful than using 
console.log() everywhere. We will explore how to set a breakpoint on both the 
front and backend.



Debugging and Troubleshooting

[ 278 ]

Frontend debugging
First up is frontend debugging. Before we can do this, we must create some 
JavaScript to debug. Create a new directory named static with a file named  
debug.js in the directory. Here is the code that will be in debug.js.

(function(){
  var body = document.body;
  (function(){
    var div = document.createElement('div');
    body.appendChild(div);
  })();

})();

Two simple self-executing functions (to create different scopes) that will add a div  
to the page. Nothing exciting here. Next, we must add this script to our response. 
Open up app.js and add or change the following lines:

var express = require('express');
var app = express();

app.use(express.static(__dirname + '/static'));
app.get('/', function(req, res){
  res.set('Important-Header', 'test-value');
  res.send('hello world<script src="/debug.js"></script>');
});

app.post('/', function(req, res){
  res.send('<h1>POSTED</h1>');
});

app.listen(3000);

We are building this very quickly and dirtily. This is not valid HTML, but Chrome 
will process it. Reload Node.js and Chrome. Open up developer tools, click on the 
Sources tab, and expand localhost:3000. We should see our new JavaScript file there, 
as shown in the next screenshot:



Chapter 10

[ 279 ]

Click on debug.js and it will load in the panel. Then, set a breakpoint on line 4  
by clicking on the line number. A blue arrow should appear showing that a 
breakpoint is set.

Reload the page and processing should stop at line 3. From here, we can resume 
execution, step over, step into, and step out, as shown in the next screenshot:

If these concepts are unclear, review Google's debugging 
documentation at https://developer.chrome.com/devtools/
docs/javascript-debugging.

Step over the first line and we should then be able to see each scope under Scope 
Variables. There will be Local, Closure, and Global. Any variable that can be 
referenced will be here under the appropriate scope. We can expand each object  
and see its properties and methods, as shown in the following screenshot:

If we are looking for a specific property, we can Watch Expressions to quickly view 
it. Let's resume the page execution and then click on Elements. We should see that  
a blank div has been added to the end of the body.

https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging


Debugging and Troubleshooting

[ 280 ]

Reload the page again so that it stops at our breakpoint again and step over to line 5. 
We will now click on the Console tab. In the console, type the following line of code:

div.id = 'console-test';

Then, return to Sources and let the execution resume. Lastly, go back to Elements 
and notice that our div now has an ID of console-test. This demonstrates that 
when debugging, the console executes in the context of the breakpoint and not the 
global context. If we use this code in the console after the page is loaded, we will get 
a reference error as div does not exist in the global scope. The value of this should  
be clear without explicitly running through every possibility.

Chrome even makes debugging minified code easy as it has Pretty 
Print that will make the code human readable again. We can even 
make minified code look like the source code with a source map. 
We can automate the creation of a source map with Grunt using 
grunt-concat-sourcemap.

Backend debugging
Debugging the frontend is easy to perform, as Chrome loads JavaScript from the 
server to parse and compile it. The browser is already doing this. How do we debug 
JavaScript that runs on Node.js? We do this with node-inspector. This is installed 
locally or we can install it globally with the following command:

npm install -g node-inspector

Once this is installed, we can then run this command to debug our application.  
We should stop the current Node.js server to let this one start serving.

node-debug app.js

Chrome might open up a tab to debug. If not, we can manually connect to the 
debugger at http://localhost:8080/debug?port=5858 by default. The page that 
loads is a subset of the full developer tools available in Chrome. It has Sources and 
Console. If we think about it, this makes sense. There is no DOM or Network, so 
these tools are not useful.

We will set the breakpoint on line 7. When we load up our application in another 
tab, it will break. Debugging Node.js is exactly the same as debugging frontend 
JavaScript. The same tools and layout are here. We can step through our code, 
inspect any variable that has a reference in the current scope, and even load up  
any node_module code and set breakpoints.



Chapter 10

[ 281 ]

Once the code is paused at the breakpoint, switch over to the Console tab.  
Then, run the following line of code in the console:

res.set('console-test', 'test');

After the code executes, resume the execution of the code with the debugging tools. 
Jump back over to our tab that is loading the site and look at the Network tab. We 
should see a new response header console-test: test. In the exact same fashion 
as the frontend, we can execute the code in the context of the paused scope.

Debugging summary
Node-inspector allows us to use Chrome developer tools to debug the code running 
in Node.js. This is awesome and very powerful. If you currently use Chrome to 
debug JavaScript, then I am sure you are already sold on this. If you are not using any 
JavaScript debuggers, Chrome and node-inspector will make your job much easier.

CPU profiling our application
Our next troubleshooting method is going to be CPU profiling. This will let us know 
what functions are the most CPU intensive. For this, we will use webkit-devtools-
agent. The setup for this tool is a little more difficult than the last.

The first thing we need to do is add a reference to the module. Open up app.js  
and add this line to the top, as highlighted in the following code:

var agent = require('webkit-devtools-agent');
var express = require('express');
var app = express();

Technically, this is all we need to add to our code. If this was a production codebase, 
we could check whether we were in development or not and load this module.  
We can start the node at this time.

The next step is to send a USR2 signal to the process-running node. Signals are a way 
to notify a process. A common signal is TERM that tells the process to start shutting 
down and to terminate. USR2 is a user-defined signal. This means that developers 
can decide what to do when the signal is received. Webkit-devtools-agent uses 
this signal to start debugging. We can do this with a few different commands. If 
the pgrep command is available, we can use it. Open another terminal and run the 
following command:

pgrep node



Debugging and Troubleshooting

[ 282 ]

This should return the PID (Process ID) of node. If pgrep does not exist on our 
system, we can use the next command:

ps -A | grep -m1 'node app.js' | awk '{print $1}'

This will do the same thing as pgrep. It will list out the whole process, then use grep 
for our command that started the server, and finally only print out the PID.

We can take either of these and then pipe that into the kill command, which will send 
the process a signal. If we are running Linux, this will kill -SIGUSR2 and Mac OS X will 
kill -USR2. Here is what the two different commands look like on Mac OS X:

pgrep node | xargs kill -USR2

ps -A | grep -m1 'node app.js' | awk '{print $1}' | xargs kill -USR2

The xargs command will take the input from the piped-in command and use it as 
an argument for the next command. If Node is running with the webkit-devtools-
agent module loaded, we should see an output like the next screenshot in our  
Node terminal:

If we send the USR2 signal again, it will turn off the agent. The next step is to load 
up http://c4milo.github.io/node-webkit-agent/26.0.1410.65/inspector.
html?host=localhost:9999&page=0 in our browser. If everything worked 
correctly, we should see Chrome Developer Tools. The only tab we can really use 
here is the Profiles tab. We will use Collect JavaScript CPU Profile in this section. 
Make sure that the radio button for this is selected and click on Start at the bottom 
of the page. Then, load our site a few times in another tab. Lastly, click on Stop. We 
should get an item under CPU PROFILES in the left column. We can click on this to 
get a breakdown of the percentage of the time that was spent during processing. In 
this example, most of the time was spent doing nothing because our application is 
not very CPU intensive. We will change that.

In app.js, create a new function called CPUWaster and execute it on the root GET 
route. Here is what it should look like:

function CPUWaster(){
  var j;
  for(var i=0; i < 10000000; i++){

http://c4milo.github.io/node-webkit-agent/26.0.1410.65/inspector.html?host=localhost:9999&page=0
http://c4milo.github.io/node-webkit-agent/26.0.1410.65/inspector.html?host=localhost:9999&page=0


Chapter 10

[ 283 ]

    j = Math.sqrt(Math.pow(i, i));
  };
}

app.get('/', function(req, res){
  CPUWaster();
  res.set('Important-Header', 'test-value');
  res.send('hello world<script src="/debug.js"></script>');
});

This function just loops 10 million times and gets the square root of the squared 
counter. A true CPU-wasting function. Note that this will happen asynchronously 
to the response that is returned. This is fine for our example as the CPU will still 
process through the loop.

Stop Node and restart it. Our Profiles tab will show a Detached from the target 
message. We will need to resend the signal to the process, because it is a new 
process, and reload our Profiles tab.

After everything has reloaded, start our CPU profile again and load the root  
page 10 to 20 times. Our profile should have a new second place function, 
CPUWaster. The actual percentage will vary, but we should see roughly 25 to 35 
percent taken up by CPUWaster. The function name, file, and line number should 
also be shown. It should look similar to the next screenshot:

Like most of the other examples in this chapter, this is very contrived, but 
illustrative. CPU spikes can create issues in Node.js as we can tie up the event loop. 
This stops Node.js from being able to serve any more clients and making any current 
requests seem very slow. We have the tools to investigate any slowness or CPU 
spikes. If we must do a task that is very CPU intensive, we can always use a message 
queuing system to offload this process elsewhere.

Taking heap snapshots
In JavaScript, a heap snapshot will have all the objects that are not going to be 
garbage collected. This is perfect for tracking down memory leaks. We had briefly 
touched on memory leaks in Chapter 6, Using Bower to Manage Our Frontend 
Dependencies. Here, we will create some memory leaks on both the backend  
and frontend to see what they look like.



Debugging and Troubleshooting

[ 284 ]

First, we will create a memory leak in Node.js. Create a new file named leak.js  
and put the following code into it:

var agent = require('webkit-devtools-agent');
var express = require('express');
var app = express();
var http = require('http');
var server = http.createServer(app);

server.setMaxListeners(1000000);
app.use(express.static(__dirname + '/static'));

app.get('/', function(req, res){
  //no-op listener
  for(var k=0; k < 1000; k++){
    server.on('request', function(e){var t = express;});
  }
  res.set('Important-Header', 'test-value');
  res.send('hello world<script src="/debug.js"></script>');
});

server.listen(3000);

This is very similar to app.js. The main difference is that each GET request will add 
a thousand event listeners to the request event of the server. What's even worse than 
just adding the listeners is that each one is an anonymous function that creates a 
closure. Once we have added an anonymous function as a listener, it is very difficult 
to remove it as we do not have a reference to the function anymore. Closures are 
very useful, but they are also dangerous. If we are not careful, we can make objects 
that will not be garbage collected.

Start Node.js running this code, send it a USR2 signal, and load our profiling tools 
in Chrome. This time, we will select Take Heap Snapshot instead of CPU profiling. 
After selecting the radio button, click on Start. Click on the snapshot to view all the 
different types of objects in it. My snapshot is 7.2 MB. This might vary as Chrome 
can have extensions loaded, which will increase the size. The actual size is not the 
important part as we just want a baseline of how much memory is being used. The 
table to the right will give us more information about how that 7.2 MB is taken up. 
We should see something similar to the next screenshot:



Chapter 10

[ 285 ]

The first column is what type of object the row is summarizing. In our example, it is 
a generic object. Next is distance. This is the distance from the garbage collector root. 
Then, it is the count, which is explanatory. Next is Shallow Size. This is the amount 
of memory that the objects are taking up. Finally, there is Retained Size. This is the 
amount of memory that will be freed up if these objects were garbage collected. This 
can be larger as objects will have references to other objects. This reference will keep 
the other object from being garbage collected. In our example, I selected the top row 
and these 529 objects account for 77 percent of all the memory taken.

Searching for memory leaks involves taking a baseline snapshot, the snapshot we 
just took, and then taking an action. We will load the root page in a browser for our 
action. Then, we take another snapshot and check to see what has changed. If there 
are no memory leaks, we should not see more objects being retained. If there are 
more objects, this means our action is keeping a reference to something it should 
not. Reiterating what I stated in Chapter 6, Using Bower to Manage Our Frontend 
Dependencies, event listeners are a major source of memory leaks and this is our  
leak here. Let's catch it.

Load up our site in a browser three times. Then, go back to the developer tools and 
take another heap snapshot by clicking on the record button at the bottom left.

This snapshot will be larger. This is usually not good. Sometimes, it is alright for 
memory to grow. An example of this is if we lazy load a database connection. Our 
first snapshot will not include the memory allocated for this connection. The request 
can then load the database connection allocating more memory. A key point to 
take from this is that each request should not take more and more memory. Once a 
resource is loaded, it should not continue to eat up memory.

It is impossible to track down the leak looking at the entire snapshot. We want to 
see what changed using the comparison view. At the very bottom of the page, there 
should be a dropdown on Summary. Click on it and change it to Comparison. If we 
had more snapshots, we could choose which one to compare to, but as there are only 
two, it will compare with the other.

The comparison view changes the columns. There is now a column named Delta. 
This will show us the difference in counts between the two snapshots. Click on the 
column header and this will make the table sort by Delta from high to low. This 
is usually a good place to start when looking for memory leaks. We want to know 
where the largest change in objects occurred. In our example, this will bring up 
closure with a delta of 3028. 



Debugging and Troubleshooting

[ 286 ]

We can then expand the row and the first object. It shows that it was an anonymous 
function that is holding on to the express and server variables.

The following table shows a list of objects which will have the retaining tree. This is 
a list of objects that is holding a reference to the object we are currently investigating. 
In our example, we see it is an Array in request in _events of the Server object,  
as shown in the following screenshot:

This is our leak. We know that we are adding a thousand listeners on every request 
and we made three requests. This lines up very nicely with our delta of 3,000 extra 
closures. We will probably never have such an easy memory leak to track down in 
real life. Memory leak hunting is all about searching the heap for objects that should 
have been garbage collected. It definitely helps to know what objects should be there. 
Another useful practice is to avoid anonymous functions as much as possible. We can 
track the objects better if each one had a name. Most leaks will not add a thousand 
extra objects after each action. Most likely, it will be a few or even one. This means  
that we need to take an action a few thousand times to create enough data to search.

Frontend memory leaks
Frontend memory leaks were not a problem. If we go back in time, web pages would 
be reloaded many times throughout a visit. This would reset any memory leaks. 
Today, there are many single-page applications (much like the one we built) where a 
user will not reload a page during their entire visit. Memory leaks will grow and can 
cause problems.



Chapter 10

[ 287 ]

We will now create some leaks on the frontend. We will continue to use the same 
server and just create a static JavaScript file. Create a file at static/feleak.js  
and put the following code into it:

var badArray = [];
var body = document.body;

function createLeak(){
  var div = document.createElement('div');
  body.appendChild(div);
  div.addEventListener('click', function(){body.innerText='HEY!';});
  badArray.push(div);
  body.removeChild(div);
}

function bigLeak(){
  for(var i=0; i<10000; i++){
    createLeak();
  }
}

This is a very heinous leak. Not only will it keep a reference to each div that is 
created, but it will also keep a closure for each. Now, we have to load this script  
on the page. Modify the GET route in leak.js to this:

app.get('/', function(req, res){
  res.set('Important-Header', 'test-value');
  res.send('hello world<script src="/feleak.js"></script>');
});

We can now load this page up in our browser and start using the built-in frontend 
tools in Chrome. After the page is loaded, open the developer tools and go to the 
Profiles tab. Select Take Heap Snapshot and click on Take Snapshot. This first 
snapshot should be very small, somewhere around 2 MB. Depending on which 
extensions are loaded, this could be larger. We can now create the leak. Click over  
to the Console and run this three or four times.

bigLeak()



Debugging and Troubleshooting

[ 288 ]

Then, take another snapshot. This should add multiple megabytes of memory.  
We can see what changed by changing the view from Summary to Comparison.  
This should all sound familiar. We should see array, closure, HTMLDivElement, 
and Detached DOM tree near the top if we sort by objects created between the 
snapshots. It should look similar to the following screenshot:

The array is keeping a reference to each div. Even though we remove it from the 
DOM, it is still kept around. This is where the detached DOM trees are coming 
from. A detached DOM is almost never good. It usually means that we removed 
an element, but something is still referencing it. The closures are held because the 
click listener references a variable in the outer scope. Each listener is an anonymous 
function, so each one will have its own closure.

Most of the time, we will not come across such large memory leaks. All it takes is 
one reference that we did not account for. For example, when using jQuery, it is 
very easy to select many elements and forget about them. If we remove or replace 
the element, it will still be held onto. Memory leaks also come from poor closure 
management. JavaScript is very forgiving and will allow us to reference variables in 
many different scopes. If the function sticks around, it will keep all the other scopes 
alive along with it.

We can clean up our leak here by getting rid of badArray. Load up the console  
again and execute the following line:

badArray = null;

Then, take another snapshot and all the elements and closures should be gone.



Chapter 10

[ 289 ]

Memory leak summary
Finding memory leaks is not easy. There is no shortcut. Even a page with just a few 
lines of JavaScript will have thousands upon thousands of objects in the heap. When 
searching, it helps if we can execute an action thousands of times. This will make very 
small leaks more apparent. Once a leak is identified, we must walk through the logic 
and ask if each reference is required. Can we pass the value instead of referencing a 
closure? Can we encapsulate an action with the variables it needs? There is no way to 
answer these questions without thinking hard about our application.

Summary
At the time of writing this, Chrome has, in my opinion, the best developer tools.  
We can capture, track, and inspect almost anything about a web page. Firefox, 
Opera, Safari, and Internet Explorer all have developer tools that would have  
blown away any developer a few years ago. The fact that there are multiple  
great browsers makes right now a great time to be a web developer.

In this chapter, we looked at how to view the network exchange between browser 
and server. Then, we looked at debugging. We can debug JavaScript on both the 
server and browser. Finally, we looked at profiling the CPU and memory. Both 
of these resources are becoming more and more important to track as JavaScript 
applications become larger and longer lived.

This concludes our journey. We have touched on a lot of different topics. There is 
no way that we could have comprehensively covered each topic. We did cover what 
any developer should know about each of these topics. This knowledge can now be 
easily built on as these are not new concepts anymore. We have built an application 
from start to deployment. We can build on this experience and knowledge to build 
more applications.





Index
A
Access Control Lists (ACLs)  263
acknowledgements, Socket.IO app  54-56
AddRoom event  194
addUser function  169
Advanced Message Queuing Protocol 

(AMQP)  116
Amazon Web Services (AWS)

URL  236
Ansible

about  246
environments, creating  267
installing  246-248
roles, using  248-250
summarizing  266, 267

Ansible-created EC2 inventory script
URL  246

Ansible roles
application, installing  253, 254
automating  265, 266
multiple application servers,  

load balancing  261-265
RabbitMQ, installing  251-253
using  248-250
workers, installing  261

app
config file, setting up  42
config file, setting up for  42
updating, for config usage  43-45

application
extending, methods used  45, 46
Google authentication, adding to  98-101
trying  216

application, Ansible
code, deploying  254-260
installing  253, 254

application-specific events
adding  79

application state
storing, in Redis  173

apt-get tool  146
Audits tab, Chrome developer tools  274
authentication

about  36-41
building  84
Google, used for  94-98

authorization
used, in Socket.IO  75

authorization handler
using  75

AWS EC2
summarizing  245

B
Backbone

about  184
collections, using  186, 187
models, using  185, 186

Backbone models
about  203
collections, creating  206
creating  205, 206
summarizing  208-212
syncing, with Socket.IO  203, 204

Backbone router  208
backend debugging  280, 281



[ 292 ]

basic file, Grunt
building  227, 228

Bower
installing  176
using  176

Bower package
versions  189, 190

browser side
adding  52-54

C
cards

charging, in real time  131-133
CDN  235
chatAdd function  202
Chrome developer tools, using

about  272
Audits tab  274
Console tab  274
Elements tab  272
Network tab  272
Profiles tab  273
Resources tab  274
Sources tab  273
Timeline tab  273

CleanUp function  215
CleanUpUsers function  215
client

building  49, 50
code coverage

Istanbul, using for  222
code, Grunt

concatenating  232
minifying  233, 234

collection property  198
collections, Backbone models

creating  206, 207
componentDidUpdate function  202
componentWillMount attribute  181
componentWillMount function  182
config

Socket.IO, adding to  72-74
used, via app update  43-45

config file
fixing  224, 225
setting up, for app  42

config file, setting up
app, updating for config usage  43-45
route mapping  43

Console tab, Chrome developer tools  274
Content Delivery Network. See  CDN
cookies  

about  76
used, in Express  23-25

Cosmo
URL  21

CPU profiling  281-283
CPUWaste function  282
Create Read Update Delete (CRUD)  195
creates option  257
Cross-Site Request Forgery (CSRF)  34-36
Crypto  103
CSS

updating  212, 213

D
database

adding  110
data structures, Redis

application, building  150-157
using  149

data types, Redis
hash data type  149
lists  149
sets  149
sorted set  149
string  149
using  149

debugging
about  277
backend debugging  280, 281
frontend debugging  278-280
summarizing  281

DefaultRoute function  211
denial-of-service (DOS)  33
destroy function  204
disconnect event

using  58
Document Object Model (DOM)  177



[ 293 ]

E
EBS  245
EC2

about  243
servers, creating on  243-245

Elastic Block Store. See  EBS
Elastic Compute Cloud. See  EC2
Elements tab, Chrome developer tools  272
Embedded JavaScript (EJS)  18
environment files

creating  225, 226
environments

adding  227
config file, fixing  224, 225
setting up  224
Twelve Factor App  224

environments, Ansible
creating  267

error.log queue  133
EXPIRE command  162
Express

and Socket.IO, using  72
cookies, using  23-25
middleware, creating  15-17
middleware, using  14
Redis, session store  28-30
sessions, adding  25-27
sessions, using  23
used, in Node  12-14

F
Facebook

authenticating, Passport used  88-94
Facebook application

registering  85-88
files, Grunt

preprocessing  229, 230
flash messages  40
FLUSHDB command  160
forms

Cross-Site Request Forgery (CSRF)  34-36
processing  31-33

frontend debugging  278, 279

frontend memory leaks
about  286
creating  287, 288

fully qualified domain name (FQDN)  89

G
Galaxy

URL  267
getChat function  193
getDOMNode function  181
GetMe function  209
GetRoom function  194
Google

used, for authentication  94-98
Google authentication

adding, to application  98-101
Google Chrome

URL  272
Grunt

about  227
basic file, building  227, 228
code, concatenating  232, 233
code, minifying  233, 234
files, preprocessing  229, 230
Node package versions  218
source files, JSHinting  231, 232
summarizing  234
tests, automating  228
used, for emptying folder  231
watch feature  235

H
HAProxy  270
hash, Redis data types  149
hash, Redis schema

using  159
heap snapshots

frontend memory leaks  286-288
obtaining  283-286
used, for tracking memory leaks  289

Heroku
URL  224

Homebrew
URL  116

horizontal scaling  269



[ 294 ]

I
Identity and Access Management (IAM)  236
interaction

creating  51
Istanbul

using, for code coverage  222, 223

J
join event  64
JoinRoom function  211
JSHint  231

K
keys, Redis

about  159
rooms  167
users  167

L
layout

about  20-22
implementing  20-22
updating  212, 213

libraries function
executing  222

Linux
RabbitMQ, installing on  118
Redis, installing on  146, 147

lists, Redis data types  149

M
Mac OS X

RabbitMQ, installing on  116, 117
Redis, installing on  145, 146

management interface
using  123, 124

memory leaks
creating, on frontend  286-288
tracking down, with heap snapshots  289

message queue
about  120-123, 140
adding, to PacktChat  133-139
management interface, using  123, 124
messages, queuing  125, 126
messages, sending  124
Redis, using as  163-167
topic exchange, using  133-139
worker, adding  126
worker, building  138, 139

messages
cards, charging in real time  131-133
broadcasting  56, 57
queuing  125, 126
sending  124
sending back  127-129
StartServer, creating  129, 130
worker, building  130, 131

methods
used, for extending application  45, 46

middleware
creating  15-18
used, in Express  14

multiple application servers
load balancing  261-265

MVC (Model, View, Controller)  45

N
namespace client

building  61-65
namespaces

about  69
and rooms, using  71
creating  59-61
finding  70
namespace client, building  61-65
using  69

Network tab, Chrome developer tools  272
Node

Express, using  12-14
Node.js

about  9-11
URL  9

Node Package Manager. See  npm



[ 295 ]

Node packages
about  10
versions  271

Node package versions  47, 83, 115, 175
Node package versions, Grunt  218
Node package versions, Redis  143
npm

about  9-11
using  260

O
OAuth

about  112
process  112
providers, adding  101

P
package

installing  48
package.json file  11
PacktChat

message queues, adding to  133-139
Redis, adding to  167

pageCount session variable  28
parse method  207
partial function  40
Passport

used, for authenticating Facebook  88-94
Password-Based Key Derivation Function 2 

(PBKDF2)  103, 112
passwordCheck function  103
passwordCreate function  103
password-storing theory  111
Personal Package Archive (PPA)

feature  147
using  147

ping event  64
Ping-Pong  51
Platform as a Service (Paas)  224
postal.js  180
Profiles tab, Chrome developer tools  273
Python

used, for serving site  50
Python script

building  238-240

Q
Qunit

URL  223

R
RabbitMQ

about  116
installing  251-253
installing, on Linux  118
installing, on Mac OS X  116, 117
installing, on Windows  119, 120
message queuing  139, 140
URL  115

RabbitMQ management plugin  118
React

about  176-184
components, creating  195-198
features  177
summary  203
URL  177

React components
creating  196-202

Read Evaluate Print Loop (REPL)  167
Redis

about  143
adding, to PacktChat  167
application state, storing in  173
features  172
installing  144
Node package versions  143
used, for storing Socket.IO  79, 80
using, as message queue  163-167

Redis, adding to PacktChat
about  167
functions, creating  168-172
structures, defining  167

Redis application
building  150-157

Redis functions
creating  168-172

Redis installation
about  144
on Linux  146, 147



[ 296 ]

on Mac OS X  145, 146
on Windows  148
on Windows, URL  148

Redis keys
expiration method  161
removing  160-163

Redis persistence
about  160
Redis keys, removing  160

Redis schema
building  158
hash, using  159
keys  159
keys, adding  158

Redis, session store  28-30
Redis structures

defining  167
registration

adding  108-110
relational database management  

system (RDBMS)  143
removeAllRooms function  192
removeClick function  181
removeFromRoom function  192
removeUserFromRoom function  171
render function  179, 201, 203
representational state transfer (REST)  195
requests

inspecting  274-277
making  74

Resources tab, Chrome developer tools  274
roomFormEvent function  211
rooms

adding  66-68
and namespaces, using  71
finding  71
using  69, 70

RoomSelection function  211
route mapping  43

S
S3 bucket

creating  236, 237

scalability
about  268
types  269

secret option  27
secure local authentication

adding  102-107
database, adding  110
registration, adding  108-110

servers
creating, on EC2  243-245

sessions
about  76
adding  25-27
used, in Express  23

SET command  162
SETEX command  163
set function  186
sets, Redis collection types  161
sets, Redis data types  149
settings, app

URL  19
socketAuth function  191
Socket.IO

adding, to config  72-74
and Express, using  72
authorization handler, using  75
authorization, used in  75
Backbone models, syncing with  203, 204
cookies  76
drawbacks  81
finishing  190-195
obtaining  77, 78
sessions  76
storing, Redis used  79, 80
working  80

Socket.IO app
building  48

Socket.IO app, building
acknowledgements  54-56
browser side, adding  52-54
client, building  49, 50
interaction, creating  51
package, installing  48
Ping-Pong  51
Python, used for serving site  50



[ 297 ]

Socket.IO, working
WebSockets  80

sorted set, Redis collection types  161
sorted set, Redis data types  149
source files, Grunt

JSHinting  231, 232
Sources tab, Chrome developer tools  273
StartServer

creating  129, 130
static files  235
string, Redis data types  149

T
templates

adding, to mix  18-20
layout, implementing  20-22

tests
Istanbul, using for code coverage  222, 223
setting up  218-221

tests, Grunt
automating  228

this.MULTI() function  153
Timeline tab, Chrome developer tools  273
tools

scripting  240-242
topic exchange

using  133-137
Twelve Factor App

about  224
URL  224

types, scalability
horizontal  269
vertical  270

U
Ubuntu  146

V
vertical scaling  270
VirtualBox

URL  148
virtual environment, for Python

creating  238, 239

W
watch feature, Grunt  235
WebSockets  80
Windows

RabbitMQ, installing on  119, 120
Redis, installing on  148

wireEvents function  64
worker

adding  126-215
building  130-139

workers, Ansible
installing  261

Y
Yet Another Markup Language (YAML)  249





Thank you for buying  
Building Scalable Apps with Redis and Node.js

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Node Cookbook 
Second Edition
ISBN: 978-1-78328-043-8              Paperback: 378 pages

Over 50 recipes to master the art of asynchronous 
server-side JavaScript using Node.js, with coverage 
of Express 4 and Socket.IO frameworks and the new 
Streams API

1. Work with JSON, XML, and web sockets to 
make the most of asynchronous programming.

2. Extensive code samples covering Express 4  
and Socket.IO.

3. Learn how to process data with Streams and 
create specialized streams.

4. Packed with practical recipes taking you  
from the basics to extending Node with  
your own modules.

Node Web Development  
Second Edition
ISBN: 978-1-78216-330-5             Paperback: 248 pages

A practical introduction to Node.js, an exciting 
server-side JavaScript web development stack

1. Learn about server-side JavaScript with  
Node.js and Node modules.

2. Website development both with and  
without the Connect/Express web  
application framework.

3. Developing both HTTP server and  
client applications.

 
Please check www.PacktPub.com for information on our titles



Mastering Node.js
ISBN: 978-1-78216-632-0            Paperback: 346 pages

Expert techniques for building fast servers and 
scalable, real-time network applications with  
minimal effort

1. Master the latest techniques for building 
real-time big data applications, integrating 
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event 
loop, and parallel data processing.

3. Use the Express and Path frameworks to  
speed up development and deliver scalable, 
higher quality software more quickly.

Using Node.js for UI Testing
ISBN: 978-1-78216-052-6             Paperback: 146 pages

Learn how to easily automate testing of your web 
apps using Node.js, Zombie.js, and Mocha

1. Use automated tests to keep your web app  
rock solid and bug-free while you code.

2. Use a headless browser to quickly test your 
web application every time you make a small 
change to it.

3. Use Mocha to describe and test the capabilities 
of your web app.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Backend Development with Express
	Node.js and Node Package Manager
	Using Express in Node
	Using middleware in Express
	Creating our own middleware

	Adding templates to the mix
	Layouts

	Using sessions in Express
	Using cookies in Express
	Adding sessions
	Redis as a session store

	Processing forms
	Cross-Site Request Forgery (CSRF)

	Very simple authentication
	Setting up a config file for our app
	Route mapping
	Updating our app to use the config

	Methods to extend an application
	Summary

	Chapter 2: Extending Our Development with Socket.IO
	Node package versions
	Building a simple Socket.io app
	Installing the package
	Building the client
	Using Python to serve our site
	Ping-Pong
	Creating some interaction
	Adding the browser side
	Acknowledgments

	Broadcasting a message
	Using the disconnect event
	Creating namespaces
	Building our namespace client

	Adding rooms
	Using namespaces or rooms
	Namespaces
	Finding namespaces

	When to use rooms
	Finding rooms

	Using namespaces and rooms together
	Using Socket.io and Express together
	Adding Socket.io to the config
	Who are you?
	Authorization in Socket.io


	Adding application-specific events
	Using Redis as the store for Socket.io
	Socket.io inner workings
	WebSockets

	Ideas to take away from this chapter
	Summary

	Chapter 3: Authenticating Users
	Node package versions
	Let's build our authentication
	Registering a Facebook application
	Using Passport to authenticate to Facebook
	Using Google for authentication
	Adding Google authentication to our application
	Adding more OAuth providers
	Adding secure local authentication
	Adding registration
	Adding a database

	Password-storing theory
	OAuth process
	Summary

	Chapter 4: RabbitMQ for Message Queuing
	Node package versions
	Getting RabbitMQ
	Installing on Mac OS X
	The RabbitMQ management plugin

	Installing on Linux
	Installing on Windows

	Our first message queue
	Using the management interface
	Sending messages
	Queuing messages
	Adding another worker

	Sending messages back
	Creating StartServer
	Building the worker
	Charging cards in real-time

	Adding message queues to PacktChat
	Topic exchange
	Building the worker

	Message queuing in RabbitMQ
	Summary

	Chapter 5: Adopting Redis for Application Data
	Node package versions
	Installing Redis
	Installing on Mac OS X
	Installing on Linux
	Installing on Windows

	Using Redis data structures
	Building a simple Redis application

	Redis schema
	Using a hash
	Keys in Redis

	Redis persistence
	Removing Redis keys

	Using Redis as a message queue
	Adding Redis to PacktChat
	Defining the Redis structures
	Creating our Redis functions

	Redis is for application state
	Summary

	Chapter 6: Using Bower to Manage Our Frontend Dependencies
	Node package versions
	Installing and using Bower
	Introducing React
	Introducing Backbone
	Using Backbone models
	Using Backbone collections

	Summary

	Chapter 7: Using Backbone and React for DOM Events
	Bower package versions
	Finishing Socket.IO
	Creating React components
	React summary

	Backbone models
	Syncing the models with Socket.IO
	Creating the model
	Creating collections

	The Backbone router
	Putting it all together
	Updating CSS and the layout
	Adding a new worker
	Trying out our application
	Summary

	Chapter 8: JavaScript Best Practices for Application Development
	Node package versions
	Setting up tests
	Using Istanbul for code coverage

	Setting up different environments
	Twelve Factor App
	Fixing the config file
	Creating our environment files
	Adding more environments

	Introducing Grunt
	Building a basic Grunt file
	Automating our tests
	Preprocessing our files
	Using Grunt to clean out a folder
	JSHinting our source files
	Concatenating our code
	Minifying our code
	Grunt summary

	Static files and CDNs
	Creating an S3 bucket
	Python and installing virtual environments

	Scripting our new tools
	Summary

	Chapter 9: Deployment and Scalability
	Creating servers on EC2
	AWS EC2 summary

	What is Ansible?
	Installing Ansible
	Using Ansible roles
	Installing RabbitMQ
	Installing our application
	Installing the workers
	Load balancing multiple application servers
	Automating roles

	A summary of Ansible
	Creating new environments

	Scalability
	Different types of scalability
	Horizontal
	Vertical


	Summary

	Chapter 10: Debugging and Troubleshooting
	Node packages
	Using Chrome Developer Tools
	Elements
	Network
	Sources
	Timeline
	Profiles
	Resources
	Audits
	Console

	Inspecting requests
	Debugging
	Frontend debugging
	Backend debugging
	Debugging summary

	CPU profiling our application
	Taking heap snapshots
	Frontend memory leaks
	Memory leak summary

	Summary

	Index

